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Upper bounds for the relaxed area of S1-valued Sobolev
maps and its countably subadditive interior envelope

Giovanni Bellettini, Riccardo Scala and Giuseppe Scianna

Abstract. Given a connected bounded open Lipschitz set � � R2, we show that
the relaxed Cartesian area functional A.u; �/ of a map u 2W 1;1.�I S1/ is finite,
and we provide a useful upper bound for its value. Using this estimate, we prove a
modified version of a De Giorgi conjecture adapted to W 1;1.�IS1/, on the largest
countably subadditive set function A.u; �/ smaller than or equal to A.u; �/.

1. Introduction

Let � � R2 be a bounded open set. For a given v 2C 1.�IR2/, we indicate by

A.v;�/ WD

Z
�

p
1C jrvj2 C jJvj2 dx

the classical 2-dimensional area of the graph Gv D ¹.x; y/ 2 � � R2 W y D v.x/º of v,
where

Jv D
@v1

@x1

@v2

@x2
�
@v2

@x1

@v1

@x2

denotes the Jacobian determinant of v. For any u2L1.�IR2/, we consider theL1-relaxed
area of the graph of u, namely

(1.1) A.u;�/ WD inf
°

lim inf
k!C1

A.vk ; �/; vk 2 C
1.�IR2/; vk ! u in L1.�IR2/

±
:

It is well known that, when v is scalar valued, the study of the relaxed area is crucial in the
analysis of the Cartesian Plateau problem [21]. In higher codimension, the characterization
of the domain Dom.A.�;�// of A.�;�/, and the computation of its corresponding values,
seem at the moment out of reach, due to the presence of highly nonlocal phenomena.
More specifically, for a given u 2L1.�IR2/, the set function � � A! A.u; A/ turns
out to be not subadditive when restricted to open sets (This is true for general maps, apart
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from some specific cases which trivialize the functional, see [1] for details.) In particular,
A.u; �/ is not a measure, and thus it cannot be represented in integral form; for this reason,
only a few partial results are available (see, e.g., [5,9,10]). In these references, it is shown
that nonlocality is due to at least two reasons: one is the presence of singularities in the
map u; the other one is the possible interaction of such singularities with @�. In both
cases, it appears that, in general, interesting and rather involved Plateau-type problems
must be solved, in order to get the exact value of A.u; �/ (see the discussion below on
the maps uV and uT ; see also [7]). So, the computation of A.u; �/ is, in general, quite
difficult; on the other hand, looking for upper bounds that do not take into account the
above mentioned Plateau problems in full generality, seems realistic1.

In this paper, we are concerned with maps in

W 1;1.�IS1/ WD ¹u2W 1;1.�IR2/ W juj D 1 a.e. in �º;

where S1 D ¹.x1; x2/ 2 R2 W x21 C x
2
2 D 1º. Given a distributionƒ 2D 0.�/, let us intro-

duce the quantity

(1.2) kƒkflat;˛ WD sup
®
hƒ; 'i W ' 2 Lip0.�/; k'kL1.�/ � 1; ˛kr'kL1.�/ � 1

¯
;

where

(1.3) ˛ WD
jB1j

j@B1j
D
1

2

and Lip0.�/ are the Lipschitz functions on� vanishing on @�. Our first result (Section 6)
reads as follows.

Theorem 1.1. Let � � R2 be a connected bounded open set with Lipschitz boundary,
and let u2W 1;1.�IS1/. Then

(1.4) A.u;�/ �

Z
�

p
1C jruj2 dx C kDet.ru/kflat;˛ < C1:

In particular,
W 1;1.�IS1/ � Dom.A.�; �//:

Estimate (1.4) in general is not sharp. Indeed, consider the map uV .x/ WD x=jxj

defined on the open pointed discBr .0/n¹0º of radius r > 0, whose distributional Jacobian
determinant is Det.ruV / D �ı0. Theorem 1.1 implies that

(1.5) A.uV ; Br .0// �

Z
Br .0/

p
1C jruj2 dx Cmin¹2�r; �º:

On the other hand, according to Theorem 1.1 in [6], one has

A.uV ; Br .0// D

Z
Br .0/

p
1C jruj2 dx C F.r/;

1Notice that, if one replaces in (1.1) the L1 convergence with stronger topologies, some sharp estimates can
be given (see for instance [3, 16, 23], where the strict convergence in BV has been investigated).
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where the singular contribution F.r/2 .0;�� has the meaning of the area of a minimal sur-
face solving a suitable non-parametric Plateau problem with partial free boundary. Specif-
ically, F.r/ coincides with half of the area of a sort of catenoid S �R3 DR2target �R with
boundary .S1 � ¹0º/ [ .S1 � ¹2rº/ and constrained to contain the segment ¹0º � Œ0; 2r�.
In particular, it can be seen that there exists a number r 2 .0; 1=2/ such that for r � r
this catenoid reduces to two discs, and in this case F.r/ D � , whereas for r 2 .0; r/ there
exists a non-trivial catenoid whose area is strictly smaller than the lateral area of the solid
portion of the (smallest) cylinder containing it, namely F.r/ < 2�r . This shows that for
r � r estimate in (1.5) is an equality, and that for r < r is not sharp. We emphasize that
a more precise estimate than (1.4), and hopefully the sharp value of the left-hand side,
seems quite difficult to obtain. On the one hand we expect that, when the singularities of
a map u are far from each other, (1.4) becomes sharp2. However, in the opposite case,
a characterization as in (1.5) needs some strong improvements of the techniques used
in [6]. Indeed, in [6] the rotational invariance of the domain and of the map uV itself are
strongly exploited to prove the lower bound, which is based on a cylindrical Steiner-type
symmetrization for integral currents. A similar technique has been employed in [25] (see
also [8]), yielding the value of A.uT ; Br .0//, where uT is the symmetric triple junction
map, a piecewise constant map taking three values in S1, each value on a 120o sector.
Also, in that case the symmetries of the source and the target spaces allow to use such
symmetrization techniques. Without these symmetries, at the moment little can be said
about the exact expression of A.�; �/.

So, the nonlocality of theL1-relaxed functional seems not removable. Thus, following
De Giorgi [18], it seems interesting to consider a further “relaxation”, this time looking at
the functional A.u; �/, i.e., looking at it as a function of the open set: for every V � �,
we set

(1.6) A.u; V / WD inf
° 1X
kD1

A.u; Ak/ W Ak � � open ;
1[
kD1

Ak � V
±
:

Actually, notice that, for all u2L1.�IR2/ with A.u;�/ < C1, A.u; �/ is the trace of a
regular Borel measure restricted to open sets (in �).

The estimate provided by Theorem 1.1 allows us to prove (Proposition 7.1) that

A.u; A/ D

Z
A

p
1C jruj2 dx; 8u2W 1;1.�IS1/; for every open set A � �:

Using this, we are able to show our next main result (Corollary 7.6):

Theorem 1.2. Let � � R2 be a connected bounded open set with Lipschitz boundary,
and let u2W 1;1.�IS1/. Then

A.u;�/ D inf
®
A.u;� nC/ W C � �;H0.C / < C1

¯
:

This theorem positively answers to an adaptation of a De Giorgi conjecture, see Con-
jecture 3 in [18], provided one restricts the analysis to the space W 1;1.�IS1/.

2For instance, under the further assumption that the 1-current Smin given by Lemma 3.6 below vanishes.
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Before concluding the introduction, it is worth recalling that in several works (see [12,
14, 15] and references therein; a general survey can also be found in [13]), the authors
studied the analogue of our relaxation problem, with the area functional replaced by the
total variation, forW 1;1 maps defined on a closed simply connected surface taking values
in S1. They were able to characterize the corresponding relaxed functional, and showed
that the singular contribution is given by

L.ƒ/ WD sup
'2Lip0.�/ ; lip.'/�1

hƒ; 'i D inf¹jS j� W S 2 D1.�/; T D @Sº;

which has the geometric meaning of the (geodesic) length of a minimal connection be-
tween the poles ofƒ. The case considered in the present paper seems much more involved,
due to the presence of the minimal surfaces briefly discussed above.

The plan of the paper is the following. In Section 2, we fix the setting and notation
needed in the sequel. In Section 3, we investigate the minimization problem dual to (1.2)
(see (2.10) and (2.11) below), and we prove some regularity result for the minimizing
currents (see also Remark A.3 in Appendix A). In Section 4, we collect some results
on the distributional Jacobian for Sobolev maps taking values in the circle. We briefly add
some details to extend the well-known results for simply connected domains [14,15] to the
case of non-simply connected domains, for the reader convenience. Notice that many of
these results were stated in the aforementioned references and also summarized in [13]. In
Section 5, we prove a density result for circle valued Sobolev maps, see Proposition 5.1,
which needs some preparatory lemmata. Finally, in Section 6, we prove Theorem 1.1,
whereas in the last section we investigate the countably subadditive interior envelope of
the relaxed area functional and we prove Theorem 1.2.

To conclude, we mention that it would be interesting to extend Theorem 1.1 to maps
u2BV.�IS1/. We leave this effort for future investigations; we only mention that in [4],
some estimates are given for specific piecewise constant maps.

2. Notation and preliminaries

In what follows, � � R2 is a fixed connected (but not necessarily simply connected)
bounded open set with Lipschitz boundary. We denote by d.�; @�/ the distance from @�,
and following [14], p. 96, we denote by d� W � ��! Œ0;C1/ the function

d�.x; y/ WD min
®
jx � yj; d.x; @�/C d.y; @�/

¯
:

Hence, if d�.x; y/ D jx � yj, then the closed segment xy joining x and y is contained
in �.

Given a vector V D .V1; V2/ 2R2, we set V ? WD .�V2; V1/ its �=2-counterclockwise
rotation. If V D ru, then r?u stands for .ru/? D .�@u=@x2; @u=@x1/. The distribu-
tional divergence of a vector field V D .V1; V2/ 2 L1.�IR2/ is the distribution

(2.1) hDivV; 'i WD �
Z
�

V � r' dx; 8' 2 C1c .�/:

If the vector field V is sufficiently smooth, DivV equals the pointwise divergence divV D
@V1=@x1 C @V2=@x2.
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The distributional curl of V 2L1.�IR2/ is the distribution

(2.2) hCurlV; 'i WD
Z
�

V � r?' dx; 8' 2C1c .�/:

If V is sufficiently smooth, then CurlV D div.V ?/ D �@V2=@x1 C @V1=@x2.
The symbol BV.A/ (respectively, SBV.A/) denotes the space of functions of bounded

variation (respectively, special functions of bounded variation) in the open set A � R2;
if u2BV.A/, ru stands for the absolutely continuous part of the gradient measure Du.
Further, [u] stands for the difference uC � u� of the two traces of u on its jump set Ju,
provided a unit normal vector field to Ju is assigned. We denote by BV.AIR2/ the space
of functions of bounded variation in A taking values in R2; if u 2 BV.AIR2/, jruj stands
for the Frobenius norm of ru; see [2].

Definition 2.1 (Dipole map). Let p;n 2R2 be distinct, and consider two polar coordinate
systems .�p; �p/ and .�n; �n/ centered at p and n, respectively, chosen3 so that both �p
and �n have a jump of size 2� on `n � `, where ` is the line containing pn, and `n is
the halfline with endpoint n and not containing p. We let wp;n 2BVloc.R2/ be the dipole
map, defined as

wp;n WD �p � �n:(2.3)

Notice that wp;n does not jump on `n, while it jumps (of size 2�/ on the relative
interior of pn. Notice also that there exists a constant C > 0 such that

jrwp;n.x/j � jr�p.x/j C jr�n.x/j � C
� 1

jx � pj
C

1

jx � nj

�
; 8x 2R2 n `:(2.4)

For any open setA�R2, D0.A/ and D1.A/ denote the 0-dimensional and 1-dimensional
currents inA, respectively. The symbol jƒjA stands for the mass of a currentƒ inA, while
supp.ƒ/ denotes the support of ƒ [19].

2.1. Lipschitz maps; the flat norm

For any bounded open set A � R2, we let Lip0.A/ be the space of Lipschitz functions
on A vanishing on @A, endowed with the norm

(2.5) k'kLip0.A/ WD max
®
k'kL1.A/; lip.'; A/

¯
;

where

lip.'; A/ WD sup
x;y2A
x¤y

j'.x/ � '.y/j

jx � yj
�

In the Banach space Lip0.A/, the norms lip.�; A/ and k � kLip0.A/ are equivalent.
In what follows, it is also convenient to introduce the equivalent norm

(2.6) k'kLip0.A/;˛ D max
®
k'kL1.A/; ˛ lip.'; A/

¯
; 8' 2 Lip0.A/;

with ˛ as in (1.3). For all these norms, we drop in the sequel the symbol A when A D �.

3The orientation of these systems is always counterclockwise.
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We denote by Lip0.A/
0 the dual space of Lip0.A/ (endowed with one of these norms).

The (equivalent to each other) dual norms to (2.5) and (2.6) on Lip0.A/
0 are, respectively,

(2.7) kƒkflat;A WD sup
'2Lip0.A/
k'kLip0.A/�1

hƒ; 'i and kƒkflat;˛;A WD sup
'2Lip0.A/
k'kLip0.A/; ˛�1

hƒ; 'i;

for all ƒ 2 Lip0.A/
0, see (1.2). Again, for these dual norms we usually drop the symbol

A when A D �. The reason of the notation k � kflat is explained by formula (2.10) below.

2.2. The classes X.�/ and Xf .�/

Let ..xi ;yi //i2N ���� be a sequence of pairs of points of� for which
P1
iD1d�.xi ;yi /

<C1. We shall always suppose that xi ¤ yi , while we do not exclude that xi D xj and/or
yh D yk for some i ¤ j , h ¤ k. Namely, ..xi ; yi //i2N � � �� nDiag�, where Diag�
is the diagonal of � ��.

The measures

ƒn WD

nX
iD1

.ıxi � ıyi /; n 2 N;

converge in Lip0.�/
0 to

P1
iD1.ıxi � ıyi /. Indeed, for any ' 2 Lip0.�/ with k'kLip0 � 1

and any n 2 N, setting

In WD ¹i � nC 1 W d�.xi ; yi / D jxi � yi jº;

Bn WD ¹i � nC 1 W d�.xi ; yi / D d.xi ; @�/C d.yi ; @�/º;

we haveˇ̌̌D 1X
iDnC1

ıxi � ıyi ; '
Eˇ̌̌
D

ˇ̌̌ 1X
iDnC1

.'.xi / � '.yi //
ˇ̌̌

�

ˇ̌̌ X
i2In

.'.xi / � '.yi //
ˇ̌̌
C

X
i2Bn

.j'.xi /j C j'.yi /j/

�

X
i2In

jxi � yi j C
X
i2Bn

.d.xi ; @�/C d.yi ; @�// D

1X
iDnC1

d�.xi ; yi /! 0

as n!C1, where in the last inequality we have used kr'k1 � 1 and ' D 0 on @�.

Remark 2.2 (On the non-uniqueness of the representation). The representation ƒ DP1
iD1.ıxi � ıyi / is not unique, since two sequences ..xi ; yi //i2N � � �� nDiag� and

..yxi ; yyi //i2N ����nDiag� with
P
i2N d�.xi ; yi / <C1,

P
i2N d�.yxi ; yyi / <C1,

define the same linear functional on Lip0.�/ ifD 1X
iD1

.ıxi � ıyi /; '
E
D

D 1X
iD1

.ıyxi � ıyyi /; '
E
; 8' 2 Lip0.�/:

We emphasize that the hypothesis that ..xi ; yi //i2N � � � � nDiag� (instead that
..xi ; yi //i2N � � � � n Diag�) is done for convenience, and it may happen that for
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some i 2N, either xi 2 @� or yi 2 @� (or both). Of course, if xi 2 @�, then ıxi D 0 in
Lip0.�/

0; the presence of xi affects the representation ofƒ, but not its action on Lip0.�/.
Nevertheless, we can always assume that for all i 2 N, at least one among xi and yi
belongs to �. To indicate such a property, we briefly write

.xi ; yi / 2 � �� nDiag?�:

Preferred representations will be discussed at the beginning of Section 3.

Definition 2.3. We set4

(2.8)

X.�/ WD
°
ƒ 2 Lip0.�/

0
W 9..xi ; yi //i2N � � �� nDiag?�;

1X
iD1

d�.xi ; yi / < C1; ƒ D

1X
iD1

.ıxi � ıyi /
±
[ ¹0º:

We have seen that

(2.9) 8ƒ 2 X.�/; hƒ; 'i D

1X
iD1

.'.xi / � '.yi //; 8' 2 Lip0.�/;

the series in (2.9) being convergent.

Definition 2.4. We set

Xf .�/ WD
°
T 2Lip0.�/

0
W 9m2N; 9.xi ; yi /2� �� nDiag?� for i D 1; : : : ; m;

T D

mX
iD1

.ıxi � ıyi /
±
[ ¹0º:

Every T 2Xf .�/ is a Radon measure, and can be identified with an integral 0-current
in D0.�/.

Remark 2.5. If ƒ 2 X.�/, then, adapting the arguments of Proposition 18 in [24], it
readily follows that the suprema in (2.7) are attained (taking into account that we have
Lipschitz maps which are null on @�).

2.3. The classes Rf and �

In the sequel, we need to consider the following classes of rectifiable currents in R2:

Rf WD
°
R 2 D0.R

2/ W R D

nX
iD1

�iızi for some n � 0; zi 2 R2; �i 2 ¹�1;C1º
±

4We take the union with ¹0º since ƒ could be the Jacobian determinant of a suitable map (see (4.10)), and
we want to include the case in which the map is constant.
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and

� WD
°
S 2 D1.R

2/ W S D

1X
kD1

[xkyk] for some sequence ..xk ; yk//k � R2;

1X
kD1

jyk � xkj < C1
±
;

and denote by Rf .A/ and �.A/ the classes written above when the currents are restricted
to an open set A � R2.

By [19] (see p. 367) and Lemma A.1 in Appendix A, for all ƒ2X.�/,

(2.10) kƒkflat D inf¹jRj� C jS j� W .R; S/ 2 D0.�/ �D1.�/; ƒ D RC @Sº;

and similarly, for all ƒ2X.�/,

(2.11) kƒkflat;˛ D inf
®
jRj� C ˛

�1
jS j� W .R; S/ 2 D0.�/ �D1.�/; ƒ D RC @S

¯
;

where we recall that ˛ is defined in (1.3). We shall prove that the infimum in (2.11) is
attained and that, if ƒ 2 Xf .�/, the minimizers Rmin and Smin satisfy Rmin 2 Rf and
Smin 2 � (similar properties hold for (2.10)).

3. A minimization problem for atomic distributions

Our aim in this section is to show that, for all ƒ 2 X.�/, the infimum on the right-hand
side of (2.11) is a minimum, and to analyze the regularity of its minimizers (Proposi-
tion 3.5); this will be done supposing first that, in place of ƒ, we consider T 2Xf .�/.

3.1. Properties (P) and (Pf)

Given a distributionƒD
P1
iD1.ıxi � ıyi / 2 X.�/, we can modify the set of points xi ; yi

in the following way. Take i 2 N. Then,
• if d�.xi ; yi / D jxi � yi j, we introduce two (coinciding) points yxi D yyi at the center

of the segment xiyi ;
• if d�.xi ; yi / D d.xi ; @�/C d.yi ; @�/, we choose two points yxi ; yyi 2 @� so that

d.xi ; @�/ D jxi � yyi j and d.yi ; @�/ D jyxi � yi j:

In this way,
1X
iD1

.jyxi � yi j C jxi � yyi j/ D

1X
iD1

d�.xi ; yi / < C1;

and we can write

ƒ D

1X
iD1

.ıxi � ıyi / D

1X
iD1

.ıyxi � ıyi /C

1X
iD1

.ıxi � ıyyi / in D 0.�/:

In particular, we may assume, after relabelling and renaming the points, that:
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.P/ There are sequences ..xi ; yi // � � �� nDiag� such that

ƒ D

1X
iD1

.ıxi � ıyi / and
1X
iD1

jxi � yi j D

1X
iD1

d�.xi ; yi / < C1:(3.1)

Using that ƒ D
P1
iD1.ıxi � ıyi / admits a representation as in (3.1), in (2.11) we can

choose as a competitor the pair .R; S/, with R D 0 and S D
P1
iD1 [yixi], and we obtain

(3.2) kƒkflat;˛ � 2

1X
iD1

jxi � yi j:

Recall that there can be repetitions between the xi , as well as between the yi .
Now, let T D

Pn
iD1.ıxi � ıyi / 2 Xf .�/. After relabelling (and keeping the same

symbols, for simplicity), T admits the representation

T D
X
k2JC

ıxk �
X
k2J�

ıyk ; for xk ; yk 2 �; xk ¤ yk ;

in D 0.�/, where JC and J� are finite (possibly empty) subsets of N, and JC \ J� D ;.
It is convenient to add some atoms to T as follows: for any k 2 JC, we consider a point
yyk 2 @� so that jxk � yykj D d.xk ; @�/, and similarly, for any k 2 J�, we consider a point
yxk 2 @�, so that jyxk � ykj D d.yk ; @�/. In this way, again without changing the notation
and calling once more yyk by yk and yxk by xk for simplicity, setting I D JC [ J�, we
can always write T as

(3.3) T D
X
k2I

.ıxk � ıyk /;

with the following additional property:
(Pf) for every k 2 I , one and only one of the xk and yk belongs to �, xi ¤ yj for any

xi ; yj 2 ¹xk ; yh W xk 2 �; yh 2 �º, and jxk � ykj D d�.xk ; yk/.
This implies that in (3.3) there are no cancellations in �. Recall that there can be

repetitions between the xi , as well as between the yi .

3.2. Analysis of the minimum problem (2.11)

Let T 2 Xf .�/ be represented as in (3.3) and satisfying (Pf). We consider a disjoint
partition ¹IP ; IDº of I (i.e., I D IP [ ID , IP \ ID D ;, where we allow IP or ID to be
empty) and, provided ID ¤ ;, an injective map � W ID ! I . Along with this, we define the
currents

(3.4)

8̂<̂
:
R� WD

X
k2IP

ıxk �
X

j2I n �.ID/

ıyj ; S� WD
X
k2ID

[y�.k/xk] if ID ¤ ;;

R� WD T; S� WD 0 if ID D ;

(clearly R� 2Rf , and S� , being a finite sum, belongs to �). Namely, we split the set I as
the union of �.ID/ and I n�.ID/; a point labelled by an index hD �.k/2 �.ID/ is coupled
with xk , while a point labelled by an index k 2 I n �.ID/ is uncoupled.
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Notice that

R� C @S� D

X
k2IP

ıxk C
X
k2ID

ıxk �
� X
j2I n �.ID/

ıyj C
X
k2ID

ıy�.k/

�
D

X
k2I

ıxk �
X
k2I

ıyk D T; in D0.�/:

Lemma 3.1. For any T 2Xf .�/, we have

(3.5)
min

®
jR� j� C ˛

�1
jS� j� W .R� ; S� / as in (3.4)

¯
D min

®
jRj� C ˛

�1
jS j� W .R; S/ 2 Rf � � ; T D RC @S in D0.R

2/
¯
;

where on the left-hand side, the minimum5 is taken over all disjoint partitions ¹ID; IP º
of I , and all injective maps � WID! I , as above. In particular, a minimizer of the left-hand
side is also a minimizer of the right-hand side.

Proof. On the one hand, the inequality � trivially holds in (3.5). On the other hand, also
the converse inequality holds, since every competitor .R; S/ 2Rf � � for the right-hand
side, can be modified, not increasing its energy, into a competitor for the minimum prob-
lem on the left-hand side. More specifically, let .R;S/ 2Rf � � be such thatRC @S D T
in D0.R2/, with T represented as in (3.3) and satisfying (Pf); in particular @S D T � R
is a finite sum of Dirac deltas. By the Federer decomposition theorem for 1-currents (see
Section 4.2.25 in [19]), we can write

S D

1X
iD1

Si ; in D1.R
2/;

with Si 2 � for all i 2 N, and either @Si D 0 (so Si is a loop) or @Si D ızi � ıwi for
some zi ¤ wi , zi ; wi 2 ¹xk ; yk W k 2 I º. If @Si D 0, we set ySi WD 0, i.e., we remove the
loop. If @Si D ızi � ıwi and supp.Si /\ .R2 n�/D ;, we set ySi WD [ziwi] (the segment
ziwi is not necessarily included in �). If @Si D ızi � ıwi and supp.Si / \ .R2 n�/ ¤ ;,
then, using (Pf), we set ySi WD [ziyzi]C [ ywiwi], where yzi 2 ¹yk W k 2 I º is a point on @�
such that d.zi ; @�/ D jzi � yzi j, and similarly, ywi 2 ¹xk W k 2 I º is a point on @� such
that d.wi ; @�/ D jwi � ywi j. Finally, if some Si D [ziwi] is such that both zi and wi
belong to @�, we remove Si , whereas if only one of them belongs to @�, say wi 2 @�,
we replace Si by ySi WD [yzi ywi], where, again, ywi 2¹xk W k 2 I º is a point on @� such that
d.wi ; @�/ D jwi � ywi j.

Then j ySi j� � jSi j� for all i 2N, and moreover, the support of

yS WD

1X
iD1

ySi

consists of finitely many segments (possibly with repetitions) joining some point in ¹xk W
k 2 I º and some point in ¹yk W k 2 I º. Furthermore, @ yS D @S . From this remark, one

5The existence of a minimizer is guaranteed since the number of competitors is finite.
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can easily define two sets IP ; ID � I of indices and an injective map � W ID ! I so that
yS D S� , R D R� , and it is checked that jR� j� C jS� j� � jRj� C jS j�: This concludes
the proof.

Remark 3.2. As a consequence of the previous arguments, the minimum on the right-
hand side of (3.5) can be taken among currents supported on �.

The following crucial fact is a result of regularity theory for minimal currents; since
we were not able to find a specific reference, for the reader convenience we propose a
direct proof, independent of regularity theory.

Proposition 3.3. Let T D
PN
iD1.ıxi � ıyi / 2 Xf .�/. Then the infimum in (2.11), with T

in place of ƒ, is attained and there are minimizers .Rmin; Smin/ 2 Rf � � .

Proof. The minimum problem on the right-hand side of (3.5) is attained, as a consequence
of Lemma 3.1, and is trivially larger than or equal to kT kflat;˛ , see (2.11). We claim that
actually equality holds, which will imply the thesis. To prove this, recalling (2.7), it is
sufficient to show that

min
®
jRj� C ˛

�1
jS j� W .R; S/ 2 Rf � � ; T D RC @S

¯
� sup

'2Lip0.�/
k'kLip0;˛�1

hT; 'i;

and this readily follows from Proposition A.2 in Appendix A.

Now we prove that, for a general ƒ 2 X.�/, the infimum on the right-hand side
of (2.11) can be obtained infimizing just on pairs .R; S/ 2 Rf � � .

Corollary 3.4 (k � kflat;˛ as an infimum over Rf � �). We have, for all ƒ2X.�/,

kƒkflat;˛ D inf
®
jRj� C ˛

�1
jS j� W .R; S/ 2 Rf � � ; ƒ D RC @S in D0.R

2/
¯
:(3.6)

Proof. Given " > 0, it is sufficient to show that there exist R" 2Rf and S" 2 � such that
ƒ D R" C @S" and

jR"j� C 2 jS"j� � kƒkflat;˛ C ":

Assuming ƒ D
P1
iD1.ıxi � ıyi / 2X.�/ is represented so that .P/ is satisfied, select

N" 2N in such a way that

(3.7)
1X

iDN"C1

jxi � yi j <
"

3
�

Thus, for

ƒ" WD

1X
iDN"C1

.ıxi � ıyi / 2 Lip0.�/
0 and T" WD

N"X
iD1

.ıxi � ıyi / 2 Xf .�/;

we have

(3.8) kƒ"kflat;˛ �
"

3
and kT"kflat;˛ � kƒkflat;˛ C kƒ"kflat;˛ � kƒkflat;˛ C

"

3
�
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By Proposition 3.3, there are integral currents yR" 2 Rf and yS" 2 � , with T" D yR" C @ yS"
in D0.R2/, such that

(3.9) kT"kflat;˛ D j yR"j� C 2j yS"j�:

Setting R" WD yR" and S" WD yS" C
P1
iDN"C1

[yixi], one sees that S" 2 � ,ƒD R" C @S",
and using (3.7), (3.9), and (3.8), that

jR"j� C 2 jS"j� � j yR"j� C 2j yS"j� C
2"

3
D kT"kflat;˛ C

2"

3
� kƒkflat;˛ C ":

Proposition 3.5 (Existence of minimizers defining k � kflat;˛). Let ƒ 2X.�/. Then the
infimum in (2.11) is attained, and there are minimizers Rmin 2D0.�/ and Smin 2D1.�/

which are integer multiplicity currents.

Proof. RepresentƒD
P1
iD1.ıxi �ıyi / as in property .P/. By (3.6), we can find a sequence

..Rk ; Sk// �Rf � � (in particular, of integer multiplicity currents) with ƒ D Rk C @Sk
in D0.�/ for any k 2 N, and such that

lim
k!C1

.jRkj� C 2jSkj�/ D kƒkflat;˛:

By compactness (see Theorem 7.5.2 in [22]), up to a (not relabelled) subsequence, we
know that Rk * Rmin 2 D0.�/ and Sk * Smin 2 D1.�/ weakly as currents, and we
have to prove that Rmin and Smin can be chosen with integer multiplicity. Suppose Rk DPmk
iD1 �iızi for some mk 2 N, with zi 2 � and �i 2 ¹�1;C1º; we may assume that

there are no cancellations in the previous expression. We introduce points wi 2 @� so that
jzi �wi j D d.zi ; @�/, and writeRk D

Pmk
iD1 �i .ızi � ıwi / as a current in R2. In this way,

Rk D @†k , with †k D
Pmk
iD1 �i[wizi] 2 � . We have

jRkj� � kƒkflat;˛ C 1

for k large enough; since jRkj� Dmk , we deduce that .mk/ is a bounded sequence. After
passing to a not-relabelled subsequence, we have Rk * Rmin 2 Rf weakly in D0.�/ as
k !C1. Moreover, the mass of †k satisfies

j†kj� � mk diam.�/;

and is uniformly bounded in k. Since @†k D Rk in D0.�/, also †k * † weakly in
D1.�/, with † an integral current.

Now we know thatRk C @Sk Dƒ in D0.�/. WritingƒD @T , with T D
P1
iD1 [xiyi]

an integer multiplicity current, we see that

@Sk D @T � @†k for k large enough;

and then Sk C †k � T 2 D1.�/ is an integral current without boundary. By compact-
ness, we can assume that the sequence .Sk C †k � T / weakly converges in D1.�/ to
an integral current Q without boundary. On the other hand, since Sk * Smin weakly
in D1.�/, we conclude that Smin C † � T D Q is an integral current. In particular,
Smin D Q �†C T is an integer multiplicity current.
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3.3. Properties of minimizers

Here we prove a useful lemma which summarizes some properties of the minimizing
partition ¹IP ; IDº and of the minimizing map � on the left-hand side of (3.5).

Lemma 3.6 (Structure of minimizers of the combinatorial problem). Let T 2Xf .�/ be
of the form (3.3) and satisfying (Pf). Then there exist a disjoint partition ¹IP ; IDº of I
and an injective map � W ID ! I , minimizing the left-hand side of (3.5), for which, setting

(3.10) Rmin WD
X
k2IP

ıxk �
X

j2I n �.ID/

ıyj 2 Rf and Smin WD
X
k2ID

[y�.k/xk] 2 � ;

so that T D Rmin C @Smin, the following properties hold.

(a) For all k 2 IP and j 2 I n �.ID/ for which xk 2� and yj 2�, we have

jxk � yj j � 1; d.xk ; @�/ �
1

2
and d.yj ; @�/ �

1

2
�(3.11)

Moreover, if k 2 ID is such that either xk 2 � and y�.k/ 2 @�, or xk 2 @� and
y�.k/ 2 �, then �.k/ D k.

(b) For all k 2 ID , the (relative) interior of the segment y�.k/xk is contained in �, and

(3.12)
jxk � y�.k/j � min¹1; d.xk ; @�/C d.y�.k/; @�/º;

jxk � y�.k/j �
1

2
Cmin¹d.xk ; @�/; d.y�.k/; @�/º:

(c) If xk 2� \ supp.Smin/ for some k 2 IP , then xk D xh for some h 2 ID .

(d) If yj 2� \ supp.Smin/ for some j 2 I n �.ID/, then yj D y�.k/ for some k 2 ID .

(e) If k; h 2 ID , k ¤ h, and y�.k/xk \ y�.h/xh D ¹rº, then either r D y�.k/ D y�.h/ or
r D xk D xh.

(f) If k;h2ID , k ¤ h, and y�.k/xk \ y�.h/xh contains more than one point, then either
y�.k/xk \ y�.h/xh D y�.k/xh or y�.k/xk \ y�.h/xh D y�.h/ xk .

(g) If the points in (3.10) contained in � are distinct and three by three not collinear,
then the segments y�.k/xk \�, k 2 ID , are disjoint.

(h) jSminj� D
P
k2ID

jxk � y�.k/j, and in particular, supp.Smin/ D
S
k2ID

y�.k/xk .

In words, (c) says that if k 2 IP and xk 2 � intersects supp.Smin/, the intersection
happens in one extremum of the intervals composing Smin, and similarly for yj in (d).
Item (e) says that if two intervals of Smin intersect at one point, this point must be an
extremum of both. Item (f) says that if two intervals of Smin intersect at more than one
point, then they cannot be contained one inside the other.

Proof. (a) Let us prove the first inequality6 in (3.11). Suppose, to the contrary, that there
exist k 2 IP and j 2 I n �.ID/ such that xk 2� , yj 2� and jxk � yj j < 1. Define the

6We shall prove a stronger statement, namely the validity of (3.11) for any minimizing IP , ID and � .
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injective map 'W ID [ ¹kº ! I as follows: ' D � on ID , and '.k/ WD j . Then

R' D
X

h2IP n ¹kº

ıxh �
X

�2I n'.ID[¹kº/

ıy� D Rmin � ıxk � ıyj ;

S' D
X

h2ID[¹kº

[y'.h/xh] D Smin C [yjxk]:

Thus,

jR' j� C 2jS' j� � jRminj� C 2jSminj� � jıxk j � jıyj j C 2jxk � yj j

D jRminj� C 2jSminj� C 2.jxk � yj j � 1/ < jRminj� C 2jSminj�;

contradicting the minimality of .Rmin; Smin/.
Now, let us show the remaining part of assertion (a). Let DC WD ¹k 2 ID W xk 2 �,

y�.k/ 2 @�º and D� WD ¹k 2 ID W xk 2 @�; y�.k/ 2�º. For all k 2DC [ D�, define
'.k/ WD k, whereas '.k/ WD �.k/ for all k 2 ID n .DC [D�/. It is easily checked that '
is injective, and thatX
k2ID

jxk � y'.k/j D
X

k2DC[D�

jxk � ykj C
X

k2ID n .DC[D�/

jxk � y�.k/j �
X
k2ID

jxk � y�.k/j;

the inequality being true since, for k 2DC (and similarly for D�), by (Pf), yk is a
closest point on @� to xk . In particular, replacing � with ' we get a minimizing con-
figuration satisfying the last statement in (a). In words, by assumption xk 2� implies
y�.k/ 2 @�, and d.xk ; @�/ D jxk � y�.k/j; we have shown that there are minimizers for
which d.xk ; @�/ D jxk � ykj, so we are “connecting” xk with yk .

To conclude the proof of (a), we need to show the second and third inequalities
in (3.11). Let k 2 IP , and suppose by contradiction that d.xk ; @�/ D jxk � ykj < 1=2.
Let us extend � on ID [ ¹kº using ' WD � on ID and '.k/ WD k. Notice that this extension
is well-defined, since yk 2 @� and the last statement of (a) is satisfied by � . Also, in this
case, the new partition with ' has smaller energy than the original one with � , since

1 D jıxk j� > 2jxk � y'.k/j;

and this is enough to prove that

jRminj� C 2jSminj� > jR' j� C 2jS' j�;

contradicting the minimality. In a similar manner, we prove the third inequality in (3.11).
(b) Let us start to prove that y�.k/xk �� for all k 2 ID . Suppose, to the contrary, that

there exists k 2 ID for which y�.k/xk \ .R2 n�/ 6D ;, so that j[y�.k/xk]j�< jy�.k/ � xkj,
and necessarily j[y�.k/xk]j� � d�.xk ; y�.k//. In such a case, �.k/¤ k (by property (Pf)),
and so we set '.k/ WD k and '.j / WD j for j D �.k/; moreover, we set ' WD � on the
other indices. Owing to the last assertion in (a), ' is well-defined, and since

jxk � ykj C jxj � yj j � jxk � yj j; j D �.k/;

it easily follows that the new partition and ' minimize (3.5). This concludes the proof of
the first assertion in (b).
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Let us prove the first inequality in (3.12). If jxk � y�.k/j > d�.xk ; y�.k//, we modify
the partition and � as before, getting a contradiction with the minimality. If jxk�y�.k/j>1,
we erase k from ID , and we find out that the new partition with � replaced by its restriction
on ID n ¹kº realizes a smaller contribution, contradicting the minimality.

The last inequality in (3.12) is a consequence of the following argument. We may
assume, without loss of generality, that xk ; y�.k/ 2� and that, by the first assertion in (b),
the segment joining them has interior in �; by (a), we can also suppose j WD �.k/ … ID .
Hence we can delete k from ID and add j to it, defining '.j / WD j and ' WD � elsewhere.
In such a case, by the minimality assumption, we obtain

1C d.yj ; @�/ D jıxk j C 2j[y'.j /xj ]j� � 2j[y�.k/xk]j� D 2jxk � y�.k/j:

(c) Suppose there exists k2IP with xk 2�, xk 2 supp.Smin/n
S
h2ID

xh; then neces-
sarily xk belongs to the relative interior of some segment y�.j /xj , with j 2 ID and j ¤ k,
so that jxj � y�.j /j D jxj � xkj C jxk � y�.j /j. Set zID D ID [ ¹kºn¹j º and let 'W QID! I

be the injective map such that '.i/ WD �.i/ if i ¤ k, '.k/ WD �.j /. Now

2jxj � y�.j /j C jıxk j D 2jxk � y�.j /j C 2jxj � xkj C jıxj j > 2jxk � y'.k/j C jıxj j;

implying that jxj � y�.j /j > jxk � y'.k/j. Since Rmin and R' have the same mass in �,
the previous inequality readily gives

jRminj� C 2jSminj� > jR' j� C 2jS' j�;

contradicting the minimality of .Rmin; Smin/. In a similar manner, we prove (d).
(e) Suppose to the contrary that r belongs to y�.k/xk n ¹y�.k/; xkº. Set 'W ID ! I ,

'.j / WD �.j / if j 6D k; h, '.k/ WD �.h/; '.h/ WD �.k/. We have

(3.13)
jxk � y'.k/j D jxk � y�.h/j � jr � y�.h/j C jxk � r j;

jxh � y'.h/j D jxh � y�.k/j � jr � y�.k/j C jxh � r j;

where at least one of these inequalities holds strictly, because the points y�.k/;xk ;y�.h/;xh
are not collinear by construction. Summing the inequalities in (3.13), we get

jxk � y'.k/j C jxh � y'.h/j < jxk � y�.k/j C jxh � y�.h/j;

and this is enough to deduce that

jRminj� C 2jSminj� > jR' j� C 2jS' j�;

contradicting once again the minimality.
(f) If y�.k/xk \ y�.h/xh contains more than one point, it must contain a segment. In

particular, we have to exclude the two cases: y�.k/xk \ y�.h/xh D xkxh and y�.k/xk \
y�.h/xh D y�.k/y�.h/. Let us discuss the former (the latter being similar). In such a case, it
is sufficient to set '.k/ WD h, '.h/ WD k, and ' WD � otherwise, and check that the map '
associated with the same partition provides

jRminj� C 2jSminj� > jR' j� C 2jS' j�;

contradicting the hypothesis.
Item (g) follows from (e) and (f), and (h) follows from the last assertion in (a) and the

first in (b).
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4. Distributional Jacobian; maps with values in S1

If u D .u1; u2/ 2 W 1;1.�IR2/ \ L1.�IR2/, its distributional Jacobian determinant is
the distribution Det.ru/ 2 D 0.�/ defined by

(4.1) hDet.ru/; 'i WD
Z
�

�u � r' dx; 8' 2 C1c .�/;

where
�u WD

1

2
.u1r

?u2 � u2r
?u1/

D
1

2

�
� u1

@u2

@x2
C u2

@u1

@x2
; u1

@u2

@x1
� u2

@u1

@x1

�
2 L1.�IR2/;

hence (cf. (2.1))
Det.ru/ D �Div�u 2D 0.�/:

Moreover, since �u 2L1.�IR2/, equality (4.1) extends to ' 2 Lip0.�/, so that

Det.ru/ 2 Lip0.�/
0:

It follows from the definition that the distributional Jacobian enjoys some well-known
compactness properties. For instance, let u 2 W 1;1.�IR2/ \ L1.�IR2/, let .vk/ �
W 1;1.�IR2/ \L1.�IR2/ be a bounded sequence in L1.�IR2/, and suppose vk ! u

in W 1;1.�IR2/. Then

Det.rvk/ * Det.ru/ in D 0.�/:(4.2)

Remark 4.1. The convergence in (4.2) can be strengthened into

kDet.rvk/ � Det.ru/kLip0.�/0 ! 0:(4.3)

Indeed, take a subsequence .kh/; for any ' 2 Lip0.�/, write

hDet.ru/ � Det.rvkh/; 'i D
Z
�

.�u � �vkh
/ � r' dx � kr'kL1

Z
�

j�u � �vkh
j dx

� kr'kL1
�
C1

Z
�

jru � rvkh j dx C C2

Z
�

jru � .u � vkh/j dx
�
:(4.4)

Since .u � vkh/ tends to zero in L1.�IR2/, and since we can select a further subse-
quence .khl / such that .u� vkhl / tends to zero weakly-star inL1.�IR2/, we deduce that
the limit of the right-hand side of (4.4) vanishes along the sub-subsequence, as l !C1.
In particular, taking the supremum of the left-hand side of (4.4) over ' 2 Lip0.�/ with
k'kLip0 � 1, we infer

kDet.rvkhl / � Det.ru/kLip0.�/0 ! 0:

Thus, (4.3) follows from the Uryshon property.



Relaxed area of S1-valued Sobolev maps 17

4.1. Maps with values in S1

We collect here some useful tools and results, mostly on Sobolev maps taking values
in S1. A large literature on this topic is available, e.g., following the results by Brezis
and coauthors (see for instance [13] and references therein). Together with the Jacobian
determinant, it is useful to introduce the notions of degree and lifting.

Definition 4.2 (Degree). Let Br � R2 be a disc of radius r > 0, and let � be the outer
unit normal vector to @Br . The degree of a map u2W 1;1.@Br IS1/ is defined as

deg.uI @Br / D
1

2�

Z
@Br

�
u1
@u2

@�
� u2

@u1

@�

�
dH1;(4.5)

where � W D �?.

Notice that deg.uI @Br / 2 Z.

Definition 4.3 (Lifting). Let u D .u1; u2/ 2 BV.�I S1/. We say that w 2 BV.�/ is a
lifting of u if eiw D .cosw; sinw/ D .u1; u2/ a.e. in �.

The following result holds (see Section 6.2 in [20], or Théorème 0.1 and Remarque 0.1
in [17]).

Theorem 4.4. Let u2BV.�IS1/. Then there exists a lifting w 2BV.�/ of u such that

kwkBV � 2kukBV :

If furthermore u2SBV.�IS1/, then w 2SBV.�/.

Liftings w provided by Theorem 4.4 satisfy the following important feature: if u 2
W 1;1.�IS1/, then

Det.ru/ D
1

2
Curl.rw/ in D 0.�/;

see (2.2). Indeed, for any ' 2 C1c .�/,

(4.6)
hDet.ru/; 'i D

1

2

Z
�

�
u1r

?u2 � u2r
?u1

�
� r' dx

D
1

2

Z
�

r
?w � r' dx D

1

2
hCurl.rw/; 'i:

LetBDBR.0/��� be an open disc, for someR>0 big enough, and let u2W 1;1.�IS1/.
We claim that there exists an extension u 2W 1;1.BI S1/ of u. Indeed, let w 2 BV.�/
be a lifting of u; since � has Lipschitz boundary, by [21], p. 162, there exists yw 2
W 1;1.B n�/ \ BV.B/, with trace yw @� D w @�. If we set

w WD

´
w in �;bw in B n�;

(4.7)

the map

u WD eiw(4.8)
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is the map we are looking for. It is easy to see that, by construction, deg.u; @Br .0// D 0
for a.e. r > 0 with � �� Br .0/ � B . Indeed, if r is so that w @Br .0/ belongs to
W 1;1.@Br .0//, denoting by zw an arbitrary function in W 1;1.Br .0// with trace w on @Br ,
by the Stokes theorem, one has

0 D

Z
Br

Curl.r zw/ dx D
Z
@Br

rw � � dH1
D

Z
@Br

.u1ru2 � u2ru1/ � � dH1

D 2� deg.uI @Br .0//:

In what follows, we will need the following standard density result.

Theorem 4.5 (Density of C1 in W 1;1.AI S1/). If A � R2 is a connected simply con-
nected domain with smooth boundary, then the class®

v 2 W 1;1.AIS1/ W 9n 2 N; 9¹a1; : : : ; anº � A; v 2 C
1.A n ¹a1; : : : ; anºIS

1/
¯

is dense in W 1;1.AIS1/. Furthermore,

Det.rv/ D �
nX
iD1

diıai ; 8v 2 W
1;1.AIS1/ \ C1.A n ¹a1; : : : ; anºIS

1/;(4.9)

where di D deg.vI @Br .ai // for any r > 0 small enough.

Proof. See Theorem 4 with k D 1 in [11], and Lemma 2 in [12] for the second part of the
statement.

The next theorem is an extension of Theorems 3 and 3’ in [14] to non-simply con-
nected domains in R2. Even if it can be directly obtained from [14] and [12], for con-
venience we give a quick proof; for a more detailed discussion, we refer to Chapter 14
of [13]. Recall that the class X.�/ is defined in (2.8).

Theorem 4.6 (Distributional Jacobian of S1-valued maps). Let u2W 1;1.�IS1/. Then

(4.10)
1

�
Det.ru/ 2 X.�/;

i.e., there exists a sequence ..xi ; yi //����nDiag?� such that
P1
iD1 d�.xi ; yi / <C1

and Det.ru/ D �
P1
iD1.ıxi � ıyi /.

Proof. We use an argument similar to that of Lemma 12’ in [12]. Let u2W 1;1.BIS1/ be
an extension of u as in (4.8), that satisfies (arguing as after formula (4.8)) deg.uI @Br .0//
D 0 for suitable r > 0 big enough. Using Theorem 4.5, we can select a sequence

.uk/k �
®
v 2W 1;1.BIS1/ W 9n 2N; 9¹a1; : : : ; anº �B; v 2 C

1.B n¹a1; : : : ; anºIS
1/
¯

converging to u in W 1;1.BIR2/. Now, denoting zB D B2R.0/, we can further extend u
and uk on zB in such a way that, for all k > 0, deg.uI @Br .0// D deg.uk I @Br .0// D 0 for
a.e. r 2 .R; 2R/, and so we can also rewrite (4.9) in the following way:

(4.11)
1

�
Det.ruk/ D

nkX
iD1

.ıxki
� ıyki

/;

for suitable (not necessarily distinct) points xki ; y
k
i 2 Br .0/ and nk 2 N.
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Moreover, since the condition deg.uI @Br .0// D deg.uk I @Br .0// D 0 holds for a.e.
r 2 .R; 2R/, we infer that xki ; y

k
i 2 BR.0/. Owing to (4.3), we may suppose7

kDet.rukC1/ � Det.ruk/kflat;B � 1=2
k ; 8k > 0:(4.12)

As a result, we can write Det.ru/D Det.ru1/C
P1
kD1.Det.rukC1/�Det.ruk//, the

series being absolutely convergent in Lip0.B/
0. Up to relabelling the indices in (4.11), we

assume that for k > 0,

Det.ru1/ D �
m1X
iD1

.ıxi � ıyi / in Lip0.B/
0;(4.13)

Det.rukC1/ � Det.ruk/ D �
mkC1X

iDmkC1

.ıxi � ıyi / in Lip0.B/
0;(4.14)

in such a way that

Det.ru/ D �
1X
iD1

.ıxi � ıyi / in Lip0.B/
0:

At the same time, restricting to Lip0.�/ the above linear functionals originally defined
on Lip0.B/, we can replace the preceding representations and assume that the points xi
and yi in (4.13) and (4.14) belong to �, are of the form (3.3), and enjoy property .P/. Up
to a permutation of the points .yi /, one can further suppose that

kDet.ru1/kflat D

m1X
iD1

d�.xi ; yi /; kDet.rukC1/�Det.ruk/kflat D

mkC1X
iDmkC1

d�.xi ; yi /:

This, together with (4.12), implies kDet.ru/kflat �
P1
iD1 d�.xi ; yi / < C1, which con-

cludes the proof.

5. Density results in W 1;1.�I S1/

In this section, we want to show the following density result, which is an immediate con-
sequence of Lemmas 5.3 and 5.5 below.

Proposition 5.1 (Density in W 1;1.�I S1/). Let u 2W 1;1.�I S1/. Then, for all " > 0,
there exists a map u" 2 W 1;1.�IS1/ with the following properties.

(i) Det.ru"/ D �
PN"
iD1.ıxi � ıyi / in Lip0.�/

0 for some N" 2 N, with distinct and
three by three not collinear points xi , yi in �.

(ii) There exist positive numbers �xi < " and �yi < ", i D 1; : : : ;N , such that the discs
of the family ¹B�xi .xi /;B�yi .yi / W xi 2�;yi 2�º are contained in�, are pairwise
disjoint, and8 u" D e

i�xi in B�xi .xi /, and u" D e�i�yi in B�yi .yi /.

(iii) ku � u"kW 1;1 C kDet.ru/ � Det.ru"/kflat < ".

7We use that k � kflat;B and k � kLip0.B/0 are equivalent.
8Here and in the sequel, �x is the polar angular coordinate around x.
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Recall the Definition 2.1 of the dipole mapwp;n, and set vp;n WD eiwp;n2W 1;1.�IS1/,
which satisfies

Det.rvp;n/ D �.ıp � ın/:

Lemma 5.2 (Density: finite number of singular points). Let u2W 1;1.�IS1/ and write,
using also property .P/, Det.ru/ D �

P1
iD1.ıxi � ıyi /, with xi ; yi 2 �, xi ¤ yi , andP1

iD1 jxi � yi j<C1. Then, for all " > 0, there exists a map u" 2W 1;1.�IS1/ such that

(i) Det.ru"/ D �
PN"
iD1.ıxi � ıyi / for some N" 2 N,

(ii) ku � u"kW 1;1 C kDet.ru/ � Det.ru"/kflat < ".

Proof. Let � > 0 and choose N� 2 N so that
P1
iDN�C1

jxi � yi j < �=2. Given .xi ; yi /
with i > N� , consider the dipole map wi WD wxi ;yi 2 BVloc.R2/ in (2.3), and the cut-off
function  �i WR

2 ! R given by

(5.1)  
�
i .x/ D %

�
1
�i
d.x; xiyi /

�
; with �i WD 2�i�;

where d.x;xiyi /D dist.x;xiyi /, % 2C1.Œ0;1�/ is non-increasing, �� 1 in a right neigh-
borhood of 0, � � 0 in a left neighborhood of 1, and j%0j � 2. The support of  �i satisfies

(5.2) jspt. �i /j � ��
2
i C 2�i jxi � yi j; 8i > N�:

By (2.4), one checks9, for the approximate gradients, that there exists a constant C > 0

independent of � such that

(5.3)
Z

spt. �i /
jrwi j dx � C.�i C jxi � yi j/; 8i > N�:

Let w 2 BV.�/ be a lifting of u given by Theorem 4.4, and consider its extension w in B
as in (4.7); substracting a phase contribution to u, we then define, in B ,

w� WD w �

1X
iDN�C1

wi 
�
i and u� WD e

iw� 2 W 1;1.BIS1/:

Let also u WD eiw ; in particular, u D u in �. Setting V� WD
S
i>N�

spt. �i / � R2, we
infer, using (5.3) and (5.2),Z
V�

jru�jdx D

Z
V�

jrw�jdx �

Z
V�

jrwjdx C

1X
iDN�C1

�C
�i
jspt. �i /jCC.�iCjxi �yi j/

�
�

Z
V�

jruj dx C C

1X
iDN�C1

.�i C jxi � yi j/

�

Z
V�\�

jruj dx C C

1X
iDN�C1

.�i C jxi � yi j/C o�.1/;(5.4)

where o�.1/! 0 as �! 0C. The presence of u is due to the fact that in general, V� n �
might be nonempty. But, since jV� n �j ! 0 as �! 0C, the last estimate in (5.4) holds.

9This estimate can be obtained integrating the right-hand side of (2.4) in the two discs B�i .xi / and B�i .yi /,
and estimating jrwi j by C=�i in the remaining part of spt. �i /.
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From this and the definition of �i in (5.1), we conclude

ku � u�kW 1;1.�;R2/ � 2

Z
V�

jruj dx C C�C o�.1/;(5.5)

where we use that u D u� on � nV� .
Now, we claim that

Det.ru�/ D �
N�X
iD1

.ıxi � ıyi /;(5.6)

which implies in turn that

kDet.ru/ � Det.ru�/kflat D �
 1X
iDN�C1

.ıxi � ıyi /


flat
� �

1X
iDN�C1

jxi � yi j <
��

2
�

To show (5.6), for all m > N� define, in B ,

fm WD w �

mX
iDN�C1

wi 
�
i and vm WD e

ifm :

Using an estimate similar to (5.4) and (5.5), we see that vm ! u� in W 1;1.�IR2/ as
m!C1, and therefore, owing to the same observation leading to (4.3),

lim
m!C1

kDet.rvm/ � Det.ru�/kLip0.�/0 D 0;

and also

Det.rvm/ * Det.ru�/ in D 0.�/:(5.7)

On the other hand, Det.rvm/ D �
PN�
iD1.ıxi � ıyi /C �

P1
iDmC1.ıxi � ıyi /, and since

the second term tends to zero in the flat distance, we conclude

Det.rvm/! �

N�X
iD1

.ıxi � ıyi / in Lip0.�/
0:(5.8)

In particular, from (5.7) and (5.8), claim (5.6) follows. From this and (5.5), it suffices to
choose � D �."/ small enough to guarantee that (ii) holds. Hence setting N" WD N� and
u" WD u� , the thesis follows.

Now we refine the approximation of Lemma 5.2.

Lemma 5.3 (Density: not collinear points). Let u2W 1;1.�IS1/ be such that Det.ru/D
�
PN
iD1.ıxi � ıyi / is a representation as in (3.3) satisfying property (Pf) in Section 3.1,

with xi ; yi 2 �, xi ¤ yi , for i D 1; : : : ; N . Then, for all " > 0, there exists a map u" 2
W 1;1.�IS1/ such that

(i) Det.ru"/D �
PN
iD1.ıx"i � ıy

"
i
/ and the points x"i , y

"
i in� are distinct and three by

three not collinear,

(ii) ku � u"kW 1;1 C kDet.ru/ � Det.ru"/kflat < ".
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Proof. Define

IC WD ¹i 2 ¹1; : : : ; N º W xi 2 �º and I� WD ¹i 2 ¹1; : : : ; N º W yi 2 �º:

Fix � > 0. For all i 2 IC, let us choose yxi ; yyi 2 � with yyi WD xi and in such a way that
the points yxi , i 2 IC, are all distinct, three by three not collinear, and satisfyX

i2IC

jyxi � yyi j < �:(5.9)

For all i 2 IC, let ywi WD wyxi ;yyi be the dipole map defined in (2.3), and let  �i WR
2 ! R

be the cut-off function given by

 
�
i .x/ D %

�1
�
d.x; yxi yyi /

�
;

where % is as in the proof of Lemma 5.2. In particular,  �i is Lipschitz continuous with
Lipschitz constant 2=� and is supported in V �i WD ¹x 2R2 W d.x; yxi yyi / � �º. Supposing
that � > 0 is sufficiently small, we have V �i � �. Now, using also (5.9), we notice that

(5.10) jV
�
i j D ��

2
C 2� jyxi � yyi j � C�

2; 8i 2 IC;

where C > 0 is a constant independent of i and �. Further, by (2.4) and (5.9), we deduce
that there is a constant, still denoted by C > 0, and independent of � and i , such thatZ

V
�
i

jr ywi j dx � C�; 8i 2 I
C:(5.11)

Similarly, for all i 2 I� we choose zxi ; zyi 2 � with zxi WD yi and in such a way that the
points zxi , i 2 IC, and zyi , i 2 I�, are all distinct, three by three not collinear, and satisfyX

i2I�

jzxi � zyi j < �:(5.12)

In this case, we also introduce, for i 2 I�, the maps zwi WD wzxi ;zyi and ��i WR
2 ! R,

the latter defined as ��i .x/ WD max¹0; 1 � 1
�
d.x; zxi zyi /º; which enjoy the same features

of �i ; in particular, the supportsW �
i of ��i , i 2 I�, are contained in� and have Lebesgue

measures bounded by C�2. The same estimate as in (5.11) holds for zwi .
Let us consider a liftingw2BV.�/ of u provided by Theorem 4.4 and (4.7); we define

w� WD w C
X
i2IC

 
�
i ywi C

X
i2I�

�
�
i zwi and v� WD e

iw� :

Due to the fact that w� D w out of A� WD .
S
i2IC V

�
i / [ .

S
i2I� W

�
i /, it is immediate

that v� ! u in L1.�IR2/ as �! 0C. Since jrv�j D jrw�j a.e. in �, we can estimate

jrv�j � jrwj C
2

�

� X
i2IC

 ywikL1 CX
i2I�

k zwikL1
�
C

X
i2IC

jr ywi j C
X
i2I�

jr zwi j:
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From this, in view of the fact that v� D u in � n
�
.
S
i2IC V

�
i / [ .

S
i2I� W

�
i /
�
, we con-

clude, using (5.11), that

krv� � rukL1 � krukL1.A�/ C C
jA�j

�
C C�:

As the right-hand side is negligible as �! 0C (see (5.10)), we conclude

(5.13) lim
�!0C

v� D u in W 1;1.�IR2/:

Furthermore, using (4.6), we readily see that

Det.rv�/ D
1

2
Curl.rw�/ D

1

2

�
Curl.rw/C

X
i2IC

Curl. �i ywi /C
X
i2I�

Curl.��i zwi /
�

D Det.ru/C
X
i2IC

Det.rvyxi ;yyi /C
X
i2I�

Det.rvzxi ;zyi /;

which implies

Det.ru/ � Det.rv�/ D �
X
i2IC

Det.rvyxi ;yyi / �
X
i2I�

Det.rvzxi ;zyi /

D �

X
i2IC

.ıyxi � ıyyi / �
X
i2I�

.ızxi � ızyi /

in D 0.�/. Thus, using (5.9) and (5.12), we get

kDet.ru/ � Det.rv�/kflat � 2�:

In particular, from this and (5.13), setting u" WD v� for � > 0 small enough, the thesis
follows.

Remark 5.4. The noncollinearity condition will be used in the proof of Theorem 6.1 to
guarantee the validity of condition (6.2).

The approximating maps in Lemma 5.3 can be suitably refined around the singular
points as follows.

Lemma 5.5 (Density: behaviour near xi , yi ). Let u2W 1;1.�IS1/ be such that Det.ru/
D �

Pn
jD1.ıxj � ıyj /, with xj ; yj 2 �, j D 1; : : : ; n. Let us assume that the points

xj ; yj which belong to � are distinct and three by three not collinear, as in the thesis of
Lemma 5.3. Then, for all " > 0, there exists a map u" 2 W 1;1.�IS1/ such that

(i) there exist positive numbers �xj < " and �yj < " such that the discs of the set
¹B�xj .xi /; B�yj .yi / W xj 2 �; yi 2 �º are contained in �, are pairwise disjoint,

and we have u" D e
i�xj in B�xj .xj / and u" D e

�i�yj in B�yj .yj /,

(ii) ku � u"kW 1;1 C kDet.ru/ � Det.ru"/kflat < ".
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Proof. Let ¹zj W j D 1; : : : ; N º be the set, suitably relabelled, of those points among
the xj and the yj which belong to �. Moreover, let r > 0 be small enough so that the
discs Br .zj / are contained in� and are pairwise disjoint. We can choose r > 0 arbitrarily
small so that u @Br .zj / 2 W

1;1.@Br .zj /I S1/ for all j D 1; : : : ; N . We show how to
modify u in one of these discs, say Br .z1/, and then proceed similarly for the other discs.

Let us assume, without loss of generality, that z1 D xj D 0 for some j (i.e., that z1 is
a positive pole at the origin), and write Br D Br .0/ in place of Br .xj /. Since in Br we
have Det.ru/ D �ı0, it is not difficult to see that

1

2

Z
@Bs

�
u1
@u2

@�
� u2

@u1

@�

�
dH1

D � deg.uI @Br / D �(5.14)

for all s 2 .0; r/ such that u @Bs 2 W
1;1.@BsIS1/. By the mean value theorem, we fix

d D dj 2 .r=2; r/ so thatZ
@Bd

jruj dH1
�
2

r

Z r

r=2

Z
@Bs

jruj dH1ds D
2

r

Z
Br nBr=2

jruj dx;(5.15)

and u @Bd 2 W
1;1.@Bd IS

1/. Let �u 2BV.@Bd / denote a lifting of u @Bd such that,
owing to (5.14), �u has a unique jump point (say at .d;0/2 @Bd ) with [�u]D 2� . Consider
a polar coordinate system .�; �/ around 0, and define H WBd nBd=2 ! R as

H.x/ WD 2�u

�
d
x

jxj

�
jxj � d=2

d
C 2�.x/

d � jxj

d
�

The function H has a jump of size 2� on the segment with endpoints .d=2; 0/ and .d; 0/.
Also, eiH 2W 1;1.Bd nBd=2IS

1/, and equals u on @Bd and x=jxj on @Bd=2. We set

ur .x/ WD

8̂<̂
:
u.x/ if x 2 � nBd ;
eiH.x/ if x 2 Bd nBd=2;
x=jxj if x 2 Bd=2:

In particular, ur 2W 1;1.�IS1/. Let us estimate the gradient of H ; we have

rH.x/ D 2 P�u

�dx
jxj

�� Id � x
jxj
˝

x
jxj

jxj

�
.jxj � d=2/

C 2�u

�dx
jxj

� x

d jxj
C 2r�.x/

d � jxj

d
� 2�.x/

x

d jxj
;

where P�u denotes the (absolutely continuous part of the) derivative of �u. Therefore, using
that jxj 2 .d=2; d/ for x 2Bd nBd=2, there is a constant C > 0 independent of d such
that

jrH.x/j � 2
ˇ̌̌
P�u

�dx
jxj

�ˇ̌̌
C
C

d
; for a.e. x 2Bd nBd=2:
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On the other hand, since ei�u D u on @Bd , we have j P�u.dx=jxj/j D jru.dx=jxj/j, and
integrating on Bd nBd=2, we getZ
Bd nBd=2

jrur j dx D

Z
Bd nBd=2

jrH j dx � Cd C 2

Z d

d=2

Z
@Bs

ˇ̌̌
ru
�dx
jxj

�ˇ̌̌
dH1.x/ ds

D Cd C C

Z d

d=2

Z
@Bd

jruj dH1 ds � Cd C C

Z
Br nBr=2

jruj dx;

where we have used (5.15) and that r=2 < d < r in the last inequality.
Now, applying a similar modification of u in the other discs centered at zi , we can

finally estimate the distance between u and ur in W 1;1.�IR2/, namely

ku � urkL1 � n�r
2;

kru � rurkL1 � NCd C C

NX
jD1

Z
Br .zi /

jruj dx C

NX
jD1

Z
Bdj =2.zj /

ˇ̌̌
r

� x
jxj

�ˇ̌̌
dx:

Since r can be chosen arbitrarily small, the sum of the above right-hand sides can be
bounded by ", and for such r we denote u" WD ur . Observing that Det.ru/ D Det.ru"/,
the thesis follows by setting �zj WD dj =2, for all j D 1; : : : ; N .

6. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Recalling the definition of k � kflat;˛ in (1.2), we
start with the following.

Theorem 6.1. Let u2W 1;1.�IS1/. Suppose that

(i) 1
�

Det.ru/D
PN
iD1.ıxi � ıyi /DW T admits a representation in� satisfying (Pf) and

such that the points xi ;yi belonging to� are distinct and three by three not collinear;
(ii) there exists R > 0 such that the discs BR.xi / and BR.yj /, with xi ; yj 2 �, are

contained in � and are pairwise disjoint, and we have that u D ei�xi in BR.xi / and
u D e

�i�yj in BR.yj /.

Then

(6.1) A.u;�/ �

Z
�

p
1C jruj2 dx C kDet.ru/kflat;˛:

Proof. We need to exhibit10 a sequence .ur / � C 1.�IR2/ converging to u in L1.�IR2/
such that lim infr!0C A.ur ; �/ is less than or equal to the right-hand side of (6.1).

For the measure T , we consider currents Rmin 2 D0.�/ and Smin 2 D1.�/ given by
Lemma 3.6. After relabelling, we write

RminD

kX
iD1

�iızi ; �i 2 ¹�1;C1º; zi 2�; k �N; SminD
X
j2J

[yjxj ]; J � ¹1; : : : ;N º;

10See (6.9) below.
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with T DRminC @Smin (it may happen that k D 0, in which case we understandRmin D 0,
or that J D ;, in which case Smin D 0). By Lemma 3.6 (b), the segment xjyj is contained
in�, with the only (possible) exception of an endpoint (thanks to condition (Pf)). We will
work in a disc B �� �, that we fix from now on.

Take r 2 .0; R=2/, and consider the set ¹B2r .zi / W i D 1; : : : ; kº (the zi are among
the xj , yj for j … J and, being contained in �, satisfy assumption (ii)). These discs are
contained in �, and the tubular neighborhoods

Tt .xjyj / WD ¹x 2B W d.x; xjyj / < tº; j 2 J;

of xjyj are disjoint from this family of discs. Moreover, by hypothesis (i), due to non-
collinearity, the segments xjyj are pairwise disjoint (see Lemma 3.6), and so for all t > 0
sufficiently small,

(6.2) j1; j2 2 J; j1 ¤ j2 H) Tt .xj1yj1/ \ Tt .xj2yj2/ D ;:

Set also

Vt WD
[
j2J

Tt .xjyj /:(6.3)

If k � 1, for all i D 1; : : : ; k, we fix a simple polygonal11 curve zi starting at zi and
reaching the external boundary12 of @�. The curves zi can be chosen mutually disjoint,
and disjoint from V t . Further, it is convenient to extend zi (keeping the same notation)
in order to reach @B transversely. We set T2r .zi / WD ¹x 2B W d.x; zi / < 2rº, for i D
1; : : : ; k, and observe thatB2r .xi /� T2r .zi / for all i D 1; : : : ; k. If r is small enough, the
elements of the family ¹T2r .zi / W i D 1; : : : ; kº do not intersect each other, and moreover
(choosing smaller t and r if necessary), T2r .zi /\ V t D ; for all i D 1; : : : ; k. Consider
also the connected curves C;rzi and �;rzi , which run parallel to zi at distance r , defined as

˙;rzi
WD ¹x 2T2r .zi / n Br .zi / W d.x; zi / D ˙rº;

where d denotes a signed distance from zi (defined in a suitable neighborhood of zi ).
For every connected component @`� of @� different from the external boundary (` 2 L,
with L some finite set of indices), we consider a simple polygonal curve !` � B connect-
ing @`� to @B , disjoint from V t , from

Sk
iD1 T2r .zi / and from @`0�, `0 ¤ `. Extending

slightly !` inside �`, where �` denotes the region outside � and enclosed by @`�, we
assume that !` starts at a point �` 2 �` with B2r .�`/ � �`, for all ` 2 L. Together
with this, we consider the connected curves !C;r

`
and !�;r

`
, which run parallel to !` at

distance r from each side, and join Br .�`/ with the external boundary:

!
˙;r
`
�
®
x 2B nBr .�`/ W d.x; !`/ D ˙r

¯
;

where, again, d denotes a signed distance from !` (defined in a suitable neighborhood
of !`). We may assume, choosing smaller r and t if necessary, that the curves !` and !˙;r

`

are pairwise disjoint and do not intersect V t [
Sk
iD1 T2r .zi / [

S
`0¤` @`0�.

11I.e., not self-intersecting and obtained by a finite number of concatenations of segments.
12@� is, in general, not connected, and consists of a finite number of loops. The external boundary of @� is

the loop whose interior contains all the others.
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Finally, we define

B˙ WD B n
h k[
iD1

Br .zi / [
[
j2J

xjyj [

k[
iD1

˙;rzi
[

[
`2L

!
˙;r
`
[

[
`2L

Br .�`/
i
:

Using our assumptions, it follows that BC and B� are connected; however, they are
not necessarily simply connected. By construction, for any closed simple Lipschitz curve
˛WS1 ! � \ B˙ such that u˛ WD u ı ˛ 2 W 1;1.S1IS1/, we have

1

2�

Z
S1
.u˛1r

?u˛2 � u
˛
2r
?u˛1/ � P̨ ds D 0;

since the left-hand side is the degree of u on the boundary of the domain enclosed by the
support of ˛, and such curves cannot enclose any connected component of B n� due to
the presence of

S
`2L!`, and cannot enclose any single pole due to the presence of the zi

(note that they can enclose some segment xjyj ). In particular, there exist two liftings13 w˙
of u with

wC 2 W
1;1.� \ BC/ and w� 2 W

1;1.� \ B�/:

For wC and w�, we consider (not-relabelled) extensions wC 2 W 1;1.BC/ and w� 2
W 1;1.B�/ as in (4.7). We are now going to suitably smoothen these liftings through a
function wr , that will allow us to eventually define the map ur in (6.9).

We may assume that

(6.4)

wC D w�

on BC n
� k[
iD1

Tr .zi / [
[
`2L

Tr .!`/
�
D B� n

� k[
iD1

Tr .zi / [
[
`2L

Tr .!`/
�
;

where Tr .zi / � ¹x 2B W d.x; zi / 2 .�r; r/º is the region enclosed by C;rzi and �;rzi

and Tr .!`/ WD ¹x 2B n
S
`2L Br .�`/ W d.x; !`/ 2 .�r; r/º is the tubular neighborhood

of !` enclosed by !C;r
`

and !�;r
`

. In addition, since the degree of u around zi is �i , we
see14 that, for all i D 1; : : : ; k,

(6.5) [wC] D 2��i H1-a.e. on C;rzi
and [w�] D 2��i H1-a.e. on �;rzi

:

Furthermore,

[wC] D [w�] D 2� H1-a.e. on xjyj ; 8j 2 J;

and
[w˙] 2 2�Z H1-a.e. on

[
`2L

!
˙;r
`
:

From (6.5), it follows that

wC D w� C 2��i a.e. in Tr .zi /; 8i D 1; : : : ; k:(6.6)

13If J D ;, i.e., no dipoles, and if � is simply connected, then we can take wC D w�.
14The degree around a pole is computed using counterclockwise turns, and this implicitly determines an

orientation of the jump of w˙.
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Similarly, given ` 2 L, there exists h` 2 Z such that

wC D w� C 2�h` a.e. in Tr .!`/:(6.7)

Finally, we extend w˙ to 0 on
Sk
iD1 Br .zi / [

S
`2L Br .�`/, and mollify w˙ using a

kernel %r supported in Br=4.0/. In particular, using also (6.6) and (6.7), we infer that the
traces of the mollifications on zi and !` satisfy

wC � %r D w� � %r C 2��i H1-a.e. on zi ;

wC � %r D w� � %r C 2�h` H1-a.e. on !`;

and therefore, setting B�r WD ¹x 2 B W d.x; @B/ > rº and defining wr WB�r n .
Sk
iD1 zi [Sk

iD1 Br .zi / [
S
`2L !` [

S
`2L�`/! R2 as

wr WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

wC � %r in B�r n .
Sk
iD1 Tr .zi // n .

Sk
iD1 Br .zi // n .

S
` Tr .!`// n .

S
`�`/;

w� � %r in
Sk
iD1¹x 2Tr .zi / nBr .zi / W d.x; zi / 2 .0; r/º;

wC � %r in
Sk
iD1¹x 2Tr .zi / nBr .zi / W d.x; zi / 2 .�r; 0/º;

w� � %r in
S
`2L¹x 2Tr .!`/ n�` W d.x; !`/ 2 .0; r/º

wC � %r in
S
`2L¹x 2Tr .!`/ n�` W d.x; !`/ 2 .�r; 0/º;

we see that wr 2 C1.B�r n .
Sk
iD1 zi [

Sk
iD1 Br .zi / [

S
`2L !`/ [

S
`2L�`/; and

[wr] D 2��i H1-a.e. on zi ; i D 1; : : : ; k;

[wr] D 2�h` H1-a.e. on !`; ` 2 L:(6.8)

Eventually, for all i D 1; : : : ; k, by the assumptions on u and the choice of r 2 .0; R=2/,
we have u.x/ D ei�i �zi for x 2 B2r .zi / n ¹ziº for suitable �i 2 ¹˙1º.

Thus,
w˙ � �i �zi 2 2�Z in B2r .zi / nBr .zi /:

Assuming, without loss of generality, that �zi jumps on zi in B2r .zi / nBr .zi /, by (6.4),
for all i D 1; : : : ; k we find an integer �i such that

wC D w� D �i �zi C 2��i in B2r .zi / nBr .zi / nTr .zi /;

whereas in B2r .zi / \ Tr .zi / nBr .zi /, we have

wC D �i �zi C 2��i � 2��i in ¹x W d.x; zi / 2 .0; r/º;

wC D �i �zi C 2��i � 2�.�i C 1/ in ¹x W d.x; zi / 2 .�r; 0/º;

w� D �i �zi C 2��i in ¹x W d.x; zi / 2 .0; r/º;

w� D �i �zi C 2�.�i � 1/ in ¹x W d.x; zi / 2 .�r; 0/º:

Therefore,

wr � �i �zi � %r 2 2�Z in .B5r=3.zi / nB4r=3.zi // nTr .zi /;

wr � �i y�zi � %r 2 2�Z in .B5r=3.zi / nB4r=3.zi // \ Tr .zi /;

where �i y�zi is any lifting of .x � zi /=jx � zi j which is continuous in Tr .zi /.
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We introduce a non-decreasing cut-off function  W Œ0; 2r�! Œ0; 1� of class C 1 such
that  D 0 on Œ0; 4r=3�,  D 1 on Œ5r=3; 2r�, with  0 � 12=r . Finally, we define

ur .x/ WD

´
eiwr .x/ if x 2B�r n

Sk
jD1 B2r .zj /;

eiwr .x/  .jx � zj j/ if x 2B2r .zj / for some j D 1; : : : ; k;
(6.9)

where we extend wr in B to 0 outside its domain. In particular, we have that ur .x/ D
ei�i

y�zi �%r  .jx � zi j/ for x 2 .B5r=3.zi /nB4r=3.zi //\ Tr .zi /, for any i D 1; : : : ; k. We
also observe that if we suppose that the kernel %r is radial, a direct computation shows
that y�zi � %r D y�zi in B5r=3.zi / nB4r=3.zi /. So

ur .x/ D e
i�i y�zi  .jx � zi j/; 8x 2 .B5r=3.zi / nB4r=3.zi // \ Tr .zi /:

Now, ur is of class C 1, jur j � 1, and it is straightforward to check that ur ! u pointwise
almost everywhere in � as r ! 0C. In particular, limr!0C ur D u in L1.�IR2/.

We are now in a position to estimate the graph area of the map ur . In order to estimate
it in � n

S
i B2r .xi /, it is convenient to consider a lifting

w 2 W 1;1
�
B n

� k[
iD1

.zi [ Br .zi // [
[
j2J

xjyj

�
[

[
`2L

.!` [ Br .�`//
�
;

which coincides with w˙ in the set in (6.4). Such a lifting w2 BV.� n
Sk
iD1 Br .zi //

satisfies

[w] D 2��i H1-a.e. on zi ; i D 1; : : : ; k;

[w] D 2� H1-a.e. on xjyj ; j 2 J;

[w] D 2�h` H1-a.e. on zi ; ` 2 L:

Notice that limr!0C wr D w strictly in BV.Vt / (for t small enough as in (6.3)), since
wr Dw � %r on these sets. In particular, by classical results (see for instance Theorem 2.39
in [2]), one hasZ

Vt

p
1C jrur j2 dx D

Z
Vt

p
1C jrwr j2 dx !

Z
Vt

p
1C jrwj2 dx C jDswj.Vt /

D

Z
Vt

p
1C jruj2 dx C 2�

X
j2J

jxj � yj j;(6.10)

as r ! 0C. Concerning the integral over � n Vt , using that ur takes values in S1 in
� nB2r .zi /, we can estimate

Z
� nVt

p
1Cjrur j2Cj det.rur /j2dx �

Z
� nVt

p
1Cjrur j2dxC

Z
B2r .zi /

j det.rur /jdx

(6.11)

D

Z
� nVt nB2r .zi /

p
1Cjrur j2 dxC

Z
B2r .zi /

p
1Cjrur j2 dxC

Z
B2r .zi /

j det.rur /j dx:
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Let us estimate the last term; so fix i 2 ¹1; : : : ; kº, and assume, without loss of generality,
that �i D 1. In B2r .zi /, we then have

ur D .cos.�zi /; sin.�zi //  .�zi /;

where .�zi ; �zi / is a polar coordinate system around zi . Thus

rur .�zi ; �zi / D

0@ 0.�zi / cos.�zi / �
 .�zi /

�zi
sin.�zi /

 0.�zi / sin.�zi /
 .�zi /

�zi
cos.�zi /

1A(6.12)

and therefore det.rur .�zi ; �zi // D  
0.�zi / .�zi /�

�1
zi

, which gives

(6.13)
Z
B2r .zi /

j det.rur /j dx D 2�
Z 5r=3

4r=3

 .�/ 0.�/ d� D �:

Moreover, (6.12) implies jrur j � C=jx � zi j in B2r .zi /. In particular,Z
S
i B2r .zi /

p
1C jrur j2 dx ! 0 as r ! 0C:

Finally, due to the fact that rur ! ru in L1.� nVt IR2�2/, we infer

(6.14)
Z
� nVt n

S
i B2r .zi /

p
1C jrur j2 dx !

Z
� nVt

p
1C jruj2 dx:

All in all, we have proved that the right-hand side in formula (6.11) tends to k� CR
� nVt

p
1C jruj2 dx as r ! 0C. Thus, from (6.10) and (6.11), we get

lim inf
r!0C

Z
�

p
1Cjrur j2Cj det.rur /j2dx �

Z
�

p
1Cjruj2dxCk�C2�

X
j2J

jxj �yj j;

which, in view of the results in Section 3 concerning k � kflat;˛ , gives (6.1).

We are now in a position to conclude the proof of Theorem 1.1 .

Proof of Theorem 1.1 . Let u 2W 1;1.�I S1/. In view of Proposition 5.1, we can pick a
sequence .uk/k � W 1;1.�IS1/ such that

(a) Det.ruk/ D �
PNk
iD1.ıxki

� ıyki
/ for some Nk 2 N, with each uk satisfying (i)

and (ii) of Proposition 5.1,
(b) ku � ukkW 1;1 C kDet.ru/ � Det.ruk/kflat < 1=k, for all k 2 N.

Hence, owing to (a), we are in a position to apply Theorem 6.1 to each uk , so that

A.uk ; �/ �

Z
�

p
1C jrukj2 dx C kDet.ruk/kflat;˛; 8k > 0;(6.15)

and therefore,

A.u;�/ � lim inf
k!C1

A.uk ; �/ � lim
k!C1

� Z
�

p
1C jrukj2 dx C kDet.ruk//kflat;˛

�
D

Z
�

p
1C jruj2 dx C kDet.ru/kflat;˛:
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7. On the countably subadditive interior envelope of A

As we have seen, the nonlocality of A.u; �/ is unavoidable. Therefore, it seems interesting
to consider the largest countably subadditive set function not larger than A.u; �/, as defined
in (1.6). We have the following integral representation result.

Proposition 7.1 (“Double” relaxation). Let u2W 1;1.�IS1/. Then

(7.1) A.u;�/ D

Z
�

p
1C jruj2 dx:

Proof. Since A.u; A/ �
R
A

p
1C jruj2 dx for any open set A � �, we only need to

show the � inequality in (7.1).
We already know, from Theorem 4.6, that ƒ WD 1

�
Det.ru/ D

P1
iD1.ıxi � ıyi /, withP1

iD1 jxi � yi j <1. Fix " > 0 and N" 2 N so that
P1
iDN"C1

jxi � yi j < ". Set

ƒ" WD

1X
iDN"C1

.ıxi � ıyi /:

Then, as kƒ"kflat < ", we infer

(7.2) kƒ"kflat;˛ < 2":

Let ¹zk W k D 1; : : : ; m"º be the set of points in ¹xk ; yk W k � N"º which are contained
in �. Choose mutually disjoint closed discs B2r .zk/ � � for k D 1; : : : ; m", and set

G" WD � n
� m"[
iD1

Br .zk/
�
I

notice that G" and B2r .zk/ overlap on annuli of radii r and 2r . By definition of A.u; �/,
and using Theorem 1.1, we have

A.u;�/ � A.u;G"/C

m"X
kD1

A.u; B2r .zk// �

Z
G"

p
1C jruj2 dx C kDet.ru/kflat;˛;G"

C

m"X
kD1

� Z
B2r .zk/

p
1C jruj2 dx C kDet.ru/kflat;˛;B2r .zk/

�
:(7.3)

We claim that, for r > 0 sufficiently small,

(7.4) kDet.ru/kflat;˛;G" C

m"X
kD1

kDet.ru/kflat;˛;B2r .zk/
� 5�":

Since the discs B2r .zk/ are mutually disjoint for k � 1, we see that

(7.5) kƒ"kflat;˛;
Sm"
kD1

B2r .zk/
D

m"X
kD1

kƒ" B2r .zk/kflat;˛;B2r .zk/
;

whereas, recalling (7.2),

(7.6) kƒ"kflat;˛;G" � kƒ"kflat;˛ < 2":
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In B2r .zk/, connecting zk to @B2r .zk/ with a segment, we see that

khk ızkkflat;˛ � 2 jhkjr; for k D 1; : : : ; m";

where hk2Z denotes the multiplicity of zk in the distributionƒ�ƒ"D
PN"
kD1

.ıxk �ıyk /.
On the other hand, by construction, .ƒ �ƒ"/ B2r .zk/ D hk ızk , and therefore,

ƒ B2r .zk/ D ƒ" B2r .zk/C hk ızk ;

which implies
kƒkflat;˛;B2r .zk/

� kƒ" B2r .zk/kflat;˛ C 2 jhkjrk :

Summing over k D 1; : : : ; m", by (7.5) one gets
m"X
kD1

kƒkflat;˛;B2r .zk/
�

m"X
kD1

kƒ" B2r .zk/kflat;˛;B2r .zk/
C

m"X
kD1

2 jhkjr

D kƒ"kflat;˛;
Sm"
kD1

B2r .zk/
C

m"X
kD1

2 jhkjr � 2"C

m"X
kD1

2 jhkjr;(7.7)

where the last inequality follows from (7.2), since kƒ"kflat;˛;
Sm"
kD1

B2r .zk/
� kƒ"kflat;˛ .

From (7.6), we conclude

kDet.ru/kflat;˛;G" C

m"X
kD1

kDet.ru/kflat;˛;B2r .zk/
� 4�"C �

m"X
kD1

2 jhkjr;

for any r > 0 small enough, and (7.4) follows.
Now, from (7.3), we conclude that for every r > 0 sufficiently small, we have

A.u;�/ �

Z
G"

p
1C jruj2 dx C

m"X
kD1

� Z
B2r .zk/

p
1C jruj2 dx

�
C 5�"

D

Z
�

p
1C jruj2 dx C

m"X
kD1

Z
B2r .zk/ nBr .zk/

p
1C jruj2 dx C 5�";

which in turn (since ru2L1.�IR2�2/) implies, letting r ! 0C,

A.u;�/ �

Z
�

p
1C jruj2 dx C 5�":

As " is arbitrary, we have A.u;�/ �
R
�

p
1C jruj2dx. This concludes the proof.

As a direct consequence of Proposition 7.1, we get the following.

Corollary 7.2 (Integral representation). Let u2W 1;1.�IS1/. Then the set function E 7!
A.u;E/ defines a Borel measure absolutely continuous with respect to the Lebesgue mea-
sure L2, and coincides with

A.u;E/ D

Z
E

p
1C jruj2 dx for all Borel sets E � �:

In order to prove Theorem 1.2, we now extend Theorem 6.1 to the case of open sets
obtained from � by removing a finite set of points.
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Theorem 7.3. Let C WD ¹c1; : : : ; cM º be a finite set of distinct points of �. Let u 2
W 1;1.�IS1/ satisfy (i) and (ii) of Theorem 6.1, and suppose that

(7.8)

´
dist.xi ; @�/ ¤ jxi � ckj;
dist.yi ; @�/ ¤ jyi � ckj;

8k D 1; : : : ;M; 8i D 1; : : : ; N;

and that the points xi ; yi ; ck , i D 1; : : : ;N , k D 1; : : : ;M , are three by three not collinear.
Then

A.u;� nC/ �

Z
�

p
1C jruj2 dx C kDet.ru/kflat;˛;� nC :

Proof. Fix � > 0 small enough so that the discs B2�.ck/, k D 1; : : : ; M , are contained
in�, are mutually disjoint and, for each xi or yi 2�, we have xi ;yi2�n.

SM
kD1B2�.ck//,

respectively. For all � 2 .0; 2�/, let us denote �� WD � n .
SM
kD1 B�.ck//, and let R�min 2

Rf .��/ and S�min 2 �.��/ be minimal currents as in Lemma 3.6, with T D 1
�

Det.ru/.
In particular, R�min D

Ph
iD1 �iızi (notice that, possibly reducing � > 0, R�min D Rmin

becomes independent of �), S�min D
P
j2J [pj qj ], and there might be points pj D p

�
j

or qj D q
�
j on @B�.ck/ for some j and k. However, since by assumption the points

xi ; yi ; ck are three by three not collinear, it is easy to see that the points in ¹pj ; qj 2
@B�.ck/; for some j; kº, if any, are distinct. In particular, the segments pj qj , j 2 J , are
pairwise disjoint. Finally, as a consequence of (7.8), we may assume that if �� 2 @B�.ck/
is one of the points in the set ¹pj ; qj 2 @B�.ck/ for some j; kº, then

(7.9) �� ! ck as �! 0C:

Using Rmin and S�min, we can now consider the sequence .u�r / � C 1.��IR2/ found in
the proof of Theorem 6.1 (see (6.9)), with � replaced by ��; so, for any m 2 N, we find
rm 2 .0; 2�/ small enough so that v�m WD u

�
rm satisfies

(7.10)
kv�m � ukL1.��IR2/ �

1

m
;

A.v�m; ��/ �

Z
��

p
1C jruj2 dx C kDet.ru/kflat;˛;�� C

1

m
�

Furthermore, as limm!C1 v
�
m D u in W 1;1.��IR2/, we may also supposeZ

��n�2�

jrv�mj dx �

Z
��n�2�

jruj dx C
1

m
�(7.11)

Now we suitably modify v�m and extend it to � nC : for any k D 1; : : : ; M , we pick a
radius sk 2 .�; 2�/ so that

(7.12)
Z
@Bsk .ck/

jrv�mj dH1
�
1

�

Z
B2�.ck/ nB�.ck/

jrv�mj dx:

Then we define

v�m.x/ WD

´
v
�
m.x/ if x 2�sk ;
v
�
m.ck C sk

x�ck
jx�ck j

/ if x 2Bsk .ck/ n ¹ckº; k D 1; : : : ;M;
(7.13)



G. Belletini, R. Scala and G. Scianna 34

where, with a little abuse of notation, we have denoted �sk WD � n.
SM
kD1 Bsk .ck//.

From (7.11), we getZ
�sk n�2�

jrv�mj dxD

Z
�sk n�2�

jrv�mj dx �

Z
��n�2�

jrv�mjdx �

Z
��n�2�

jrujdxC
1

m
�

On the other hand, for any k D 1; : : : ;M ,Z
Bsk .ck/

jrv�mj dx D

Z sk

0

Z
@Bs.ck/

jrv�mj dH1 ds D sk

Z
@Bsk .ck/

jrv�mj dH1;

where the last equality follows since, by definition, v�m is 0-homogeneous in Bsk .ck/, and
the integral

R
@Bs.ck/

jrv
�
mj dH1 does not depend on s 2 .0; sk/. Using (7.12), and since

sk � 2�, it then follows

(7.14)

Z
� n�2�

jrv�mj dx D

Z
�sk n�2�

jrv�mj dx C

NX
kD1

Z
Bsk .ck/

jrv�mj dx

� 2

Z
��n�2�

jruj dx C
2

m
�

Furthermore, using that jv�mj � 1, also jv�mj � 1, and it easily follows that

(7.15) lim sup
m!C1

kv�m � ukL1.�IR2/ � lim sup
m!C1

kv�m � ukL1.� n�2�IR2/ � 8�M�
2:

Since in�� n�2� the map v�m takes values in S1, using (7.10) and (7.14) we can estimate

A.v�m; � nC/ � A
�
v�m; � n

� M[
kD1

Bsk .ck/
��
C

MX
kD1

�s2k C 2

Z
��n�2�

jruj dx C
2

m

�

Z
��

p
1C jruj2 dx C kDet.ru/kflat;˛;�� C 2

Z
��n�2�

jruj dx C
3

m
�(7.16)

We have proved that for every � > 0 small enough, we can find a Lipschitz map
v
�
m W� nC ! R2 satisfying (7.16). In particular, choosing a sequence �h & 0, by a diag-

onal argument we find a sequence .vh/ of Lipschitz maps15 on � nC to R2 satisfying
vh ! u in L1.�IR2/ (by (7.15)), and

A.vh;� nC/ �

Z
��h

p
1Cjruj2 dx C kDet.ru/kflat;˛;��h

C 2jDuj.��h n�2�h/C
3

h
�

Letting h! C1, we use that Det.ru/ is a measure so that it is easy to see that, thanks
to (2.7),

kDet.ru/kflat;˛;��h
! kDet.ru/kflat;˛;� nC ;

and the thesis easily follows.

15Even if vh is not C 1, by a density argument finding such a sequence is sufficient, see Proposition 3.5 in [3].
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Using Theorem 7.3 and a density argument, we can prove the following.

Theorem 7.4. Let C be a finite set of distinct points of �, and let u2W 1;1.�IS1/. Then

A.u;� nC/ �

Z
�

p
1C jruj2 dx C kDet.ru/kflat;˛;� nC :

Proof. It is sufficient to argue along the lines of the proof of Theorem 1.1, replacing,
in (6.15), k � kflat;˛ by k � kflat;˛;� nC . More specifically, in view of Proposition 5.1, we can
pick a sequence .uk/k � W 1;1.�IS1/ satisfying (a) and (b) of the proof of Theorem 1.1
(see the end of Section 6), and also (7.8). Applying Theorem 7.3 to each uk , we obtain

A.uk ; � nC/ �

Z
�

p
1C jrukj2 dx C kDet.ruk/kflat;˛;� nC ; 8k > 0:

By lower-semicontinuity, we conclude

A.u;�/ � lim inf
k!C1

A.uk ; �/ � lim
k!C1

� Z
�

p
1Cjrukj2 dx C kDet.ruk//kflat;˛;� nC

�
D

Z
�

p
1C jruj2 dx C kDet.ru//kflat;˛:

The equality is obtained since by (b), uk! u inW 1;1.�IR2/ , kDet.ru/�Det.ruk/kflat
! 0, and k � kflat;˛ is continuous in the flat metric.

Theorem 7.5. Let u2W 1;1.�IS1/. Then for every " > 0, there exists a finite set C" of
points of � such that

(7.17) A.u;� nC"/ �

Z
�

p
1C jruj2 dx C ":

Proof. We know that 1
�

Det.ru/ D
P1
iD1.ıxi � ıyi / with

P1
iD1 jxi � yi j < 1. Take

N" 2 N so that
P1
iDN"C1

jxi � yi j < "=.2�/, and let C" WD ¹xk 2 � W 1 � k � N"º[
¹yk 2 � W 1 � k � N"º. Set T WD Det.ru/ .� nC"/, so that kT kflat;˛;� nC" � ". Then
Theorem 7.4 implies (7.17).

Using Theorem 7.5, we can positively answer to a modification of a conjecture by
De Giorgi [18], adapted to the context of S1-valued Sobolev maps.

Corollary 7.6. Let u2W 1;1.�IS1/. Then

A.u;�/ D inf
C��;H0.C/<C1

A.u;� nC/:

Proof. From Theorem 7.5, we get

inf
C��;H0.C/<C1

A.u;� nC/ �

Z
�

p
1C jruj2 dx D A.u;�/;

where the last equality follows from Corollary 7.2. On the other hand, for any finite set
C � �, we know [1] that

A.u;� nC/ �

Z
� nC

p
1C jruj2 dx D

Z
�

p
1C jruj2 dx D A.u;�/:
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A. Appendix

In this appendix, we first collect a standard lemma, and next a proposition having an
independent interest.

Lemma A.1. Let ƒ 2 Lip0.�/
0. Then

sup
'2C 1c .�/
k'kLip0;˛�1

hƒ; 'i D inf
®
jRj� C ˛

�1
jS j� W .R; S/ 2 D0.�/ �D1.�/; ƒ D RC @S

¯
D sup

'2Lip0.�/
k'kLip0;˛�1

hƒ; 'i:(A.1)

Proof. We adapt the arguments of [19], see p. 367. Let R 2D0.�/ and S 2D1.�/ be
such that ƒ D RC @S in D0.�/. Then, as ˛ D 1=2,

jhƒ; 'ij � jR.'/j C jS.d'/j � .jRj� C 2jS j�/ k'kLip0;˛; 8' 2C
1
c .�/;

so the inequality � holds in the first line of (A.1). To prove the converse inequality, set

Y WD
®
.';  / 2 C 1c .�/ � C

0
c .�IR

2/
¯
;

endowed with the norm k.'; /kY WDmax¹k'kL1 ; 12k kL1º, and define the linear injec-
tive operator

Q W C 1c .�/! Y; Q.'/ WD .';r'/; 8' 2 C 1c .�/:

Since Q.C 1c .�// � Y , we have

hƒ;Q�1.';r'/i � kƒkflat;˛ k.';r'/kY ; 8' 2 C
1
c .�/;

and therefore we can extend the linear functional ƒ ı Q�1WQ.C 1c .�// ! R to some
linear functional LWY ! R with

(A.2) L.'; / � kƒkflat;˛ k.';  /kY ; 8.';  / 2 Y:

Now we define

R.'/ WD L.'; 0/; 8' 2 C 1c .�/;

S. / WD L.0;  /; 8 2 C 0c .�IR
2/;

so that, from (A.2), k.'; /kY � 1 implies R.'/C S. / D L.'; / � kƒkflat;˛ . In par-
ticular, R 2 D0.�/ and S 2 D1.�/, and passing to the supremum,

jRj� C 2 jS j� � kƒkflat;˛:

Since R.'/C S.d'/ D L.';r'/ D hƒ; 'i for all ' 2 C 1c .�/, it follows ƒ D RC @S ,
and the first equality in (A.1) follows.
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To show the second equality in (A.1), we first observe that, from the first equality,

sup
'2C 1c .�/
k'kLip0;˛�1

hƒ; 'i � kƒkflat;˛;

and so � holds. On the other hand, if R 2 Rf and S 2 � are such that ƒ D R C @S in
D0.�/, then

jhƒ; 'ij D jR.'/j C jS.d'/j � .jRj� C 2jS j�/ k'kLip0;˛; 8' 2 Lip0.�/;

so also the inequality � holds, thanks to Corollary 3.4.

The next result has been used in the proof of Proposition 3.3; it is based on Lemma 3.6.

Proposition A.2. Let T D
Pn
iD1.ıxi � ıyi / 2 D 0.�/ be as in (3.3) and satisfying (Pf),

where xi ; yi 2 �, xi ¤ yi . Let IP , ID , � , Rmin and Smin be as in Lemma 3.6. Then

9' 2 Lip0.�/ with k'kLip0;˛ � 1 such that hT; 'i D jRminj� C ˛
�1
jSminj�:

As a consequence, for all k 2 IP and j 2 I n �.ID/ with xk 2 � and yj 2 �, we have
'.xk/ D �'.yj / D 1, and for all k 2 ID , we have '.xk/ � '.y�.k// D ˛�1jxk � y�.k/j.
In particular,

min¹jRj� C ˛�1jS j� W R 2 Rf ; S 2 � ; T D RC @Sº D max
�2Lip0.�/
k�kLip0;˛�1

hT; �i:

Proof. Define

PC WD ¹k 2 IP W xk 2 �º and P� WD ¹k 2 I n �.ID/ W yk 2 �º:

The function ' in the statement must satisfy '.xk/ D 1 for all k 2 PC, and '.yk/ D �1
for all k 2 P�, and, recalling that ˛�1 D 2, also '.xk/� '.y�.k//D 2jxk � y�.k/j for all
k 2 ID .

For any k 2 PC, we define �k.x/ WD 1 � 2jx � xkj for all x 2�, and set

� WD

´
maxk2PC¹�kº if PC ¤ ;;
�1 if PC D ;:

Define also‰0 WDmax¹d0;�º;where d0.x/ WDmax¹�1;�2d.x;@�/º for all x2�, i.e.,16

(A.3) ‰0.x/ D max¹�1;�2d.x; @�/; 1 � 2jx � xkj; k 2 PCº; 8x 2�;

and observe that ‰0 2 Lip0.�/ with k‰0kLip0;˛ � 1.
Using the minimality, and in particular (3.11), one verifies that ‰0.xk/ D 1 for all

k 2 PC. Let us check that ‰0.yk/ D �1 for all k 2 P�. If not, either d0.yk/ > �1 or
�.yk/ > �1, and both the two cases are excluded again by (3.11).

Now, we have to take into account the dipoles (i.e., k 2 ID) and the boundary values
of ‰0. We divide the proof into three steps.

16Here we assume PC ¤ ;, otherwise the quantity 1 � 2jx � xk j does not appear as � � �1.
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Step 1. For all k 2 ID with y�.k/; xk 2 �,

(A.4) ‰0.xk/ � 1 and ‰0.y�.k// � 1 � 2jxk � y�.k/j:

Furthermore, if either y�.k/ 2 @� or xk 2 @� for some k 2 ID , then

(A.5) either ‰0.xk/ � 2d.xk ; @�/; or ‰0.y�.k// D �2d.y�.k/; @�/;

respectively.
Let us check (A.4). The first inequality follows since ‰0 � 1 on �. The second

inequality is deduced as follows. By (A.3), if ‰0.y�.k// D �2d.xk ; @�/, then we con-
clude by (3.12). If instead ‰0.y�.k// D 1 � 2jxh � y�.k/j for some h 2 PC, then we
conclude, since by minimality jxh � y�.k/j � jxk � y�.k/j (where we have used h 2 PC).

Now, let us check (A.5). Assume that y�.k/ 2 @� and, by (A.3), that for some h 2 PC,
‰0.xk/ D 1 � 2jxh � xkj. By the triangle inequality and (3.11), we have

‰0.xk/ � 1C 2jxk � y�.k/j � 2jxh � y�.k/j � 2jxk � y�.k/j D 2d.xk ; @�/:

Assume instead that xk 2 @�. If, by contradiction, ‰0.y�.k// > �2d.y�.k/; @�/ D
�2jy�.k/ � xkj, for some h 2 PC we necessarily have ‰0.y�.k// D 1 � 2jxh � y�.k/j >
�2jy�.k/ � xkj. This contradicts the minimality of Rmin and Smin, because a direct check
shows that

jR0j� C 2jS
0
j� � jRminj� C 2jSminj� � 1C 2jxh � y�.k/j � 2jxk � y�.k/j

< jRminj� C 2jSminj�;

where R0 WD Rmin � ıxh and S 0 WD Smin � [y�.k/xk]C [y�.k/xh].
Eventually, we check that

(A.6) ‰0 D 0 on @�:

Indeed, if x 2 @� and ‰0.x/ D 1 � 2jxk � xj > 0 for some k 2 PC, then arguing as
before, we can defineR0 WDRmin � ıxk and S 0 WD SminC [xxk], and a direct check shows
that jR0j� C 2jS 0j� < jRminj� C 2jSminj�, against the minimality.

Before proceeding to the next step, for the sake of simplicity and without loss of
generality, we relabel the indices and assume that � W ID ! ID is the identity map, so
that IP D I n ID D I n �.ID/. The function ', that will be constructed starting from ‰0
(see (A.15)), should satisfy '.xk/ D ‰0.xk/ D 1 for all k 2 PC, '.yk/ D ‰0.yk/ D �1
for all k 2 P�, and '.xk/� '.yk/ D 2jxk � ykj for every k 2 ID . To build such a ', we
apply a recursive procedure. We define, for all integersm� 1, the function‰m as follows:

(A.7) ‰m.x/ WD max¹‰m�1.x/;ˆm.x/º; 8x 2�;

where ˆm is given by

ˆm.x/ WD max
k2ID

¹�mk .x/º; �mk .x/ WD ‰m�1.yk/C 2jxk � ykj � 2jxk � xj; 8x 2�:

Clearly, ˆm is Lipschitz continuous with Lipschitz constant 2, for all m � 1.
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Step 2. We claim that
(a) ‰m.yk/ � 1 � 2jxk � ykj and ‰m.xk/ � 1 for all k 2 ID with xk ; yk 2 �;
(b) ‰m.xk/ D 1 and ‰m.yh/ D �1 for all k 2 PC, h 2 P�;
(c) ‰m.x/ D 0 for x 2 @�;
(d) if, for some k 2 ID , either yk 2 @� or xk 2 @�, then

(A.8) either ‰m.xk/ � 2d.xk ; @�/; or ‰m.yk/ D �2d.yk ; @�/;

respectively.
Proof of (a). First we notice that, if ¹h1; : : : ; hj º � ID with hi ¤ hi 0 for i ¤ i 0, then

the minimality of Smin implies that

(A.9)
jX
iD1

jxhi � yhi j � jxh1 � yh2 j C jxh2 � yh3 j C � � � C jxhj � yh1 j:

Now, by construction and definition of ˆm, we can find a set of r � 0 indices (possibly
r D 0) 0 D m1 < � � � < mr � m, and indices k1; : : : ; kr 2 ID such that

‰m.yk/ D �
m
k .yk/ D ‰mr .ykr /C 2jxkr � ykr j � 2jxkr � ykj;

‰mr .ykr / D �
mr
kr
.ykr / D ‰mr�1.ykr�1/C 2jxkr�1 � ykr�1 j � 2jxkr�1 � ykr j;

:::(A.10)
‰m3.yk3/ D �

m3
k3
.nk3/ D ‰m2.yk2/C 2jxk2 � yk2 j � 2jxk2 � yk3 j;

‰m2.yk2/ D �
m2
k2
.yk2/ D ‰0.yk1/C 2jxk1 � yk1 j � 2jxk1 � yk2 j:

Notice that if r D 0, we simply have ˆm.yk/ D ˆ0.yk/, and (a) follows from (A.4) and
thanks to ‰0 2 Lip0.�/, k‰0kLip0;˛ � 1. If r > 0, from (A.10) it follows that

‰m.yk/ D ‰0.yk1/C 2

rX
iD1

jxki � yki j � 2

rX
iD1

jxki � ykiC1 j;

where we have set ykrC1 D yk . Now we have two cases:
(a1) ‰0.yk1/ D �2d.yk1 ; @�/;
(a2) ‰0.yk1/ D 1 � 2jxh � yk1 j for some h 2 PC.

In case (a1), we will show that

(A.11) 2

rX
iD1

jxki � yki j � 2

rX
iD1

jxki � ykiC1 j � 1C 2d.@�; yk1/ � 2jxk � ykj;

whereas in case (a2), we will show that

(A.12) 2

rX
iD1

jxki � yki j � 2

rX
iD1

jxki � ykiC1 j � 2jxh � yk1 j � 2jxk � ykj;

and this will conclude (a).
First, in view of (3.12), we can assume that the indices k1; k2; : : : ; kr are all distinct.

Indeed, if ki D ki 0 for some i ¤ i 0, then we can erase the indices ki ; kiC1; : : : ; ki 0�1, sincePi 0�1
jDi jxkj � ykj j �

Pi 0�1
jDi jxkj � ykjC1 j � 0 by (3.12).
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Therefore, assuming (a1), let us prove (A.11). Consider the point p on @� so that
jp � yk1 j D d.yk1 ; @�/; then (A.11) is a consequence of the minimality ofRmin and Smin.
Indeed, setting

R0 WD Rmin C ıxk and S 0 WD Smin �

rC1X
iD1

[xkiyki ]C

rX
iD1

[xkiykiC1]C [pyk1];

the inequality jR0j� C 2jS 0j� � jRminj� C 2jSminj� is equivalent to (A.11).
In case (a2), instead, to get (A.12), arguing as before, it suffices to write jR0j� C

2jS 0j� � jRminj� C 2jSminj�, with

R0 WD Rmin C ıyk1 C ıxh and S 0 WD Smin �

rC1X
iD1

[xkiyki ]C

rX
iD1

[xkiykiC1]C [xhyk1]:

So far, we have proved that ‰m.yk/ � 1 � 2jxk � ykj, for all k 2 ID . The fact that
‰m.xk/ � 1 for all k 2 ID follows, since ‰m 2 Lip0.�/, with k‰mkLip0;˛ � 1.

Proof of (b). Let us check that ‰.ph/ � 1 for all h 2 PC. To this aim, it is sufficient
to observe that ˆm.x/ � 1 for all x 2�, since �m

k
.x/ � �m

k
.xk/ D ‰m�1.yk/C 2jxk �

ykj � 1, for all k 2 ID , in view of (a).
Let us check that ‰.xh/ D �1 for all h 2 P�. Arguing as in (A.10), we can find a set

of r � 0 indices 0 D m1 < � � � < mr � m, and indices k1; : : : ; kr 2 ID , such that

‰m.yh/ D ‰0.yk1/C 2

rX
iD1

jxki � yki j � 2

rX
iD1

jxki � ykiC1 j;

where krC1 WD h. If r D 0, we readily conclude that ‰m.yh/ D ‰0.yh/, and the thesis
follows from the fact that ‰0.yh/ D �1 for all h 2 P�. Hence assume r > 0. Here we
have two cases as well:

(b1) ‰0.yk1/ D 1 � 2jxj � yk1 j for some j 2 PC;
(b2) ‰0.yk1/ D �2d.yk1 ; @�/.

In the first case, the thesis is equivalent to

(A.13) 1 � 2jxj � yk1 j C 2

rX
iD1

jxki � yki j � 2

rX
iD1

jxki � ykiC1 j � �1:

As before, we might assume that the indices ki are distinct. WritingR0 WDRminCıxh�ıyj
and S 0 WD Smin �

Pr
iD1 [xkiyki ]C

Pr
iD1 [xkiykiC1]C [xjyk1], (A.13) readily follows

by the inequality jR0j� C 2jS 0j� � jRminj� C 2jSminj�.
Now, if (b2) holds, we will conclude by showing that

(A.14) �2d.yk1 ; @�/C 2

rX
iD1

jxki � yki j � 2

rX
iD1

jxki � ykiC1 j � �1:

This is also obtained using the minimality of Rmin and Smin, setting R0 WD Rmin C ıyh and
S 0 WD Smin �

Pr
iD1 [xkiyki ]C

Pr
iD1 [xkiykiC1]C [xjyk1], where xj 2 @� is such that

jxj � yk1 j D d.yk1 ; @�/.
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Proof of (c). To show this, fix x 2 @�. If ‰m.x/ D ‰0.x/ D 0, there is nothing to
prove. If not, we can find a set of r > 0 indices 0 D m1 < � � � < mr � m, and indices
k1; : : : ; kr 2 ID , such that

‰m.x/ D ‰0.yk1/C 2

rX
iD1

jxki � yki j � 2

rX
iD1

jxki � ykiC1 j;

where ykrC1 WD x. If ‰0.yk1/ D �2d.yk1 ; @�/, we show that

rX
iD1

jxki � yki j �

rX
iD1

jxki � ykiC1 j C d.yk1 ; @�/:

As usual, we might assume that the indices ki are distinct; since x 2 @�, we have that
jxkr � xj � d.xrk ; @�/, and so the previous inequality is obtained by minimality of Rmin
and Smin, arguing similarly as in the preceding cases.

If instead ‰0.yk1/D 1� 2jxh � yk1 j for some h 2 PC, we reduce ourselves to prove
that

1C

rX
iD1

jxki � yki j �

rX
iD1

jxki � ykiC1 j C jxh � yk1 j;

which is again implied by the minimality of Rmin and Smin.
Proof of (d). The first condition in (A.8) is a consequence of point (c) and the fact that

‰m 2 Lip0.�/, with k‰mkLip0;˛ � 1. Let us prove the second condition. If ‰m.yk/ D
‰0.yk/, then the thesis follows from (A.5); if not, we can find a sequence of r > 0 indices
0 D m1 < � � � < mr � m, and indices k1; : : : ; kr 2 ID , such that

‰m.yk/ D ‰0.yk1/C 2

rX
iD1

jxki � yki j � 2

rX
iD1

jxki � ykiC1 j;

where krC1 WD k. Now, either ‰0.yk1/ D �2d.yk1 ; @�/ or ‰0.yk1/ D 1 � 2jxh � yk1 j
for some h 2 PC. Again, assuming that the indices ki are distinct, in the first case it is
sufficient to observe that

d.yk ; @�/C

rX
iD1

jxki � yki j � d.@�; yk1/C

rX
iD1

jxki � ykiC1 j;

which follows once more from the minimality of Rmin and Smin, since d.yk ; @�/D jxk �
ykj, and xk 2 @�.

Assuming instead that ‰0.yk1/ D 1 � 2jxh � yk1 j for some h 2 PC, we can show
that

1C d.yk ; @�/C

rX
iD1

jxki � yki j �

rX
iD1

jxki � ykiC1 j C jxh � yk1 j;

using once again the minimality of Rmin and Smin.
Before passing to the next step, observe that since ‰m � ‰mC1 for all m � 0, we can

take the pointwise limit

(A.15) ' WD lim
m!C1

‰m;
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and thus conditions (a), (b), (c), and (d) of Step 2 are still valid for '. Furthermore,
since ‰m is Lipschitz continuous with Lipschitz constant 2, we also have that ‰m ! '

uniformly in � by the Ascoli–Arzelà theorem. The next step concludes the proof of the
proposition.

Step 3. The function ' satisfies

'.xk/ D '.yk/C 2jxk � ykj; 8k 2 ID :(A.16)

To see this, we define

' WD max
k2ID

¹gkº; gk.x/ WD '.yk/C 2jxk � ykj � 2jxk � xj; 8k 2 ID; 8x 2�:

In order to prove (A.16), it is sufficient to show that ' � '; indeed, this implies '.xk/ �
gk.xk/D '.yk/C 2jxk � ykj for all k 2 ID , and since the opposite inequality is guaran-
teed by the fact that ' is 2-Lipschitz, (A.16) follows. By the uniform convergence of the
sequence .‰m/ to ', for all " > 0, we can find m" 2 N so that ‰m.x/C " � '.x/ for all
x 2� and m 2 N with m � m". We compute

gk.x/ D '.yk/C 2jxk � ykj � 2jxk � xj � "C‰m.x/C 2jxk � ykj � 2jxk � xj

� "C‰mC1.x/ � "C '.x/;

where the last but one inequality follows from the definition of ‰mC1. This implies that
'.x/ � "C '.x/ which, by the arbitrariness of " > 0, implies the claim.

Remark A.3. If one knows in advance the regularity result

kT kflat;˛ D min
®
jRj� C ˛

�1
jS j� W .R; S/ 2 Rf � � ; T D RC @Sº;

since
kT kflat;˛ D max

'2Lip0.�/
k'kLip0;˛�1

hT; 'i D hT; 'i;

it is not difficult to check that a maximizing ' satisfies the properties of the function ' in
the proof of Proposition A.2.
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