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Slab theorem and halfspace theorem for constant mean
curvature surfaces in H2 �R

Laurent Hauswirth, Ana Menezes and Magdalena Rodríguez

Abstract. We prove that a properly embedded annular end of a surface in H2 � R
with constant mean curvature 0 < H � 1=2 can not be contained in any horizon-
tal slab. Moreover, we show that a properly embedded surface with constant mean
curvature 0 < H � 1=2 contained in H2 � Œ0;C1/ and with finite topology is nec-
essarily a graph over a simply connected domain of H2. For the case H D 1=2, the
graph is entire.

1. Introduction

The theory of constant mean curvature (CMC) H > 0 surfaces in H2 �R drew a lot of
attention after the work by Abresch and Rosenberg [1], where they described a Hopf-
type holomorphic quadratic differential on any such surface, and characterized the CMC
rotational spheres for H > 1=2 as the only immersed CMC spheres in this space [1, 12,
18, 19]. For 0 � H � 1=2, there are no compact CMC examples. This is why H D 1=2
is called the critical value for the mean curvature in H2 �R. The CMC rotational simply
connected examples for 0 < H � 1=2 are entire graphs of paraboloid-type shape (see
Section 2.3 for more details). The geometric behavior of CMC surfaces in H2 �R for
H > 1=2 is, in some sense, analogous to the one of surfaces of positive CMC in R3.
For instance, for these values of the mean curvature there exist spheres and a 1-parameter
family of annuli invariant by a vertical translation similar to the Delaunay’s examples
(see [19] and references therein).

An important theorem by Hoffman and Meeks [11] in the classical theory of minimal
surfaces in R3 is the halfspace theorem, saying that there are no properly immersed non-
flat minimal surfaces in a halfspace. However, in H2 �R this result does not hold: there
are many entire minimal graphs and rotational annuli (called catenoids) contained in a
slab constructed by Nelli and Rosenberg [17]. There are also other properly embedded
minimal annuli of bounded height constructed in [7]. Notice that the existence of spheres
for H > 1=2 and paraboloid-type graphs for 0 < H � 1=2 implies that entire graphs of
bounded height cannot exist in H2 �R for H > 0 by the maximum principle.
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In [4], Collin, Hauswirth and Rosenberg proved that a properly embedded simply con-
nected minimal surface in a slab S of height less than � must be an entire graph. More
generally, they proved that each end of a minimal surface properly embedded in S with
finite topology is a graph outside a compact domain. For the case of CMC surfaces with
0 < H � 1=2 the behavior is different. We prove that there are no examples in a slab.

Theorem (Slab theorem). Let M � H2 �R be a surface (possibly with boundary) with
constant mean curvature 0 < H � 1=2 and at least one properly embedded annular end.
Then M can not be contained in a horizontal slab H2 � Œ0; L�, for any L > 0.

In particular, there are no properly embedded CMC surfaces for 0 < H � 1=2 with
finite topology contained in a horizontal slab of H2 �R.

For any 0 < H � 1=2, Manzano and Torralbo constructed in [14] properly immersed
CMC surfaces contained in a slab. These examples are invariant by a group of symmetries
induced by a tessellation of H2 by regular polygons. A fundamental domain of any of
these examples is compact and its lift in H2 �R has, by periodicity, only one end of
infinite topology. If these examples were embedded, it would show that the hypothesis of
having an annular end in the theorem above is sharp.

For CMC H D 1=2, there exists a halfspace theorem [9] for complete embedded
CMC surfaces in H2 �R lying on one side of a horocylinder (with some condition on
the mean curvature vector); the only such examples are parallel horocylinders. Nelli and
Sa Earp [20] also proved that the only CMC surfaces with H D 1=2 contained in the
mean convex side of the rotationally invariant paraboloid-type entire graph are translated
copies of the graph. If we think of CMC surfaces on one side of a horizontal slice, the only
known examples are entire graphs. Here we prove that, for 0 < H � 1=2, the only prop-
erly embedded CMC surfaces with finite topology contained in one side of a horizontal
slice are graphs.

Theorem (Halfspace theorem). Let M � H2 �Œ0;C1/ be a properly embedded surface
with constant mean curvature 0 < H � 1=2 and finite topology. Then M is necessarily a
graph over a simply connected domain of H2. For H D 1=2, the graph is entire.

2. Preliminaries

In this section we will set up some notations and introduce some classes of constant mean
curvature (CMC) graphs in H2 �R that we will use as barriers. Throughout this paper we
consider the cylinder model for H2 �R. We consider H2 D ¹.x; y/ 2 R2I x2 C y2 < 1º
endowed with the hyperbolic metric g�1D 4

.1�x2�y2/2
g0;where g0 denotes the Euclidean

metric in R2 : We will then consider the unit solid cylinder with the product metric g D
g�1 C dt

2 as model for H2 �R. In this model, there is a natural notion of asymptotic
boundary of H2 �R where .@1H2/ �R D S1 �R.

2.1. Constant mean curvature Scherk graphs

For any H 2 .0; 1=2�; Hauswirth, Rosenberg and Spruck [10] described necessary and
sufficient conditions over a compact admissible domain in order to guarantee the existence
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of a graph with constant mean curvatureH assuming infinite boundary values. A compact
domain � in H2 is said to be admissible if it is simply connected and its boundary @� is
a polygon with sides ¹Aiº and ¹Biº, with neither two consecutive Ai edges nor Bi edges,
and all satisfying �.Ai /D 2H and �.Bi /D�2H , where � denotes the geodesic curvature
with respect to the interior of �. The Jenkins–Serrin problem they considered consists of
finding a solution to the equation for CMC graphs in � of mean curvature H (we will
call it H -graph) which assumes boundary values C1 on each Ai and �1 on each Bi .
In the case the domain is an ideal quadrilateral with two opposite edges A1; A2 and two
opposite edges B1;B2, Folha and Melo constructed complete examples – which are called
complete ScherkH -graphs – for any 0 < H <

p
2=2 (see Appendix in [8]). Since we will

use as barriers these complete Scherk H -graphs for 0 < H < 1=2, here we show their
existence for this wider range of the mean curvature.

Proposition 2.1. For any 0 < H < 1=2, there exists a complete Scherk H -graph over
an ideal domain, called Scherk domain, bounded by curves Ai and Bi (as above) with
�.Ai / D 2H and �.Bi / D �2H; for i D 1; 2:

Proof. We use a Plateau conjugate method. Melo [16] constructed a complete minimal
Scherk-type graph over an ideal quadrilateral in any ePSL.2;R/ space. Using Daniel’s
correspondence [5] and the techniques by Castro-Infantes, Manzano and the third author
in [3], these graphs correspond to complete ScherkH -graphs into H2 �R as desired, with
0 < H < 1=2.

2.2. Bigraph horizontal annuli with constant mean curvature H D 1=2

ForH D 1=2, instead of using Scherk-type graphs as barriers we will use the one-parame-
ter family of horizontal annuli ¹Caºa>0 constructed by Daniel and the first author in
Section 8 of [6], called horizontal catenoids, whose boundary at infinity consists of two
vertical lines (see also [3] for an alternative construction). Up to an isometry, we can
assume that any horizontal catenoid Ca is symmetric with respect to the vertical plane
¹y D 0º that separates both ends and with respect to the horizontal plane H2�¹0º, and the
lower half of Ca is a graph which we denote by Ga (see Figure 1). Each graph Ga is iso-
metric to a minimal surface †a in the Heisenberg space Nil3, called its conjugate surface,
and they share the same values of the angle function � D< N; @t > (see Daniel’s corre-
spondence in [5]). This minimal surface†a is a helicoidal surface bounded by two vertical
geodesics. These boundary geodesics correspond to the horizontal curves at height 0 of Ga,
where � D 0.

The parameter of the family ¹Caºa>0 corresponds to the size of the neck of the annuli,
where by neck we mean the (compact) intersection curve between the annulus and the
vertical plane of symmetry ¹y D 0º.

When a goes to zero, the limit surface consists of the union of two tangent horocylin-
ders (a pinching is produced in this case). The limit surface become vertical everywhere,
even if we consider different translated copies of the annuli, so the limit domain of the
domains where the graphs Ga are defined is the union of two tangent horodisks and is foli-
ated by divergence lines (sets of points where the gradient of the functions are unbounded),
that are horocycles at the same two points at infinity.
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Figure 1. Half of an horizontal catenoid Ca which is a graph Ga over a domain in H2 �¹0º.

Now translate the catenoids so that any Ca is tangent to H2 �¹0º at the origin of H2

and this point is contained in the neck of the annulus. When a diverges, the necks of the
annuli (all of them passing through the origin) become as large as we want. Hence, when a
goes to C1, the graphs Ga converge to the entire graph I given explicitly by Sa Earp in
equation (31) of [21] which is invariant by a one-parameter family of hyperbolic transla-
tions. Notice that in Remark 3.7 of [3] it is proved that the conjugated minimal surfaces
of Ga in Nil3 converge to the minimal entire graph in Nil3 invariant by the isometric
translations along a horizontal geodesic, and Daniel proved in Example 5.6 of [5] that the
conjugate surface of this entire minimal graph is the graph I. In particular, for any d > 0,
there exists a0 such that Rd is contained in the domain where the graph Ga is defined for
any a � a0, where Rd �H2 denotes the region bounded by the two equidistant curves at
distance d to the horizontal geodesic ¹y D 0º � H2, see Figure 2.

Figure 2. Projection of the graph Ga and the domains D1 and D2 over which Ga \ ¹t < �M º

projects, for large M .

On the other hand, the conjugate surface †a �Nil3 is foliated by straight lines with a
Gauss map which is horizontal at infinity. Hence, on each straight line the function � con-
verges uniformly to zero at infinity. This shows that, outside a compact set, the unit normal
vector at any point of the graph Ga is arbitrarily close to horizontal. In particular, using
different slide back sequences we can prove that, for M > 0 large enough, the translation
of the surface Ga \ ¹t < �M º converges to a horocylinder. This uniform convergence
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proves that the horizontal curves Ga \ ¹t D �M º are close to two horocycles and contain
any half equidistant curves to a geodesic having the same points at infinity (corresponding
to the ends of the horizontal catenoid). Up to an isometry we can assume that this geodesic
is ¹y D 0º � H2. In particular, Ga \ ¹t < �M º is a graph over two unbounded domains
D1 and D2 so that Rd n .D1 [D2/ is compact for any d > 0.

2.3. Entire constant mean curvature graphs in H2 �R

There is a well-known class of entire CMC graphs for any H 2 .0; 1=2� that are rotation-
ally invariant complete vertical graphs with empty asymptotic boundary in .@1H2/ � R
(see, for instance, [18, 19]). We are going to call them paraboloids. One such surface is
the graph of a convex function u that diverges toC1 when approaching @1H2 and takes
its global minimum at height 0 (up to a vertical translation). We will denote by PC this
surface throughout this paper. The symmetric surface with respect to the horizontal slice
at height 0 will be denoted by P�.

When H D 1=2, PC is the graph of the function (in polar coordinates)

u.r; �/ D
1

p
1 � r2

; where 0 � r < 1:

The mean curvature vector of the paraboloid PC points upwards, and we orient the
surface by the unit vector field NC such that �C D hNC; @t i is positive. Since PC is
rotationally invariant, we can think of �C as a function on r 2 Œ0; 1/ in polar coordinates.
Moreover, since PC is the graph of a convex function whose tangent plane is becoming
vertical at infinity, �C is strictly decreasing and takes all values in .0; 1�. In particular, for
any ˛ 2 .0; 1/ there exist k˛; h˛ > 0 such that the region of PC where �C � ˛ coincides
with PC \ .H2�Œ0;h˛�/ and is bounded by a horizontal circle of radius k˛ (see Figure 3).
We observe that both h˛ and k˛ diverge as ˛ goes to 0.

Figure 3. PC \ .H2 �Œ0; h˛ �/.

The paraboloid PC (as well as P�) separates the ambient space into two connected
components. We denote by Pint the mean-convex component (the one where the mean
curvature vector points to), and by Pext the other one. We will use this notation in the
proof of the slab theorem.

There are many other examples of complete CMC graphs in H2 �R. In fact, for any
H 2 .0; 1=2� there are families of CMC graphs invariant by a hyperbolic or a parabolic
translation, not necessarily entire when H < 1=2 (see [21] or the appendix in [15]). The
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intersection of the asymptotic boundary of all these examples with .@1H2/ � R is con-
tained in one or two vertical lines, and some of these examples are contained in one side
of a horizontal slice.

Moreover, there exist many CMC H D 1=2 entire graphs which are not rotationally
invariant, obtained as deformation of the paraboloid, with empty asymptotic boundary in
.@1H2/ �R (see [2] for more details).

3. Slab theorem

Collin, Hauswirth and Rosenberg [4] have proved that an annular end of a properly im-
mersed minimal surface contained in a slab of height less than � is a multigraph outside
a compact domain with a finite number of sheets. When 0 < H � 1=2, the following
theorem proves the non-existence of a properly embedded annular end with CMC H in a
slab of any height L. We will denote by �L the horizontal slab H2 � Œ0;L�, for any L > 0.

Theorem 3.1. Let M � H2 �R be a surface (possibly with boundary) with constant
mean curvature 0 < H � 1=2 and at least one properly embedded annular end. Then M
can not be contained in �L, for any L > 0.

In particular, there are no properly embedded CMC surfaces for 0 < H � 1=2 with
finite topology contained in a horizontal slab of H2 �R.

Proof. Let us suppose, by contradiction, that there exists one such surface M contained
in �L, and callE a properly embedded annular end ofM . ThenE � �L is an annulus with
compact boundary @E. Since E is properly embedded, there exists a compact diskD (not
necessarily minimal) with @D D @E such that E [D is a surface that separates H2 �R

into two connected components. Along E, the mean curvature vector EH distinguishes
these two components. We call interior component the one where EH points to, and exterior
component the other one. We denote byN the unit normal vector toE such that EH DHN ,
and � D hN; @t i denotes what we call the angle function of E.

Let us consider a paraboloid PC with the same mean curvature 0<H � 1=2 asE (see
Section 2.3). Its mean curvature vector is pointing upwards, and we orient the paraboloid
by the unit vector fieldNC such that �C D hNC; @t i is positive. Since �C takes all values
in .0; 1� and PC is rotationally invariant, for any point p 2 E with �.p/ > 0, we will be
able to translate PC in such a way that it passes through p with NC.p/ D N.p/. In the
case �.p/ < 0, we instead consider a translation of P� to find a paraboloid with the same
mean curvature vector as E at p.

Claim 1. There exists ˛0 2 .0; 1/ such that ¹p 2 E W j�.p/j � ˛0º contains a sequence of
diverging points .pn/n2N , i.e.,

(3.1) d.pn/ WD distH2 .�.pn/; �.@E//!C1 and j�.pn/j � ˛0;

where � WH2 �R! H2 denotes the (vertical) projection onto the first factor.

If not, for any sequence of points pn 2E such that d.pnC1/> d.pn/�n (the sequence
diverges horizontally), the sequence ¹�.pn/ºn2N converges uniformly to zero. We then



Slab theorem and halfspace theorem for CMC surfaces in H2 �R 7

consider the isometry Tn which is the composition of a vertical and a horizontal transla-
tions mapping pn to a fixed point p0 D .0; 0; L=2/ 2 H2 �R, and call En D Tn.E/.

If there is a subsequence of ¹pnºn2N such that the Gaussian curvature of E is uni-
formly bounded in a small neighborhood of any pn, then there is a subsequence of the
surfaces En which locally converges to a CMC surface E1 whose angle function �1
vanishes identically in a neighborhood of p, and E1 is contained in a vertical cylinder
over a complete curve of constant geodesic curvature 2H . By the unique continuation
theorem, there is a subsequence of ¹Enºn2N converging to a complete vertical cylinder,
a contradiction with the fact that all the terms in the sequence are contained in a fixed
horizontal slab of height less than 3L (H2 �Œ�L; 2L�).

Then we can assume that the curvature of E is not uniformly bounded in neighbor-
hoods of pn and, by passing to a subsequence if necessary, that jA.pn/j � n for any n,
whereA denotes the second fundamental form ofE. We callBn the connected component
that contains pn of the intersection of E with the extrinsic ball B.pn; ı/ centered at pn of
uniform small radius ı > 0, and we define

fn.p/ WD d .p; @Bn/ jA.p/j;

for any p 2 Bn, where d denotes the extrinsic distance in H2 �R. The function fn van-
ishes on @Bn and fn.pn/ D ıjA.pn/j � ın. We then deduce that fn attains its maximum
at a point qn 2 Bn, and fn.qn/ � ın. On the other hand, ıjA.qn/j � fn.qn/, from where
we deduce that jA.qn/j � n.

We now consider rn WD 1
2
d.qn; @Bn/ and B 0n � Bn the connected component of E \

B.qn; rn/ that contains qn. For any point q 2 B 0n, it holds

2rn D d.qn; @Bn/ � d.qn; q/C d.q; @Bn/ � rn C d.q; @Bn/:

Hence, d.q; @Bn/ � rn. Since 2rnjA.qn/j D fn.qn/ � fn.q/ � rnjA.q/j, we conclude
that

jA.q/j � 2 jA.qn/j DW 2�n:

Since �.pn/ converges uniformly to zero, we can assume, by passing to a subsequence
if necessary, that j�j < 1=n in Bn. Thus we have that j�j < 1=n and jAj � 2�n in B 0n.

Now we consider a blow up on the metric g of H2 �R by a factor �n � n; more
precisely, we define †n as B 0n with the metric gn D �ng. We can use the exponential
map at the point qn to lift the surface †n to its tangent plane Tqn.H

2 �R/ � R3, and we
obtain a surface z†n � R3 which is a minimal surface with respect to the lifted metric Qgn;
where Qgn is the metric such that the exponential map expqn is an isometry from .z†n; Qgn/ to
.†n; gn/. Therefore, z†n � BR3.0; �nrn/ and, if zA denotes the second fundamental form
of z†n, we have j zA.0/j D 1 and j zA.q/j � 2 for all q 2 z†n:

On one hand, we observe that �nrn diverges, as 2�nrn D fn.qn/ � fn.pn/ � ın.
Then the balls BR3.0; �nrn/ converge to R3 and the metrics gn converge to the canonical
metric g0 of R3. For a fixed n, the compact surfaces z†0

k
WD z†k \ BR3.0; �nrn/ of R3,

with k � n, all pass through the origin 0 and have uniform bounded curvature. Then a
subsequence of ¹z†0

k
ºk converges to a minimal surface in .R3; g0/ passing through the

origin 0 and j zA.0/j D 1, where zA also denotes the second fundamental form of this limit
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surface. This argument holds for any n, so we can use a diagonal argument and obtain,
as a limit of a subsequence of the surfaces z†k , a complete minimal surface z† in R3 with
0 2 z† and j zA.0/j D 1.

On the other hand, we knew that j�j < 1=n in B 0n. Then we obtain that j�j < 1=n

in z†n, from where we deduce that the Gauss map of z† takes values in a neighborhood of
the equator of S2. Then this limit surface z† must be a vertical plane, which contradicts
the fact that j zA.0/j D 1. This proves Claim 1.

Take the sequence ¹pnºn2N given by Claim 1. We can assume, by passing to a subse-
quence if necessary, that �.pn/ > 0 (or �.pn/ < 0) for any n. We consider, for each pn,
a translation of the paraboloid PC (or P�, depending on the sign of �.pn/) tangent to E
at pn with the same mean curvature vector at pn. We denote such paraboloid by P .pn/.

Since the angle function �C of the paraboloid PC is a decreasing function (by the
convexity of u, see Section 2.3), there exists a unique ˇ 2 .0;˛0/ such that hˇ D h˛0 CL.
Hence, P .pn/\ .H2 � Œ0;L�/ is the translation of a subdomain of P˙ \ .H2 � Œ0;˙hˇ �/,
where the sign ˙ depends on the sign of the angle function � at pn. For n large enough,
d.pn/ > 2kˇ and the tangent paraboloid P .pn/ does not intersect @E.

The local intersection of E and P .pn/ near pn consists of k curves, with k � 2,
meeting at an equal angle at pn. We denote by �n D E \ P .pn/ the intersection of the
two surfaces. Since the intersection of P .pn/ with the slab containing E is compact, �n
is also compact.

The paraboloid P .pn/ divides H2 � R into two components: a mean-convex one,
Pint.pn/, and a non mean-convex one, Pext.pn/. Since the intersection of Pint.pn/ with a
horizontal slab is compact, any component of E n P .pn/ contained in Pint.pn/ is neces-
sarily compact.

Claim 2. There is no compact component † of E n P .pn/ contained in Pext.pn/ with
boundary @† � P .pn/.

Suppose by contradiction this is not true. Then we can find a vertically translated copy
zP .pn/ of P .pn/ tangent to † at a point zp such that † is contained in the mean-convex

side of zP .pn/. By the maximum principle, we get that the mean curvature vector of †
at zp points to the non mean-convex side of zP .pn/. Let �.P / be the symmetric copy of
P .pn/ with respect to H2 � ¹0º. We can translate �.P / so that it is tangent to zP .pn/
(and hence to †) at zp. Then † and �.P / share the same mean curvature vector at zp
and† is contained in the non mean-convex side of �.P /, a contradiction by the maximum
principle, and Claim 2 is proved.

Locally at pn, the set E n �n has at least four components with at least two of them
contained in the mean-convex component Pint.pn/. We call †1 and †2 two of these com-
ponents.

Claim 3. †1 and †2 can be connected by an arc  � E \Pint.pn/.

Suppose by contradiction this is not the case. Thus �n bounds at least two distinct
connected components R1 and R2 of E n P .pn/ which are contained in Pint.pn/ whose
boundaries meet at pn. We consider vertical translations TsP .pn/ of the paraboloid,
where Ts.p/ D p C s@t for s � 0, which foliate Pint.pn/. Since E \ Pint.pn/ is com-
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pact, there is a last leaf Ts1P .pn/ of the foliation that meets R1. Then Ts1P .pn/ and R1
are tangent at a point q1 and R1 is below Ts1P .pn/. By the maximum principle, the mean
curvature vector ofE and the mean curvature vector of the paraboloid Ts1P .pn/ are oppo-
site at q1. The component R1 separates Pint.pn/ into two connected components and the
mean-convex one RC1 is compact. Observe thatR1 and R2 are local graphs near pn. Since
the mean curvature vector of E at pn is pointing into Pint.pn/ and E is embedded, the
component R2 is completely contained in RC1 (see Figure 4) and the compact component
of Pint.pn/ n R2 is not mean-convex. We then reach a contradiction applying the max-
imum principle with the last leaf Ts2P .pn/ of the foliation that meets R2. This proves
Claim 3.

Figure 4. Connected components R1 and R2 of E n P .pn/ in Pint.pn/ appearing in the proof of
Claim 3.

Let n be a compact arc in E \Pint.pn/ linking two points q1 2 †1 and q2 2 †2. We
can complete n by a compact segment  0i � †i with endpoints qi and pn such that ˛n D
n [ 

0
1 [ 

0
2 is a loop in E. If ˛n is homologous to zero in E, then it is the boundary of a

disk D which contains points in Pext.pn/ close to pn; hence, the disk D has a subdomain
in Pext.pn/, a contradiction to Claim 2. This proves that ˛n is in the homology class of
@E and ˛n [ @E bounds a subannulus An of E.

Since we can do this construction for a sequence of diverging points pn, we can use
a translation of the paraboloid PC so that PC \ @E D ; and An and PC are tangent at
a point. Then by the maximum principle we conclude that, along An, the mean curvature
vector of E points into the solid cylinder ACn bounded by the annulus An and two disks
with boundaries ˛n and @E. We are then in the situation of a mean convex cylinder with
boundaries contained in two compact subdomains K.˛n/ and K.@E/ of H2 �R : Since
all the curves ˛n are contained in the intersection with the slab �L with translated copies
of the mean-convex side of the same paraboloid, P˙ \ .H2 �Œ0;˙hˇ �/, we can suppose
that the compact sets K.˛n/ are compact balls of uniform radius.

First assume 0 < H < 1=2. For n large enough, we can suppose that there exists
a Scherk domain � bounded by arcs A1; A2; B1; B2 with �.Ai / D 2H and �.Bi / D
�2H , where � denotes the geodesic curvature with respect to the interior of �, such
that Bi separates K.˛n/ from K.@E/, for i D 1; 2 (see Figure 5). In particular, we can
conclude that the vertical planes A1 � R and A2 � R do not intersect the annulus An;
otherwise we could use hyperbolic translations of the CMC H -plane Ai � R to get a
contradiction with the maximum principle (notice that the mean curvature vector of An

points into the compact region bounded by it, so we have the correct orientation to apply
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the maximum principle). Now moving the CMCH -planesAi �R towards the annulus An

using hyperbolic translations, we can guarantee the existence of two disjoint vertical CMC
H -planes �1 � R and �2 � R such that the annulus An is contained in the convex side
of the two of them and �i separates A1 from A2, for i D 1; 2. We can then translate
downwards the complete Scherk H -graph over � so that it is below the annulus An.
Now we get a contradiction using the maximum principle and vertical translations of the
complete Scherk H -graph.

Figure 5. Projection of the annulus An and of the complete Scherk H -graph for the case
0<H <1=2.

In the case of H D 1=2; the argument is similar but a bit more subtle and using the
graph given by the half of a horizontal catenoid described in Section 2.2 instead.

Let us first prove that, for any n, An projects onto the region between two equidistant
curves to a same geodesic. Up to an isometry, we can assume that the geodesic which
minimizes the distance between K.˛n/ and K.@E/ is contained in ¹y D 0º � H2, and
let I be the entire 1=2-graph invariant by translations along this geodesic described in
Section 2.2.

We consider d > 0 so that the vertical projection of K.˛n/ [ K.@E/ is contained
in Rd , where we recall that Rd � H2 denotes the region bounded by the two equidistant
curves at distance d to the horizontal geodesic ¹y D 0º � H2. We translate I downwards
so that it is much below An and start translating upwards until it contains the equidistant
curves @Rd � ¹Lº or intersects K.˛n/[K.@E/ for the first time. By the maximum prin-
ciple this translated copy of I lies below An, and the vertical projection of An onto H2

is contained in Rd . Since the compact balls K.˛n/ have uniform radius, this distance d
does not depend on n.

Let us now consider a horizontal catenoid Ca such that Rd is contained in the projec-
tion of Ca in H2. We can assume, up to a horizontal translation, that the vertical symmetry
plane… (which separates an end of Ca from the other) intersects An transversally and has
…\K.˛n/D…\K.@E/D ;. ForM > L and n sufficiently large, we can suppose that
Ca \ ¹�M � t � 0º is a graph G over a domain Q� such that Q�\K.˛n/D Q�\K.@E/D;
as in Figure 6. Applying the maximum principle with vertical translations of the graph G ,
we conclude that An can not exist.
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Figure 6. Projection of the annulus An and of the graph Ga for the case H D 1=2.

4. Halfspace theorem

Theorem 4.1. Let M be a properly embedded CMC surface in H2 �Œ0;C1/ with 0 <
H � 1=2 and finite topology. Then M is necessarily a graph over a simply connected
domain of H2. For H D 1=2, the graph is entire.

Proof. Suppose by contradiction that there exist two distinct points p1; p2 2M such that
�.p1/ D �.p2/ D x, where � WH2 �R! H2 is the (vertical) projection onto the first
component; that is, p1 D .x; t1/ and p2 D .x; t2/, with t1 ¤ t2. Assume t1 < t2 and take
t3 > 2t2 so that there exists a curve in M joining p1; p2 contained in ¹t < t3º. We can
assume that M \ ¹t D t3º is transversal. Let us denote † DM \ ¹t < t3º.

Suppose that † is compact. Then there exists a minimum for the height function t ,
where the mean curvature vector EH of † coincides with @t . Hence, we can start the
Alexandrov reflection method for†with horizontal planes coming from below, and obtain
that M is symmetric with respect to a horizontal plane below ¹t D t2º, which implies
that M is compact, a contradiction. Thus † cannot be compact.

For any � > 0, consider a translated paraboloid TtP� with Tt .p/DpC t@t so that the
solid cylinderDH2.x; �/� Œ0; t3� is contained in TtP�int, whereDH2.x;�/ is the hyperbolic
disk centered at x with radius �. Since M has finite topology, we can assume that, for
� > 0 large enough, any connected component of M� D M \ TtP

�
ext is either compact

with boundary on TtP� or an annular end of M with boundary on TtP�. Since M is
properly embedded, the number of compact components of M� is finite.

For �0 > � large enough, we consider the vertical cylinder C�0 D DH2.x; �0/ � R
which contains entirely TtP� \ �t3 and all compact components of M� with boundary
in the paraboloid, where we recall that �t3 denotes the slab H2 �Œ0; t3�. If a point of M
is outside this cylinder, then it is part of an end of M which has its boundary on the
paraboloid TtP�. We will only consider the part of M� contained in the slab �t3 and
outside the cylinder C�0 . Let us consider R�0 D �t3 n C�0 .

Claim 4. We can take �0 > � large enough so thatM� \ @C�0 \ �t3 is transversal and any
non-compact component of M� \R�0 satisfies � > 0.

SinceM is properly embedded, there are a finite number of non-compact components
ofM�. It then suffices to prove the claim for any of them. LetE be a non-compact compo-
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nent of M� whose boundary is in TtP� and suppose by contradiction that there exists a
diverging sequence of points ¹pnºn2N in E \ R�0 with �.pn/ � 0. If � � 0 in a neigh-
borhood of a point pn, M would be (locally at pn) a cylinder over a curve of constant
geodesic curvature 2H . By the analytic continuation theorem, M would be a complete
CMC cylinder contradicting the fact that M is contained in a halfspace. Then in a neigh-
borhood of any pn, there must exist a point qn 2 M where �.qn/ < 0. Hence, we can
work with a sequence of points qn 2 E \ R�0 with �.qn/ < 0 and the sequence ¹qnºn2N

diverges to .@1H2/ �R.
Now we are going to argue as in the proof of Theorem 3.1. We observe that the third

coordinate of the points qn is bounded by t3. For any n; since �.qn/ < 0; we can consider
a translation of the paraboloid P�, denoted by P .qn/, tangent to E at qn with same mean
curvature vector. A similar argument as in Claim 1 yields that there exists a subsequence of
divergent points ¹qnºn2N such that �.qn/� ˛0 < 0; for some ˛0 2R�, and the paraboloid
P .qn/ does not intersect @E � TtP� for n large enough. Now arguing as in Claims 2
and 3, we can conclude that there is curve ˛ in the homology class of @E contained
in the adherence of the mean-convex component determined by the tangent paraboloid.
Hence, there is a subannulus A of E with boundary ˛ [ @E and we can use a complete
Scherk H -graph if 0 < H < 1=2 or half a horizontal catenoid Ca if H D 1=2, to reach
a contradiction. This proves that for �0 > 0 large enough, any point p of M� contained
in R�0 satisfies �.p/ > 0. To conclude Claim 4, it suffices to take �0 larger, if necessary,
so that the intersection M� \ @C�0 \ St3 is transversal.

We denote by z†DM \C�0 \ St3 , with boundary @z† � @C�0 [ ¹t D t3º. We observe
that if pD .y0; t0/ 2 @z†\ @C�0 then there is no point .y0; t / 2 @z†\ @C�0 with t0 < t < t3,
since �.y0; t0/ > 0 and any other point would also satisfy �.y0; t / > 0, contradicting the
embeddedness property of the surface. Therefore, @z†\ @C�0 consists of curves projecting
graphically onto @DH2.x; �0/ and/or curves in DH2.x; �0/ � ¹t3º.

Now we apply the Alexandrov reflection method to z†. We observe that the minimum
for the height function on z† can be attained at an interior point and/or a boundary point
in @C�0 . On both cases (taking �0 larger if necessary) z† is locally a graph near that points,
and we can start the Alexandrov reflection for z† using the family of horizontal planes
coming from below. We obtain that z† must be symmetric with respect to a horizontal
plane below ¹t D t2º, but this is not possible as eitherM would be compact (if @z†\ @C�0
is empty) or @z†\ @C�0 would contain a point with positive angle function �, contradicting
Claim 4.

This contradiction proves that no two distinct points in M have the same vertical
projection. Standard arguments show that the mean curvature vector ofM is then nowhere
horizontal, so M is a complete multigraph. Manzano and the third author proved in [13]
that any complete multigraph with 0 < H � 1=2 (see [9] for the case H D 1=2) must be
a graph over an unbounded domain � � H2.

Now let us prove that � is simply connected. If this were not the case, there would
be at least a Jordan curve  in @�. Since M is complete, the graph would necessarily
diverge over  . It was proved in [10] that this is only possible if  has constant geodesic
curvature˙2H , a contradiction since  is closed.

Finally, observe that forH D 1=2 the graph is necessarily entire by the result in [9].
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