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Bar Construction and Tannakization

by

Isamu Iwanari

Abstract

We continue our development of tannakizations of symmetric monoidal ∞-categories,
begun in [19]. In this note we calculate the tannakizations of some examples of symmetric
monoidal stable ∞-categories with fiber functors. We consider the case of symmetric
monoidal ∞-categories of perfect complexes on perfect derived stacks. The first main
result in particular says that our tannakization includes the bar construction for an
augmented commutative ring spectrum and its equivariant version as a special case.
We apply it to the study of the tannakization of the stable ∞-category of mixed Tate
motives over a perfect field. We prove that its tannakization can be obtained from the Gm-
equivariant bar construction of a commutative differential graded algebra equipped with
the Gm-action. Moreover, under the Beilinson–Soulé vanishing conjecture, we prove that
the underlying group scheme of the tannakization is the motivic Galois group for mixed
Tate motives, constructed in [4], [25], [26]. The case of Artin motives is also included.
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§1. Introduction

In [19] we have constructed tannakizations of symmetric monoidal ∞-categories.

Let R be a commutative ring spectrum. Let C⊗ be a small symmetric monoidal

∞-category, equipped with a symmetric monoidal functor F : C⊗ → PMod⊗R
where PMod⊗R denotes the symmetric monoidal∞-category of compact R-spectra.

(Although we use the machinery of quasi-categories in the text, here by an ∞-

category we informally mean an (∞, 1)-category in the sense of [3].) In [19], given

F : C⊗ → PMod⊗R we construct a derived affine group scheme G over R which

represents the automorphism group of F and has a certain universality (see Theo-

rem 3.1). A derived affine group scheme is an analogue of an affine group scheme in

derived algebraic geometry [37], [29]. For simplicity, we shall call it the tannakiza-

tion of F : C⊗ → PMod⊗R. This construction was applied to the stable ∞-category
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of mixed motives to construct derived motivic Galois groups and underived mo-

tivic Galois groups. For the reader who is not familiar with higher category theory

it is worth emphasizing that the ∞-categorical framework is crucial for the nice

representability of automorphism groups, whereas coarse machinery, such as tri-

angulated categories, does not enable getting it.

The purpose of this note is to calculate tannakizations of some examples of

F : C⊗ → PMod⊗R; our principal interest here is the case when C⊗ is the symmetric

monoidal ∞-category PMod⊗Y of perfect complexes on a derived stack Y and F

is induced by SpecR → Y . We will study tannakization under the assumption of

perfectness on derived stacks, introduced in [2], which in particular includes two

cases:

(i) Y is an affine derived scheme over R, that is, Y = SpecA over SpecR with A

a commutative ring spectrum,

(ii) Y is the quotient stack [X/G] where X is an affine derived scheme X = SpecA

and G is an algebraic group in characteristic zero.

We note that for our purpose the assumption of affineness of Y in (i) and X in (ii)

is not essential since PMod⊗Y → PMod⊗R only depends on a Zariski neighborhood

of the image of SpecR→ Y . Also, we remark that A in (i) and (ii) can be noncon-

nective. Our result may be expressed as follows (see Theorem 4.8, Corollary 4.9):

Theorem 1. Let Y be a derived stack over R and SpecR → Y a section of the

structure map Y → SpecR. Let PMod⊗Y → PMod⊗R be the associated pullback

symmetric monoidal functor. Suppose that Y is perfect (cases (i) and (ii) have

this property). Let G be the derived affine group scheme arising from the Čech

nerve associated to SpecR→ Y . Then the tannakization of PMod⊗Y → PMod⊗R is

equivalent to G.

Bar construction and equivariant bar construction. One of our motivations arises

from comparison between derived group schemes obtained by tannakization and

by bar construction and its variants. Bar construction has been an important

device in various contexts of homotopy theory, mixed Tate motives and nonabelian

Hodge theory, etc. In case (i), the Čech nerve in AffR associated to SpecR →
Y = SpecA, which we can regard as a derived affine group scheme over R, is

known as the bar construction of an augmented commutative ring spectrum (or

commutative differential graded algebra), whose explicit construction can be given

by bar resolutions. In case (ii), we can think of the Čech nerve as the G-equivariant

version of the bar construction. As a matter of fact, our actual aim is to study the

relationship between our tannakization and bar constructions and their equivariant

versions; Theorem 1 in particular means that our method of tannakization includes
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bar constructions and their equivariant versions as a special case. This allows

one to link bar constructions and their variants to a more general method of

tannakization. It will be of use in subsequent work as a key ingredient (see the

end of this introduction).

Toward applications to Galois groups of mixed motives. It is worth mentioning that

the equivariant versions are also important in applications to motivic contexts: for

instance, in order to take weight structures into account, one often uses the Gm-

equivariant version of bar construction. Our results fit very naturally in with the

structure of mixed Tate motives and (hopefully) arbitrary mixed motives (in the

general case, one should replace Gm by the Tannaka dual of the (conjecturally

tannakian) category of numerical motives).

To describe our aim, consider the symmetric monoidal stable ∞-category

DM⊗∨ := DM⊗∨ (k) of (dualizable) mixed motives over a base scheme Spec k, where k

is a perfect field (see Section 6.1 for our conventions). For a mixed Weil cohomology

theory (such as singular, étale, de Rham cohomology) with coefficient field K

of characteristic zero, there exists a homological realization functor R : DM⊗∨ →
PMod⊗HK, which is a symmetric monoidal exact functor. In our previous paper [19],

we introduced a new approach of tannakization of ∞-categories to motivic Galois

groups: we focus on the automorphism group of the realization functor R and

define the derived motivic Galois group to be the tannakization of DM⊗∨ endowed

with the realization functor R (and we also construct the underived motivic Galois

group as its coarse moduli space) in an unconditional way.

As a first step to our detailed study, we apply Theorem 1 to compare the

conventional motivic Galois group of mixed Tate motives with ours. Let DTM⊗∨ ⊂
DM⊗∨ be the small symmetric monoidal stable ∞-category of mixed Tate motives

(see Section 6.2). By applying the above theorem, we deduce Theorem 6.12 which

informally says:

Theorem 2. Let MTG = SpecB be the derived affine group scheme obtained

as the tannakization of RT : DTM⊗∨ → PMod⊗HK. (Here B is a commutative

differential graded K-algebra.) Then MTG is obtained from the Gm-equivariant

bar construction of a commutative differential graded K-algebra Q equipped with

the Gm-action. Namely, it is the Čech nerve of a morphism of derived stacks

SpecHK→ [SpecQ/Gm].

We remark that the underlying complexQ can be described in terms of Bloch’s

cycle complexes. The proof of Theorem 2 requires two ingredients: one is Theo-

rem 1, and the other is to identify RT : DTM⊗∨ → PMod⊗HK with a certain pull-

back functor between ∞-categories of perfect complexes on derived stacks, which
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makes use of the module-theoretic (i.e. Morita-theoretic) presentation theorem for

the stable ∞-category DTM⊗∨ (see [34]).

If the Beilinson–Soulé vanishing conjecture holds for the base field k (e.g. if k is

a number field), there is a traditional method of passing to a group scheme. Under

the vanishing conjecture, one can define the motivic t-structure on DTM∨. The

heart of this t-structure is a neutral Tannakian category (cf. [33], [11]), and we can

extract an affine group scheme MTG over K from it. The so-called motivic Galois

group for mixed Tate motives MTG was constructed by Bloch–Kriz, Kriz–May,

and Levine [4], [25], [26]. The vanishing conjecture does not imply that the stable

∞-category of complexes of the heart recovers the original ∞-category DTM∨.

However, the following result gives a quite nice relation between MTG and MTG

and also provides a conceptual understanding of MTG as a coarse moduli space of

the automorphism group of R (it is important to notice that this characterization

does not refer to a motivic t-structure).

Theorem 3. Suppose that the Beilinson–Soulé vanishing conjecture holds for k.

Then the group scheme MTG is an excellent coarse moduli space (cf. Defini-

tion 7.15) of MTG.

This result is proved in Section 7 (Theorem 7.16). In view of Theorems 2

and 3, we can say that the derived motivic Galois group constructed from DM⊗∨ in

[19] is a natural generalization of MTG to all the mixed motives. Also, it gives a

clear relation between the conventional theory (in the case of mixed Tate motives)

and our approach.

Application to future work. The result (Theorem 1) has already found nice ap-

plications in the study of the motivic Galois group of mixed motives generated

by an abelian variety (not to be confused with 1-motives)—see [20]. In [20], it

connects certain based loop stacks with the representability of automorphisms,

which allows one to use various techniques such as Galois representations, rational

homotopy theory, etc. Combining this with the general method of perfect adjoint

pairs discussed in [20, Section 3] one may expect to acchieve more in this and other

directions.

This article is organized as follows: In Section 2, we will review some notions

and notation which we need in this note. In Section 3, we recall the definitions of

representation of derived affine group schemes, automorphism group of symmetric

functors, etc. Section 4 contains the proof of Theorem 1. In Section 5, we give a

brief exposition of bar constructions from our viewpoint. In Sections 6 and 7, we

give applications to examples. Sections 6 and 7 are devoted to the study of the tan-

nakization of the stable ∞-category of mixed Tate motives; we prove Theorems 2
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and 3. In Section 8, for the sake of completeness we will also treat the stable

subcategory of Artin motives in DM, which is generated by motives of smooth

0-dimensional varieties. We show that the tannakization of the stable ∞-category

of Artin motives is the absolute Galois group Gal(k̄/k) (see Proposition 8.3).

§2. Notation and conventions

We fix our notation and conventions.

∞-categories. Throughout this note we use the theory of quasi-categories. A quasi-

category is a simplicial set which satisfies the weak Kan condition of Boardman–

Vogt. The theory of quasi-categories from the viewpoint of higher category theory

was extensively developed by Joyal and Lurie [21], [27], [28]. Following [27] we shall

refer to quasi-categories as ∞-categories. Our main references are [27] and [28].

We often refer to a map S → T of ∞-categories as a functor. We call a vertex

(resp. an edge) in an ∞-category S an object (resp. a morphism). For a rapid

introduction to ∞-categories, we refer to [27, Chapter 1], [14], [13, Section 2]. For

a quick survey of various approaches to (∞, 1)-categories and their relations, we

refer to [3].

• ∆: the category of linearly ordered finite sets (consisting of [0], [1], . . . , [n] =

{0, . . . , n}, . . .).
• ∆n: the standard n-simplex.

• N: the simplicial nerve functor (cf. [27, 1.1.5]).

• Cop: the opposite ∞-category of an ∞-category C.
• Let C be an ∞-category and suppose that we are given an object c. Then Cc/

and C/c denote the undercategory and overcategory respectively (cf. [27, 1.2.9]).

• Cat∞: the∞-category of small∞-categories in a fixed Grothendieck universe U;

we employ the axioms of ZFC together with the axiom of Grothendieck uni-

verses. We fix a sequence of universes (N ∈)U ∈ V ∈ W and refer to sets

belonging to U (resp. V, W) as small sets (resp. large sets, super-large sets).

• Ĉat∞: the ∞-category of large ∞-categories.

• S: the ∞-category of small spaces. We denote by Ŝ the ∞-category of large

∞-categories (cf. [27, 1.2.16]).

• h(C): the homotopy category of an ∞-category (cf. [27, 1.2.3.1]).

• Fun(A,B): the function complex for simplicial sets A and B.

• FunC(A,B): the simplicial subset of Fun(A,B) classifying maps which are com-

patible with given projections A→ C and B → C.
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• Map(A,B): the largest Kan complex of Fun(A,B) when A and B are ∞-

categories.

• MapC(C,C
′): the mapping space from an object C ∈ C to C ′ ∈ C where C is an

∞-category. We usually view it as an object in S (cf. [27, 1.2.2]).

Stable ∞-categories, symmetric monoidal ∞-categories and spectra. For the def-

initions of (symmetric) monoidal ∞-categories and ∞-operads, and their algebra

objects, we refer to [28]. The theory of stable ∞-categories is developed in [28,

Chapter 1]. We list some notation:

• S: the sphere spectrum.

• Sp: the ∞-category of spectra; we denote the smash product by ⊗.

• PSp: the full subcategory of Sp spanned by compact spectra.

• ModA: the∞-category of A-module spectra for a commutative ring spectrum A.

• PModA: the full subcategory of ModA spanned by compact objects (in ModA,

an object is compact if and only if it is dualizable, see [2]). We refer to objects

in PModA as perfect A-module (spectra).

• Fin∗: the category of pointed finite sets 〈0〉∗ = {∗}, 〈1〉∗ = {1, ∗}, . . . , 〈n〉∗ =

{1 . . . , n, ∗}, . . . . A morphism is a map f : 〈n〉∗ → 〈m〉∗ such that f(∗) = ∗.
Note that f is not assumed to be order-preserving.

• Let M⊗ → O⊗ be a fibration of ∞-operads. We denote by Alg/O⊗(M⊗) the

∞-category of algebra objects (cf. [28, 2.1.3.1]). We often write Alg(M⊗) or

Alg(M) for Alg/O⊗(M⊗). Suppose that P⊗ → O⊗ is a map of ∞-operads.

Then AlgP⊗/O⊗(M⊗) is the ∞-category of P-algebra objects.

• CAlg(M⊗): the ∞-category of commutative algebra objects in a symmetric

monoidal ∞-category M⊗ → N(Fin∗).

• CAlgR: the ∞-category of commutative algebra objects in the symmetric

monoidal ∞-category Mod⊗R where R is a commutative ring spectrum. When

R = S, we set CAlg = CAlgS.

• Mod⊗A(M⊗) → N(Fin∗): the symmetric monoidal ∞-category of A-module ob-

jects, where M⊗ is a symmetric monoidal ∞-category such that (1) the un-

derlying ∞-category admits a colimit for any simplicial diagram, and (2) its

tensor product functor M×M→M preserves colimits of simplicial diagrams

separately in each variable. Here A belongs to CAlg(M⊗) (cf. [28, 3.3.3, 4.4.2]).

Let C⊗ be a symmetric monoidal ∞-category. We usually denote by C its

underlying ∞-category. We say that an object X in C is dualizable if there exist

an object X∨ and two morphisms e : X ⊗X∨ → 1 and c : 1→ X ⊗X∨ with 1 a

unit such that the composition
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X
IdX⊗c−−−−→ X ⊗X∨ ⊗X e⊗IdX−−−−→ X

is equivalent to the identity, and

X∨
c⊗IdX∨−−−−−→ X∨ ⊗X ⊗X∨ IdX∨⊗e−−−−−→ X∨

is also equivalent to the identity. The symmetric monoidal structure of C induces

that of the homotopy category h(C). If we consider X to be an object also in h(C),
then X is dualizable in C if and only if X is dualizable in h(C). For example, for

R ∈ CAlg, compact and dualizable objects coincide in the symmetric monoidal

∞-category Mod⊗R (cf. [2]).

Let us recall the symmetric monoidal ∞-categories Ĉat
L,st

∞ and Catst
∞ (see [2,

Section 4], [28, 6.3]). Let Ĉat
L,st

∞ be the subcategory of Ĉat∞ spanned by stable

presentable ∞-categories, in which morphisms are functors which preserve small

colimits. For C,D ∈ Ĉat
L,st

∞ , FunL(C,D) is defined to be the full subcategory

of Fun(C,D) spanned by functors which preserve small colimits. Then Ĉat
L,st

∞

has a symmetric monoidal structure ⊗ : Ĉat
L,st

∞ × Ĉat
L,st

∞ → Ĉat
L,st

∞ such that

for C,D ∈ Ĉat
L,st

∞ , C ⊗ D has the following universality: there exists a functor

C × D → C ⊗ D which induces an equivalence FunL(C ⊗ D, E) ' Fun′(C × D, E)

for every E ∈ Ĉat
L,st

∞ , where the right-hand side indicates the full subcategory of

Fun(C×D, E) spanned by functors which preserve small colimits separately in each

variable. A unit is equivalent to Sp. Let Catst
∞ denote the subcategory of Cat∞

which consists of small stable idempotent complete ∞-categories. Morphisms in

Catst
∞ are functors that preserve finite colimits, that is, exact functors. There is

a symmetric monoidal structure on Catst
∞. For C,D ∈ Catst

∞ the tensor product

C ⊗ D has the following universality: there is a functor C × D → C ⊗ D which

preserves finite colimits separately in each variable, such that if E ∈ Catst
∞ and

Funfc(C ×D, E) denotes the full subcategory of Fun(C ×D, E) spanned by functors

which preserve finite colimits separately in each variable, then the composition

induces a categorical equivalence

Funex(C ⊗ D, E)→ Funfc(C × D, E)

where Funex(C ⊗ D, E) is the full subcategory of Fun(C ⊗ D, E) spanned by ex-

act functors. A unit is equivalent to PSp. An object (resp. a morphism) in

CAlg(Ĉat
L,st

∞ ) can be regarded as a symmetric monoidal stable presentable ∞-

category whose tensor operation preserves small colimits separately in each vari-

able (resp. a symmetric monoidal functor which preserves small colimits). Simi-

larly, an object (resp. a morphism) in CAlg(Catst
∞) can be regarded as a symmetric
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monoidal small stable idempotent complete ∞-category whose tensor operation

preserves finite colimits separately in each variable (resp. a symmetric monoidal

functor which preserves finite colimits). If R is a commutative ring spectrum, we

refer to an object in CAlg(Ĉat
L,st

∞ )Mod⊗R /
(resp. CAlg(Catst)PMod⊗R /

) simply as

an R-linear symmetric monoidal stable presentable ∞-category (resp. an R-linear

symmetric monoidal small stable idempotent complete ∞-category). We refer to

morphisms in CAlg(Ĉat
L,st

∞ )Mod⊗R /
(or CAlg(Catst)PMod⊗R /

) as R-linear symmet-

ric monoidal functors.

§3. Derived group schemes and ∞-categories of representations

In this section we recall the definitions of∞-categories of representations of derived

affine group schemes and the tannakization of symmetric monoidal ∞-categories.

§3.1. Derived affine group schemes G and

the ∞-categories RepG and PRepG

We recall some basic definitions of derived group schemes. We refer to [19, Ap-

pendix] for the generalities concerning derived group schemes. Roughly speaking,

the notion of derived group scheme is the direct generalization of group scheme to

derived algebraic geometry [29], [37]. Informally, a derived scheme is a geometric

object, realized as a locally ringed∞-topos, which locally looks like an affine object

SpecA where A is a commutative ring spectrum instead of the Zariski spectrum of

a usual commutative ring (depending on the situation, one may choose connective

ring spectra, simplicial rings and other variants as ring objects). In this note, we

only treat derived affine schemes and their quotients by algebraic groups, and thus

we only recall the definition of derived affine schemes. Let R be a commutative

ring spectrum. The ∞-category AffR of derived affine schemes over R is the op-

posite category of CAlgR. We shall denote by SpecA an object corresponding to

A ∈ CAlgR. From Grothendieck’s viewpoint of “functor of points”, through the

Yoneda embedding AffR ↪→ Fun(CAlgR, Ŝ), we may also consider SpecA to be a

functor CAlgR → Ŝ corepresented by A. We equip AffR with the étale topology

(see [19, Appendix]). Let Sh(AffR) denote the full subcategory of Fun(CAlgR, Ŝ)

spanned by sheaves with respect to the étale topology. It is an ∞-topos. We have

inclusions AffR ⊂ Sh(AffR) ⊂ Fun(CAlgR, Ŝ) of full subcategories. Derived stacks

are objects in Sh(AffR) which satisfy a certain geometric condition (see Section 4).

Remembering that an affine group scheme is a group object in the category

of affine schemes, we will define derived affine group schemes in a similar way. To

begin, let us recall the notion of group object in an arbitrary∞-category T having

finite products and a final object. A monoid object in T is a simplicial diagram
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M : N(∆)op → T such that for each n ≥ 0 the inclusions {i, i + 1} ↪→ [n] induce

an equivalence

M([n])→M({0, 1})× · · · ×M({n− 1, n})

and M([0]) is a final object in T . The underlying object of M is M([1]). A group

object in T is a monoid object G : N(∆)op → T such that the inclusions {0, 2} ↪→
[2] and {0, 1} ↪→ [2] induce an equivalence

G([2])→ G({0, 2})×G({0, 1}).

The ∞-category of group objects in T is the full subcategory of Fun(N(∆)op, T )

spanned by group objects. We denote it by Grp(T ). A derived affine group

scheme G is defined to be a group object in AffR, that is, a functor G : N(∆)op →
AffR satisfying the above condition. The object G([1]) in AffR is the underlying

derived affine group scheme SpecB of G. For ease of notation, we often indicate

with G = SpecB (or simply SpecB) the derived affine group scheme with the

underlying derived affine scheme SpecB (not only the underlying derived affine

scheme). The ∞-category of derived affine group schemes over R is the full sub-

category of Fun(N(∆)op,AffR) spanned by derived affine group schemes, that is,

Grp(AffR). The Yoneda embedding AffR ⊂ Fun(CAlgR, Ŝ) preserves small limits,

and thus a derived affine group scheme G : N(∆)op → AffR induces a group object

N(∆)op G−→ AffR ↪→ Fun(CAlgR, Ŝ). Using adjunctions we easily see that there is

a natural equivalence

Grp(Fun(CAlgR, Ŝ)) ' Fun(CAlgR,Grp(Ŝ)).

Consequently, one may say that a derived affine group scheme (over R) is a functor

CAlgR → Grp(Ŝ) such that the composition CAlgR → Ŝ with the forgetful functor

Grp(Ŝ) → Ŝ is represented by some derived affine scheme SpecB (here SpecB

is the underlying derived affine scheme). This description is an analogue of the

definition of group schemes as group-valued functors. If the base ring spectrum R

is the Eilenberg–MacLane spectrum Hk for a commutative ring k, and SpecC is

the usual flat affine group scheme over k, then the derived affine scheme SpecHC

over Hk is endowed with the structure of a group object in the obvious way; the

category of usual affine group schemes flat over k can be naturally regarded as

the full subcategory of the ∞-category of derived affine group schemes over Hk.

We will often regard usual flat affine group schemes over k as derived affine group

schemes over Hk.

Next we will recall the definition of the symmetric monoidal∞-category Rep⊗G.

Let G = SpecB be a derived affine group scheme over R such that B is a cosim-

plicial object φ := Gop : N(∆) → CAlgR. We here abuse notation by indicating
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with B the underlying object φ([1]) in CAlgR. Let

Θ : CAlg→ CAlg(Ĉat
L,st

∞ )

be a functor which carries A ∈ CAlg to the symmetric monoidal∞-category ModA
and sends a map A→ A′ in CAlg to a colimit-preserving symmetric monoidal base

change functor ModA → Mod′A : M 7→ M ⊗A A′ (see [19, Appendix A.6]). This

functor induces

ΘR : CAlgR ' CAlgR/ → CAlg(Ĉat
L,st

∞ )Mod⊗R /
.

Consider the composition N(∆)
φ−→ CAlgR

ΘR−−→ CAlg(Ĉat
L,st

∞ )Mod⊗R /
. We define

Rep⊗G to be the limit of this composition. We call it the symmetric monoidal

∞-category of representations of G. The underlying ∞-category is stable and

presentable. Since the forgetful functor CAlg(Ĉat
L,st

∞ )Mod⊗R /
→ Ĉat∞ is limit-

preserving, we see that the underlying ∞-category of Rep⊗G, which we denote by

RepG, is a limit of the composition N(∆)
ΘR◦φ−−−−→ CAlg(Ĉat

L,st

∞ )Mod⊗R /
→ Ĉat∞.

There is the natural symmetric monoidal functor Rep⊗G → Mod⊗R and we let PRep⊗G
be the inverse image of the full subcategory PMod⊗R. Alternatively, there is a nat-

ural categorical equivalence PRepG ' lim[n]∈∆ PModφ([n]) and PRep⊗G is a sym-

metric monoidal full subcategory of Rep⊗G spanned by dualizable objects. We call

it the symmetric monoidal ∞-category of perfect representations of G.

§3.2. ∞-categories of modules over presheaves

Let (CAlgR)op ↪→ Fun(CAlgR, Ŝ) be the Yoneda embedding, where Ŝ denotes the

∞-category of (not necessarily small) spaces, i.e. Kan complexes. We shall refer to

objects in Fun(CAlgR, Ŝ) as presheaves on CAlgR or simply functors. By left Kan

extension of ΘR, we have a colimit-preserving functor

ΘR : Fun(CAlgR, Ŝ)→ (CAlg(Ĉat∞)Mod⊗R /
)op.

Let N(∆)op G−→ (CAlgR)op ↪→ Sh(AffR) be the composition and let BG denote the

colimit. Recall ΘR(BG) = Mod⊗BG ' Rep⊗G. The second equivalence follows from

flat descent theory (see [37, II, 1.3.7.2], [29, VII, 6.13, VIII, 2.7.14]).

Let X ∈ Fun(CAlgR, Ŝ). Let PMod⊗X denote the symmetric monoidal full

subcategory of the underlying symmetric monoidal ∞-category ΘR spanned by

dualizable objects. Suppose that PMod⊗X is a small stable idempotent complete

symmetric monoidal∞-category whose tensor operation ⊗ : PModX ×PModX →
PModX preserves finite colimits separately in each variable. We refer to PMod⊗X
as the symmetric monoidal ∞-category of perfect complexes on X. We here call
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presheaves enjoying this condition admissible presheaves (functors). For example,

affine derived schemes and BG with G a derived affine group scheme are admis-

sible. Indeed, BG is described as the colimit of a simplicial affine derived scheme

a : N(∆)op → AffR and Catst
∞ ↪→ Cat∞ preserves small limits. It follows that

PModBG = PRepG ' lim[n] PModa([n]) is stable and idempotent complete, where

lim[n]∈∆ PModa([n]) is the limit of the cosimplicial diagram of ∞-categories. Let

Fun(CAlgR, Ŝ)adm be the full subcategory of Fun(CAlgR, Ŝ) spanned by admis-

sible presheaves. Applying ΘR and taking full subcategories of ΘR(X) spanned by

dualizable objects we have the functor

θR : Fun(CAlgR, Ŝ)adm → CAlg(Catst
∞)op

which carries X to PMod⊗X . We remark that by [27, 3.3.3.2, 5.1.2.2], P in

limSpecA→X PModA (SpecA → X run over (AffR)/X) is a finite colimit of a (fi-

nite) diagram I → PModX if and only if for each SpecA→ X the image of P in

PModA is a finite colimit of the induced diagram.

§3.3. Automorphisms

Let us review the automorphism group of a symmetric monoidal functor. Let C⊗ be

a symmetric monoidal small∞-category. We write C for its underlying∞-category.

Let θC⊗ : CAlg(Cat∞) → S be the functor corresponding to C⊗ via the Yoneda

embedding CAlg(Cat∞)op ⊂ Fun(CAlg(Cat∞),S). We denote the restriction of θ̄R
to AffR by θR. Then the composite

ξ : CAlgR
θop
R−−→ CAlg(Cat∞)

θC⊗−−→ S

carries A to the space equivalent to Map⊗(C⊗,PMod⊗A). Here if A⊗ and B⊗

are symmetric monoidal small ∞-categories, we write Map⊗(A⊗,B⊗) for

MapCAlg(Cat∞)(A⊗,B⊗).

Let ω : C⊗ → PMod⊗R be a symmetric monoidal functor. For any A ∈ CAlgR,

one has the composite

ωA : C⊗ ω−→ PMod⊗R → PMod⊗A,

where the second functor is the base change by R→ A. Consequently, we can asso-

ciate to each A ∈ CAlgR the map bA : ∆0 → Map⊗(C⊗,PMod⊗A) corresponding to

the composite ωA. If S∗ denotes the∞-category of pointed spaces, that is, S∆0/, we

can extend ξ to ξ∗ : CAlgR → S∗ that carries A to ∆0 → Map⊗(C⊗,PMod⊗A). The

ξ∗ is constructed as follows: LetM→ CAlgR be a left fibration corresponding to ξ.

Extending ξ to ξ∗ amounts to giving a section CAlgR → M of the left fibration

M→ CAlgR, that is, a map from the “trivial” left fibration CAlgR → CAlgR to

M→ CAlgR (over CAlgR). According to [27, 3.3.3.4] there is a natural categorical
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equivalence

L := lim
A∈CAlgR

Map⊗(C⊗,PMod⊗A) ' Map
(Ĉat∞)/CAlgR

(CAlgR,M).

Thus a section CAlgR →M corresponds to an object in L. If lim PMod⊗A denotes

the limit of θ̄op
R : CAlgR → CAlg(Cat∞), then L and Map⊗(C⊗, lim PMod⊗A) are

equivalent as ∞-categories (or equivalently spaces). The natural functor PMod⊗R
∼−→ lim PMod⊗A induces p : Map⊗(C⊗,PMod⊗R) → Map⊗(C⊗, lim PMod⊗A) ' L.

The image p(ω) in L gives rise to a section CAlgR →M. Consequently, we have ξ∗ :

CAlgR → S∗ which extends ξ. We define Aut(ω) to be the composite CAlgR
ξ∗−→

S∗
Ω∗−−→ Grp(S), where the second functor is the based loop functor. The functor

Aut(ω) sends A to the base loop space of Map⊗(C⊗,PMod⊗A) equipped with the

base point bA. The base loop space can be thought of as the “automorphism

group space” of ωA. We refer to Aut(ω) as the automorphism group functor of

ω : C⊗ → PMod⊗R.

§3.4. Tannakization

We recall one of the main results of [19, Section 4].

Theorem 3.1. Let C⊗ be a symmetric monoidal small ∞-category. Let ω : C⊗ →
PMod⊗R be a symmetric monoidal functor. There exists a derived affine group

scheme G over R which represents the automorphism group functor Aut(ω). More-

over, there is a symmetric monoidal functor u : C⊗ → PRep⊗G which makes the

outer triangle in
PRep⊗G

��
forget

��

PRep⊗H

forget $$
C⊗

<<
u

EE

ω
// PMod⊗R

commute in the ∞-category of symmetric monoidal ∞-categories such that these

have the following universality: for any inner triangle consisting of solid arrows in

the above diagram where H is a derived affine group scheme, there exists a unique

(in an appropriate sense) morphism f : H → G of derived affine group schemes

which induces PRep⊗G → PRep⊗H (indicated by the dotted arrow) filling the above

diagram.

We usually refer to G as the tannakization of ω : C⊗ → PMod⊗R. (In this note,

we do not use this theorem in an essential way.)
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Remark 3.2. We here make a remark on why the usual affine group schemes are

not sufficient for our purpose. Many readers might find the appearance of derived

affine groups unpleasant, since they are familiar with algebraic groups, but not

with derived groups. Our point of view is different: rather, derived affine group

schemes are natural objects. To explain this, recall that in the light of classical

Tannaka duality, an affine group scheme G over a field corresponds to a neutral

Tannakian category A, i.e., a symmetric monoidal abelian category satisfying cer-

tain conditions. Namely, the symmetric monoidal stable ∞-category arising from

G is the derived ∞-category of A, that is, a natural ∞-categorical enhancement

of the derived category of A. On the other hand, there are a lot of important sym-

metric monoidal stable∞-categories which are not derived∞-categories of abelian

categories. The ∞-category of spectra is such an example. Put another way, if we

denote by Hk the Eilenberg–MacLane spectrum of a field k, then there are many

examples of symmetric monoidal functors C⊗ → PMod⊗Hk whose automorphism

groups are not representable by affine group schemes over k. For example, let A be

a free commutative differential graded algebra generated by the shifted nonzero k-

vector space V [−2] over a field k of characteristic zero, and put C⊗ := PMod⊗A. The

natural augmentation A → k induces a base change symmetric monoidal functor

f : PMod⊗A → PMod⊗Hk, but one can prove that f has nontrivial higher automor-

phisms (moreover, f is conservative, that is, f(M) ' 0 implies M ' 0). Hence

Aut(f) is not representable by an affine group scheme. Intuitively, derived affine

group schemes also take account of higher automorphisms, i.e., automorphisms

between automorphisms, and automorphisms of them and so on (furthermore,

derived affine group schemes consist of data of derived deformations of automor-

phisms of fiber functors, but we will not explain what derived deformations are).

Even in the case when C⊗ is conjecturally expected to be the derived ∞-

category of a symmetric monoidal abelian category, the notion of derived affine

group scheme will play a useful role in the procedure of tannakization.

§4. Automorphisms of fiber functors

Let Y be a derived stack over R (we fix our conventions below) and PMod⊗Y
the ∞-category of perfect complexes on Y , which we regard as an object in

CAlg(Catst
∞)PMod⊗R /

. Let SpecR → Y be a section of the structure morphism

Y → SpecR. There is the pullback functor PMod⊗Y → PMod⊗R in CAlg(Catst
∞). In

this section, we study the automorphisms of this functor. Our goal is Theorem 4.8

and Corollary 4.9.

We start with our setup of derived stacks. A sheaf Y : CAlgR → Ŝ is said to

be a derived stack over R if there exists a groupoid object Y• : N(∆)op → AffR
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(cf. [19, Definition A.2]) such that Y is equivalent to the colimit of the composite

N(∆)op → AffR → Sh(AffR).

When Y is a colimit of a simplicial diagram Y•, we refer to Y• as a simplicial

covering for Y .

Our definition of derived stacks is different from standard ones (compare [37],

[29]; for example we do not assume that the natural morphism Y•([0]) → Y is

smooth or étale). We note that our derived stacks are admissible functors.

Example 4.1. We present quotient stacks arising from the action of a derived

affine group scheme on an affine scheme as examples of derived stacks. Let F :

N(∆)op → AffR be a groupoid object, which we regard as a derived stack. Let

G : N(∆)op → AffR be a group object, that is, a derived affine group scheme. Let

F → G be a morphism (i.e., natural transformation) which induces a cartesian

diagram
F ([n]) //

��

F ([m])

��
G([n]) // G([m])

in AffR for each [m] → [n]. If we write X for F ([0]), then we can think that

the morphism F → G with the above property means an action of G on X.

In this situation, we say that G acts on X and denote by [X/G] the colimit of

N(∆)op F−→ AffR ↪→ Sh(AffR). We refer to [X/G] as the quotient stack. We can

think of BG as the quotient stack [SpecR/G] where G acts trivially on SpecR.

Let π : SpecR → Y denote a fixed morphism. Let π∗ : Mod⊗Y → Mod⊗R be

the associated symmetric monoidal functor which preserves small colimits. Since

ModY and ModR are presentable, by the adjoint functor theorem (see [27, 5.5.2.9])

there is a right adjoint functor π∗ : ModR → ModY . Moreover, according to [28,

8.3.2.6] the right adjoint functor extends to a right adjoint functor relative to

N(Fin∗) (see [28, 8.3.2.2])

Mod⊗R

$$

// Mod⊗Y

zz
N(Fin∗)

It yields a right adjoint functor

CAlg(Mod⊗R)→ CAlg(Mod⊗Y )

of the functor CAlg(Mod⊗Y )→ CAlg(Mod⊗R) determined by π∗.
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Let φ : N(∆)→ CAlgR be a cosimplicial diagram such that Y• : N(∆)op φop

−−→
AffR ↪→ Sh(AffR) is a simplicial covering for Y . In the argument below, we use the

following properties:

• Yn ×Y SpecR belongs to AffR where Yn = Y•([n]) for n ≥ 0,

• SpecR×Y SpecR belongs to AffR.

These are special cases of the more general fact that for any two morphisms

SpecA → Y and SpecB → Y , the fiber product SpecA ×Y SpecB is affine. To

see this, we note that Y1 ' Y0×Y Y0 is affine. Since Y0 → Y is an effective epimor-

phism, taking suitable étale coverings SpecA′ → SpecA and SpecB′ → SpecB

we have a derived affine scheme SpecA′ ×Y SpecB′. By the étale local character

of affine representability [37, II, 1.3.2.8, 2.4.1.8], we see that SpecA ×Y SpecB

belongs to AffR.

Next recall from Section 3.1 the functor ΘR : CAlgR → CAlg(Ĉat
L,st

∞ )Mod⊗R /
.

Note that by definition Mod⊗Y is a limit of the composition φ′′ : N(∆)
φ−→ CAlgR

ΘR−−→ CAlg(Ĉat
L,st

∞ )Mod⊗R /
→ CAlg(Ĉat

L,st

∞ ) where the last functor is the forget-

ful functor. Let p : Mφ′ → N(∆) be the coCartesian fibration corresponding

to the composition φ′ : N(∆)
φ′′−−→ CAlg(Ĉat

L,st

∞ ) → Ĉat∞ where the last func-

tor is the forgetful functor. We denote by Fun′N(∆)(N(∆),Mφ′) the full subcat-

egory of FunN(∆)(N(∆),Mφ′) spanned by those sections N(∆) → Mφ′ which

carry all edges of N(∆) to p-coCartesian edges. Then by [27, 3.3.3.2], ModY is

equivalent to Fun′N(∆)(N(∆),Mφ′) as ∞-categories. Consider the base change of

N(∆)op φop

−−→ AffR ↪→ Sh(AffR), where the second functor is the Yoneda embed-

ding, by π : SpecR → Y . Let Yn = φop([n]) ∈ AffR for each [n] ∈ ∆. The n-th

term of this base change τ : N(∆)op → Sh(AffR) is equivalent to Yn ×Y SpecR,

and in particular it factors through AffR ⊂ Fun(CAlgR, Ŝ). Taking the opposite

categories we have ψ : N(∆) → CAlgR. Note that SpecR is a colimit of τ since

in the ∞-topos Sh(AffR) colimits are universal (see [27, Chapter 6]). Thus the

natural transformation ψop → φop induces π : SpecR→ Y , and we can informally

depict our situation as follows:

· · ·
//
//// Y1 ×Y SpecR

��

//
//oooo Y0 ×Y SpecRoo

��

// SpecR

π

��
· · ·

//
//// Y1oooo

//
// Y0

oo // Y

(here ψop, φop : N(∆)op → AffR). We define ψ′ : N(∆) → Ĉat∞ in the same

way that we define φ′, and we let q : Mψ′ → N(∆) be the coCartesian fibration
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corresponding to ψ′. The natural transformation φ → ψ corresponds to a map

between coCartesian fibrationsMφ′ →Mψ′ over N(∆), which carries coCartesian

edges to coCartesian edges. Again by [28, 8.3.2.6] there is a right adjoint functor

Mψ′ →Mφ′ of Mφ′ →Mψ′ relative to N(∆). Let us observe the following:

Lemma 4.2. The map Mψ′ →Mφ′ of coCartesian fibrations over N(∆) carries

q-coCartesian edges to p-coCartesian edges.

Proof. It suffices to show that if for any map r : [m] → [n] in ∆ we write the

diagram induced by ψop → φop as

Yn ×Y SpecR
a //

b

��

Ym ×Y SpecR

c

��
Yn

d // Ym

then the natural base change morphism d∗ ◦ c∗ → b∗ ◦ a∗ is an equivalence. This

follows from [2, Lemma 3.14].

Let

α : Fun′N(∆)(N(∆),Mφ′) � Fun′N(∆)(N(∆),Mψ′) : β

be functors induced by the adjunction Mφ′ �Mψ′ , where Fun′N(∆)(N(∆),Mφ′)

is the full subcategory of FunN(∆)(N(∆),Mφ′) spanned by those sections which

carry all edges to coCartesian edges, and we define Fun′N(∆)(N(∆),Mφ′) in a

similar way. Note that by [27, 3.3.3.2],

Fun′N(∆)(N(∆),Mφ′) ' ModY and Fun′N(∆)(N(∆),Mψ′) ' ModR,

and Fun′N(∆)(N(∆),Mφ′) → Fun′N(∆)(N(∆),Mψ′) is equivalent to π∗ : ModY →
ModR as functors. Then observe that the pair (α, β) forms an adjunction. Namely,

MapFun′
N(∆)

(N(∆),Mψ′ )
(α(a), b) ' lim

[n]∈∆
Mapψ′([n])(α(an), bn)

→ lim
[n]∈∆

Mapφ′([n])(β(α(an)), β(bn))

x−→ lim
[n]∈∆

Mapφ′([n])(an, β(bn))

' MapFun′
N(∆)

(N(∆),Mφ′ )
(a, β(b))

is an equivalence in S, where an (resp. bn) is the projection of a (resp. b) to φ′([n])

(resp. ψ′([n])) and x is induced by the unit map of the adjunction Mφ′ �Mψ′ .

(The fiber of the adjunction Mφ′ � Mψ′ over each object of N(∆) forms an

adjunction.) Notice that FunN(∆)(N(∆),Mψ′) → FunN(∆)(N(∆),Mφ′) and π∗ :

ModR → ModY are equivalent as functors. Consequently, we have
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Lemma 4.3. Let

Yn ×Y SpecR
sn //

πn

��

SpecR

π

��
Yn

tn // Y

be the pullback diagram induced by ψop([n]) → φop([n]). Then the natural base

change morphism (tn)∗ ◦ π∗ → (πn)∗ ◦ (sn)∗ is an equivalence of functors from

ModR to ModYn .

Corollary 4.4. Abusing notation, write (tn)∗ ◦π∗ → (πn)∗ ◦ (sn)∗ for the natural

base change morphism from CAlg(Mod⊗R) to CAlg(Mod⊗Yn) which is determined

by adjunctions (π∗, π∗) and ((πn)∗, (πn)∗) relative to N(Fin∗). Then (tn)∗ ◦ π∗ →
(πn)∗ ◦ (sn)∗ is an equivalence of functors.

Let 1R be a unit of ModR which we here regard as an object in CAlgR =

CAlg(ModR). Then there is a lax symmetric monoidal functor Mod⊗R →
Mod⊗π∗1R(Mod⊗Y ) of symmetric monoidal ∞-categories induced by π∗, by the

construction of the ∞-operad of module objects [28, 3.3.3.8]. For the notation

Mod⊗π∗1R(Mod⊗Y ), see Section 2.

Lemma 4.5. The functor Mod⊗R → Mod⊗π∗1R(Mod⊗Y ) is a symmetric monoidal

equivalence.

Proof. We first observe that Mod⊗R → Mod⊗π∗1R(Mod⊗Y ) is symmetric monoidal.

Since it is lax symmetric monoidal, by Lemma 4.3 we are reduced to showing the

following obvious claim: for a morphism x : SpecA → SpecB of affine derived

schemes and M,N ∈ ModA, the natural map x∗(M) ⊗A x∗(N) → x∗(M ⊗A N)

is an equivalence, where x∗ : ModA → ModA(Mod⊗B) is the natural pushforward

functor.

We now adopt notation similar to Lemma 4.3. By the natural equivalence

(tn)∗ ◦ π∗1R ' (πn)∗ ◦ (sn)∗1R in view of the above result, we have

(πn)∗ : Modψ([n]) = ModYn×Y SpecR ' Mod(πn)∗◦(sn)∗1R(Mod⊗φ([n]))

' Mod(tn)∗◦π∗1R(Mod⊗φ([n]))

for each n. Then we identify ModR → Modπ∗1R(Mod⊗Y ) with the limit

lim
[n]∈∆

Modψ([n]) ' lim
[n]∈∆

ModYn×Y SpecR ' lim
[n]∈∆

Mod(tn)∗◦π∗1R(Mod⊗φ([n])),

which is an equivalence in Ĉat∞. It follows that Mod⊗R → Mod⊗π∗1R(Mod⊗Y ) is a

symmetric monoidal equivalence.
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Let Aut(π∗) : CAlgR → Grp(Ŝ) be the automorphism group functor of π∗

(defined as in the previous section), which carries A ∈ CAlgR to the automor-

phisms of the composition Mod⊗Y → Mod⊗R → Mod⊗A in CAlg(Ĉat
L,st

∞ ) where the

second functor is the base change by R→ A.

Let ∆+ be the category of finite (possibly empty) linearly ordered sets and we

write [−1] for the empty set. Let ι : ∆1 → N(∆+) be a map which carries {0} and

{1} to [−1] and [0] respectively. It is a fully faithful functor. Let (∆1)op → Sh(AffR)

be the map corresponding to π : SpecR → Y . Let ρ : N(∆+)op → Sh(AffR) be

a right Kan extension along ιop : (∆1)op → N(∆+)op; ρ is called the Čech nerve

(cf. [27, 6.1.2.11]). By our assumption, for each n ≥ 0, ρ([n]) belongs to AffR and

the restriction of ρ to N(∆)op is a derived affine group scheme which we denote

by Gπ. By the definition of Gπ and Mod⊗Gπ , we see that π∗ : Mod⊗Y → Mod⊗R
factors through the forgetful functor Rep⊗Gπ → Mod⊗R. Note that the derived group

scheme Gπ : (AffR)op → Grp(S) represents the automorphism group Aut(π) :

CAlgR → Grp(S) of π : SpecR → Y . Here for any A ∈ CAlgR, Aut(π)(A) is

the mapping space in MapFun(CAlgR,Ŝ)(SpecA, Y ) from SpecA → SpecR
π−→ Y

to itself, endowed with the group structure (the construction is similar to that of

Aut(ω) in the previous section). We have the natural morphism Gπ ' Aut(π) →
Aut(π∗).

Proposition 4.6. The natural morphism Gπ → Aut(π∗) is an equivalence, that

is, Aut(π∗) is represented by Gπ.

Proof. For simplicity, let G := Gπ. Let G1 : CAlgR → Ŝ and (resp. Aut(π∗)1) be

the composite of G : CAlgR → Grp(Ŝ) (resp. Aut(π∗)) and the forgetful functor

Grp(Ŝ) → Ŝ. For each A ∈ CAlgR, it will suffice to show that the induced map

G1(A)→ Aut(π∗)1(A) is an equivalence in Ŝ.

For A ∈ CAlgR, let πA : SpecA → SpecR → Y denote the composition. Let

1A be the unit of ModA which we here think of as an object of CAlg(Mod⊗A).

Applying [28, 6.3.5.18] together with Lemma 4.5 and adjunction we deduce

Map
CAlg(Ĉat

L,st

∞ )
Mod
⊗
Y
/

(Mod⊗A,Mod⊗A)'MapCAlg(Mod⊗Y )((πA)∗1A, (πA)∗1A)

'MapCAlg(ModA)((πA)∗(πA)∗1A,1A).

Unwinding the definitions we have

MapCAlg(ModA)((πA)∗(πA)∗1A,1A) ' Map(Aff)/SpecA
(SpecA,SpecA×Y SpecA)

' Map(Aff)/SpecA
(SpecA,G1 ×R A×R A)

' MapAff/Y
(SpecA,SpecA)
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where G1 is SpecR×Y SpecR ' ρ([1]), and G1×RA×RA→ SpecA ∈ (Aff)/SpecA

is the second projection. Note that through natural equivalences a morphism

SpecA→ SpecA over Y, which we regard as an object of MapAff/Y
(SpecA,SpecA),

induces a symmetric monoidal functor Mod⊗A → Mod⊗A under Mod⊗Y which we

think of as an object of CAlg(Ĉat
L,st

∞ )Mod⊗Y /
.

Next using the natural equivalence

Map
CAlg(Ĉat

L,st

∞ )
Mod
⊗
Y
/

(Mod⊗A,Mod⊗A) ' MapAff/Y
(SpecA,SpecA)

we consider the automorphisms of π∗. To this end let TA be the fiber product

MapAff/Y
(SpecA,SpecA)×MapAff (SpecA,SpecA) {IdSpecA}

in Ŝ where the diagram is induced by the forgetful functor

MapAff/Y
(SpecA,SpecA)→ MapAff(SpecA,SpecA).

Similarly, we define SA to be the fiber product

Map
CAlg(Ĉat

L,st

∞ )
Mod
⊗
Y
/

(Mod⊗A,Mod⊗A)×Map
CAlg(Ĉat

L,st
∞ )

(Mod⊗A ,Mod⊗A) {Id}

in Ŝ, which is equivalent to TA. There are natural equivalences

TA 'Map′(Aff)/SpecA
(SpecA,G1 ×R A×R A)

'Map(Aff)/SpecA
(SpecA,G1 ×R A) ' MapAff(SpecA,G1)

in Ŝ where Map′(Aff)/SpecA
(SpecA,G1 ×R A×R A) is the fiber product

Map(Aff)/SpecA
(SpecA,G1 ×R A×R A)×MapAff (SpecA,SpecA) {IdSpecA}

in Ŝ where the diagram is induced by the projection pr3 : G1 ×R A ×R A →
SpecA. Thus we have an equivalence MapAff(SpecA,G1) ' SA. Hence we have

the required equivalence G1(A) ' Aut(π∗)1(A).

Let C⊗,D⊗ ∈ CAlg(Ĉat
L,st

∞ ). Suppose that C is compactly generated, that is,

the natural colimit-preserving functor Ind(C◦) → C is a categorical equivalence,

and ⊗ : C × C → C induces C◦ × C◦ → C◦, which makes C◦ a symmetric monoidal

∞-category, where C◦ is the full subcategory of compact objects in C and Ind(−)

indicates the Ind-category (see [27, 5.3.5]). Note that under this assumption, a

unit object is compact. Recall the following result which follows from [27, 5.3.6.8]

and [28, 6.3.1.10].
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Proposition 4.7. Let Map⊗,L(C⊗,D⊗) be Map
CAlg(Ĉat

L,st

∞ )
(C⊗,D⊗), and let

Map⊗,ex(C⊗◦ ,D⊗) be the full subcategory of Map
CAlg(Ĉat∞)

(C⊗◦ ,D⊗) spanned by

symmetric monoidal functors which preserve finite colimits. The natural inclusion

C⊗◦ → C⊗ induces an equivalence

Map⊗,L(C⊗,D⊗)→ Map⊗,ex(C⊗◦ ,D⊗)

in Ŝ.

Let us recall the definition of perfectness of stacks introduced by Ben-Zvi,

Francis, and Nadler in their work on derived Morita theory [2] (this notion is also

important to our previous paper [13]). We say that a derived stack Y is perfect

if the natural functor Ind(PModY ) → ModY is a categorical equivalence. As a

corollary of the results of this section, we have:

Theorem 4.8. Let Y be a perfect derived stack over R, and π : SpecR→ Y a sec-

tion of the structure morphism Y → SpecR. Let π∗ : Mod⊗Y → Mod⊗R be the mor-

phism in CAlg(Ĉat
L,st

∞ ) induced by π : SpecR → Y , and π∗◦ : PMod⊗Y → PMod⊗R
its restriction which belongs to CAlg(Catst

∞). Let Aut(π∗◦) : CAlgR → Grp(S) be

the automorphism functor of π∗◦. Then the restriction induces an equivalence of

functors Aut(π∗) → Aut(π∗◦). In particular, the tannakization of π∗◦ : PMod⊗Y →
PMod⊗R is equivalent to Gπ (see the setup before Proposition 4.6 for the nota-

tion Gπ).

Proof. Combine Propositions 4.6 and 4.7.

Corollary 4.9. Let Y be a derived stack over R equipped with π : SpecR→ Y as

in Theorem 4.8. Suppose that either

(i) Y belongs to AffR, or

(ii) Y = [X/G] is the quotient stack (see Example 4.1) where G is an affine group

scheme of finite type over a field k of characteristic zero, which we regard as

a derived affine group scheme over R = Hk, and we suppose that G acts on

X ∈ AffR.

Then the tannakization of π∗◦ : PMod⊗Y → PMod⊗R is equivalent to Gπ.

Proof. According to Proposition 4.6 and Theorem 4.8, it will suffice to show that

Y is perfect, that is, the natural functor Ind(PModY ) → ModY is a categorical

equivalence. This follows from [2, 3.19, 3.22].
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§5. Bar constructions

This section contains no new result. We review the relation between bar construc-

tions and case (i) of Corollary 4.9. Let A ∈ CAlgR and let s : R → A be the

natural morphism in CAlgR (note that R is an initial object in CAlgR). Suppose

that t : A → R is a cosection of s, that is, t ◦ s is equivalent to the identity

of R. Recall that ∆+ is the category of finite (possibly empty) linearly ordered

sets and we write [−1] for the empty set. Let ι : ∆1 → N(∆+) be the map which

carries {0} and {1} to [−1] and [0] respectively. It is a fully faithful functor. Let

f : ∆1 → CAlgR be the map corresponding to A→ R. Since CAlgR admits small

colimits, there is a left Kan extension

g : N(∆+)→ CAlgR

of f along ι. We refer to gop : N(∆+)op → AffR as the Čech nerve of fop :

(∆1)op → AffR. This construction is called the bar construction for t : A → R.

The underlying simplicial object N(∆)op → N(∆+)op → AffR is a group object.

Let G be a derived affine group scheme corresponding to the simplicial object.

Let t∗◦ : PMod⊗A → PMod⊗R be the morphism in CAlg(Catst
∞)PMod⊗R /

. Case (i)

of Corollary 4.9 says:

Theorem 5.1. Aut(t∗◦) is represented by G.

Remark 5.2. For the readers who are familiar with commutative differential

graded algebras (dg-algebras for short), we relate the bar construction of com-

mutative dg-algebras to G. Let k be a field of characteristic zero. Let dgak be the

category of commutative dg-algebras over k (cf. [16]). A morphism P • → Q• in

dgak is a weak equivalence (resp. fibration) if it induces a bijection Hn(P •) →
Hn(Q•) for each n ∈ Z (resp. Pn → Qn is a surjective morphism of k-vector

spaces for each n ∈ Z). There is a model category structure on dgak whose

weak equivalences and fibrations are defined in this way (see [16, 2.2.1]). Let

N(dgack)∞ be the ∞-category obtained from the full subcategory dgack spanned

by cofibrant objects by inverting weak equivalences (see [28, 1.3.4.15]). Accord-

ing to [28, 8.1.4.11], there is a categorical equivalence N(dgack)∞ ' CAlgHk. Let

R = Hk and let t : A → k be an augmentation in dgak. Abusing notation, we

denote by t : A → R the induced morphism in CAlgR. The underlying derived

scheme of G is the fiber product SpecR ×SpecA SpecR in AffR. By this equiva-

lence, the pushout R⊗A R in CAlgR corresponds to a homotopy pushout k ⊗L
A k

in the model category dgak, which is weak equivalent to a homotopy pushout

A⊗L
A⊗kA k of
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A⊗k A
t⊗t //

m

��

k

A

where m is multiplication. We will review the construction of the concrete model

of a homotopy pushout A ⊗L
A⊗kA k in dgak, which is known as the bar construc-

tion of a commutative dg-algebra (see for example [31], [36]). Consider the adjoint

pair

T : dgak,A/ � dgak,A⊗kA/ : U

where U is the forgetful functor induced by A → A ⊗k A, x 7→ x ⊗ 1, and T is

given by M 7→ M ⊗A (A ⊗k A). Let α : Id → UT and β : TU → Id be the unit

map and counit map respectively. To an object C ∈ dgak,A⊗kA/ one associates a

simplicial diagram (T,U)•(C) in dgak,A/ as follows: Define

(T,U)n(C) = (TU)◦(n+1)(C) = (TU) ◦ · · · ◦ (TU)(C)

(an (n+ 1)-fold composition). For 0 ≤ i ≤ n+ 1,

di : (T,U)n+1(C) = (TU)◦i ◦ (TU) ◦ (TU)◦(n+1−i)(C)

→ (TU)◦i ◦ Id ◦ (TU)◦(n+1−i)(C) = (T,U)n(C)

is induced by β in the middle term. For 0 ≤ i ≤ n,

si : (T,U)n(C) = (TU)◦i ◦ T ◦ Id ◦ U ◦ (TU)◦(n−i)(C)

→ (TU)◦i ◦ T ◦ (UT ) ◦ U ◦ (TU)◦(n−i)(C) = (T,U)n+1(C)

is induced by α : Id → (UT ) in the middle term. Let us consider A to be

an object in dgak,A⊗kA/ via m : A ⊗k A → A. Then by the above construc-

tion we obtain the simplicial object (T,U)•(A) ⊗A⊗kA k in dgak. Its totalization

tot((T,U)•(A) ⊗A⊗kA k) ∈ dgak, which we call the bar complex, represents the

homotopy pushout A⊗L
A⊗kA k.

Let us explain how usual bar constructions (which are computable by means

of bar spectral sequences) appear in applications we have in mind. A typical ap-

plication of Corollary 4.9 goes as follows: Given a symmetric monoidal stable

(presentable) ∞-category C⊗ we first show that C⊗ is equivalent to Mod⊗X where

X is a quotient stack of the form [SpecA/G]. It is natural to have such a pre-

sentation when we deal with ∞-categories of tannakian nature (e.g., see the next

section, or [20]). Suppose that they are all defined over Hk. If ω : C⊗ → Mod⊗Hk
is a symmetric monoidal (colimit-preserving) functor, we can construct a point
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π : SpecHk → [SpecA/G] such that ω can be identified with the pullback func-

tor π∗ : Mod⊗X → Mod⊗Hk. Then we apply Corollary 4.9 to deduce that Aut(ω)

is representable by Gπ. In many interested cases, we can further take a point π̃ :

SpecHk → SpecA such that π decomposes into SpecHk
π̃−→ SpecA→ [SpecA/G]

where the second morphism is the natural projection. This gives rise to a fiber se-

quence (pullback square) of derived affine group schemes

Gπ̃ //

��

Gπ

��
SpecHk // G

When k is the field of characteristic zero and we regard A as a commutative

differential graded algebra, Gπ̃ = SpecHk ⊗A Hk can be described by the bar

complex tot((T,U)•(A)⊗A⊗kA k).

§6. Mixed Tate motives

In this section, as an application of the results we have proved, in particular

Theorem 4.8 and Corollary 4.9, we will describe the tannakization of the stable

∞-category of mixed Tate motives equipped with the realization functor as the

Gm-equivariant bar construction of a commutative dg-algebra. The main goal of

this section is Theorem 6.12. We emphasize that we do not assume the Beilinson–

Soulé vanishing conjecture. In what follows, we often use model categories. Our

references for them are [18] and [27, Appendix].

§6.1. Review of the ∞-category of mixed motives

Let K be a field of characteristic zero. Let A be the abelian category of K-

vector spaces. We equip the category of complexes of K-vector spaces, denoted

by Comp(A), with the projective model structure, in which weak equivalences are

quasi-isomorphisms, and fibrations are degreewise surjective maps (cf. e.g. [18,

Section 2.3], [27, Appendix], [6]).

Let k be a perfect field. Let DMeff(k) be the category of complexes of A-

valued Nisnevich sheaves with transfers (see [30] and [9]). For a smooth scheme X

separated of finite type over k, we denote by L(X) the A-valued Nisnevich sheaf

with transfer which is represented by X (cf. [30, p. 15]). We equip DMeff(k) with

the symmetric monoidal model structure in [6, Example 4.12]. The triangulated

subcategory of the homotopy category of this model category DMeff(k), spanned by

right bounded complexes, is equivalent to the triangulated category DMeff,−
Nis (k,K)

constructed in [30, Lecture 14].
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The pointed algebraic torus Spec(k) → Gm over k induces a split monomor-

phism L(Spec(k))→ L(Gm) in DMeff(k). Then we define K(1) to be

Coker
(
L(Spec(k))→ L(Gm)

)
[−1].

Let DM(k) be the category of symmetric K(1)-spectra in (DMeff(k))S (cf. [6,

Section 7]) which is endowed with a symmetric monoidal model structure in [6,

Example 7.15]. Then we have a sequence of left Quillen symmetric monoidal func-

tors

Comp(A)→ DMeff(k)
Σ∞−−→ DM(k),

where the first functor sends the unit to L(Spec(k)), and the second is the infinite

suspension functor.

Recall the localization method in [28, 1.3.4.1, 1.3.1.15, 4.1.3.4] (see also [12],

[19, Section 5]); it associates to any (symmetric monoidal) model category M
a (symmetric monoidal) ∞-category N(Mc)∞. Here Mc is the full subcategory

spanned by cofibrant objects (this restriction is due to a technical reason in the

construction of symmetric monoidal ∞-categories). We shall refer to the associ-

ated (symmetric monoidal) ∞-category as the (symmetric monoidal) ∞-category

obtained from the model category M by inverting weak equivalences. Applying

this localization, we obtain symmetric monoidal functors of symmetric monoidal

∞-categories

Mod⊗HK ' N(Comp(A)c)∞ → N(DMeff(k)c)∞ → N(DM(k)c)∞

where the first equivalence follows from [28, 8.1.2.13]. Here HK denotes the

Eilenberg–MacLane spectrum. We shall write DM and DMeff for N(DM(k)c)∞
and N(DMeff(k)c)∞ respectively. When we wish to indicate that DM is a symmet-

ric monoidal ∞-category, we denote it by DM⊗. The functor Mod⊗HK → DM⊗ is

considered to be an HK-linear structure. For our proof of Theorem 6.12, the HK-

structure is not needed. But HK-linear structures are useful in other situations,

thus we will take into accout such structures in some lemmata and propositions. In

[19, Section 5] we have constructed another symmetric monoidal stable presentable

∞-category Sp⊗Tate(HK) by using the recipe in [7] and [32]. We do not recall the

construction; we just mention that there is an equivalence DM⊗ ' Sp⊗Tate(HK)

(cf. [28, Remark 6.6]).

It should be emphasized that there are several (quite different but equivalent)

constructions of the category of mixed motives as differential graded categories

and model categories. One can obtain ∞-categories from differential graded cat-

egories and model categories. In our work, it is important to treat “the category

of mixed motives” as a symmetric monoidal ∞-category, and therefore we choose

the symmetric monoidal model category DM(k) constructed by Cisinski–Déglise.
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§6.2. ∞-category of mixed Tate motives

Let us recall the stable ∞-category of mixed Tate motives. We also denote by

K(1) the image of K(1) ∈ DMeff(k) in DM(k). It is a cofibrant object and K(1)

can be regarded as an object in the ∞-category DM. There exists the dual object

of K(1) in DM, which we will denote by K(−1). Let DTM be the presentable

stable subcategory generated by K(1)⊗n = K(n) for n ∈ Z, where K(1)⊗n is the

n-fold tensor product in DM⊗. Namely, DTM is the smallest stable subcategory in

DM, which admits coproducts (thus all small colimits) and contains K(n) for all

n ∈ Z. The tensor product functor ⊗ : DM × DM → DM preserves small colimits

and translations (suspensions and loops) separately in each variable, and thus

the symmetric monoidal structure of DM induces a symmetric monoidal structure

on DTM. We denote by DTM⊗ the resulting symmetric monoidal stable presentable

∞-category. Note that the inclusion DTM ↪→ DM preserves small colimits. Let

DTMgm be the smallest stable subcategory containing K(n) for n ∈ Z. Since

K(n) is compact in DM for every n ∈ Z, every object in DTMgm is compact

in DM. Let Ind(DTMgm) → DTM be a (colimit-preserving) left Kan extension

of DTMgm → DTM, which is fully faithful by [27, 5.3.5.11]. Hence it identifies

Ind(DTMgm) with DTM. The symmetric monoidal functor Mod⊗HK → DM⊗ factors

through DTM⊗ ⊂ DM⊗ since DTM⊗ ↪→ DM⊗ preserves small colimits, and DTM

contains the unit of DM. The factorization Mod⊗HK → DTM⊗ ↪→ DM⊗ is regarded

as a map in CAlg(Ĉat
L,st

∞ )Mod⊗HK /
, which we also denote by DTM⊗ ↪→ DM⊗.

Lemma 6.1. Let DTM∨ be the full subcategory of DTM⊗ spanned by dualizable

objects. Let DTM◦ be the full subcategory of DTM spanned by compact objects.

Then DTM◦ = DTM∨.

Proof. Observe that every object in DTM∨ is compact in DTM. To see this, it

is enough to show that the unit object of DTM⊗ is compact (cf. [7, 2.5.1]). This

follows from [7, Theorem 2.7.10]. For any n ∈ Z, K(n) belongs to DTM∨. Therefore

DTMgm ⊂ DTM∨ ⊂ DTM◦. Notice that DTMgm ⊂ DTM◦ can be viewed as an

idempotent completion (see e.g. [5, Lemma 2.14]). Moreover DTM is idempotent

complete by [27, 4.4.5.16]. It will suffice to prove that the inclusion DTM∨ ⊂
DTM is closed under retracts. This easily follows from the definition of dualizable

objects.

Let
∏
S DM be a product of the category DM, indexed by a small set S. There

is a combinatorial model structure on
∏
S DM, called the projective model struc-

ture (cf. [27, A. 2.8.2]), in which weak equivalences (resp. fibrations) are termwise

weak equivalences (resp. termwise fibrations) in DM. Notice that cofibrations in
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∏
S DM are termwise cofibrations. When S = N,

∏
N DM has a symmetric monoidal

structure defined as follows: Let (Mi)i∈N and (Nj)j∈N be two objects in
∏

N DM.

Then (Mi)i∈N ⊗ (Nj)j∈N is defined to be (
⊕

i+j=kMi ⊗Nj)k∈N.

Lemma 6.2. With the above symmetric monoidal structure,
∏

N DM is a sym-

metric monoidal model category in the sense of [27, A 3.1.2].

Proof. We must prove that cofibrations α : (Mi) = (Mi)i∈N → (Mi) = (M ′i)i∈N
and β : (Ni) = (Ni)i∈N → (Ni) = (N ′i)i∈N induce a cofibration

α ∧ β : (Mi)⊗ (N ′i)q(Mi)⊗(Ni) (M ′i)⊗ (Ni)→ (M ′i)⊗ (N ′i),

and moreover if either α or β is a trivial cofibration, then so is α ∧ β. Unwinding

the definition, we are reduced to showing that⊕
i+j=k

(Mi ⊗N ′j qMi⊗Nj M
′
i ⊗Nj)→

⊕
i+j=k

M ′i ⊗N ′j

is a cofibration in DM, and moreover it is a trivial cofibration if either α or β. This

follows from the left lifting property of (trivial) cofibrations and the fact that DM

is a symmetric monoidal model category.

Consider the symmetric monoidal functor ξ :
∏

N DM → DM, which carries

(Mi) to
⊕

iMi ⊗K(−i). Here K(−1) is a cofibrant “model” of the dual of K(1),

and K(−i) is the i-fold tensor product of K(−1) in the symmetric monoidal cate-

gory DM. Since K(−i) is cofibrant, we see that ξ is a left Quillen adjoint functor.

By localization, we obtain a symmetric monoidal left adjoint functor

f := N(ξ) : DM⊗N := N
((∏

N
DM

)c)
∞
→ N(DMc)∞ = DM⊗.

By the relative version of the adjoint functor theorem [28, 8.3.2.6] (see also [29,

VIII 3.2.1]), f has a lax symmetric monoidal right adjoint functor which we denote

by g : DM⊗ → DM⊗N . It yields g : CAlg(DM⊗)→ CAlg(DM⊗N ). We set A := g(1DM)

in CAlg(DM⊗N ), where 1DM is a unit in DM⊗. The adjoint pair

f : DMN � DM : g

induces the adjoint pair

f : h(DMN) � h(DM) : g

of homotopy categories. Let Hom(N,−) denote the internal Hom object given

by the right adjoint of (−) ⊗ N : DM → DM. Then g is given by M 7→
(Hom(K(−i),M))i∈N. Thus the underlying object A in h(DM) is (K(i))i∈N, that is,

the i-th term is K(i). Moreover, by straightforward calculation of adjunction maps,
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we see that the commutative algebra structure of A in the symmetric monoidal

homotopy category h(DM) is given by

(K(i))i∈N ⊗ (K(j))j∈N =
( ⊕
i+j=k

K(i)⊗K(j)
)
k∈N
→ (K(k))k∈N

where the right-hand map is induced by the identity maps K(i) ⊗ K(j) '
K(k)→ K(k).

Now recall from [34] the notion of “periodic” commutative ring object (in [34]

the notion of “periodizable” is introduced, and we use this notion in a slightly

modified form). Let
∏

Z DM be the product of DM indexed by Z, which is a

combinatorial model category defined as above. With the tensor product (Mi)i∈Z⊗
(Nj)j∈Z = (

⊕
i+j=kMi⊗Nj)k∈Z,

∏
Z DM is a symmetric monoidal model category

in the same way as
∏

N DM is. Let DM⊗Z be the symmetric monoidal ∞-category

obtained from (
∏

Z DM)c by inverting weak equivalences. A commutative algebra

object X in DM⊗Z is said to be periodic if the underlying object is of the form

(. . . ,K(−1),K(0),K(1), . . .),

that is, K(i) sits in the i-th degree, and the commutative algebra structure of X in

h(DM⊗Z ) induced by that in DM⊗Z is determined by the identity maps K(i)⊗K(j)→
K(i+ j).

A periodic commutative algebra object actually exists. To construct it, we

let i : DM⊗N → DM⊗Z be the symmetric monoidal functor informally given by

(Mi)i∈N 7→ (. . . , 0, 0,M0,M1, . . .), that is, determined by inserting 0 in each nega-

tive degree. Then P+ := i(A) belongs to CAlg(DM⊗Z ). According to [34, Proposi-

tion 4.2] and its proof, we have:

Proposition 6.3 ([34]). There exists a morphism P+ → P in CAlg(DM⊗Z ) such

that P is periodic.

Remark 6.4. Let K(1)1 be the object of the form (. . . , 0,K(1), 0, . . .) where K(1)

sits in the first degree. Let Sym∗P+
: ModP+

(DM⊗Z )→ CAlg(Mod⊗P+
(DM⊗Z )) be the

left adjoint of the forgetful functor. Let

CAlg(Mod⊗P+
(DM⊗Z )) � CAlg(Mod⊗P+

(DM⊗Z ))[Sym∗P+
(κ)−1]

be the localization adjoint pair (cf. [27, 5.2.7.2, 5.5.4]) which inverts Sym∗P+
(κ),

where κ : K(1)1⊗P+ → P+ in ModP+
(DM⊗Z ) is induced by the natural embedding

K(1)1 → P+ in the first degree. The morphism P+ → P is obtained as the unit

map of this adjoint pair.

Let
∏

Z Comp(A) be the product of the category Comp(A), which is endowed

with the projective model structure. As in Lemma 6.2, we see that
∏

Z Comp(A) is



542 I. Iwanari

a symmetric monoidal model category, whose tensor product is given by (Ai)i∈Z⊗
(Bj)j∈Z = (

⊕
i+j=k Ai ⊗Bj)k∈Z. Then the natural left Quillen adjoint symmetric

monoidal functor Comp(A)→ DM naturally extends to a left Quillen adjoint sym-

metric monoidal functor l :
∏

Z Comp(A)→
∏

Z DM. It gives rise to the symmetric

monoidal left adjoint functor of ∞-categories

l : Mod⊗HK,Z := N
(∏

Z
Comp(A)c

)⊗
∞
→ DM⊗Z .

According to the relative version of the adjoint functor theorem [28, 8.3.2.6] (see

also [29, VIII 3.2.1]), l has a lax symmetric monoidal right adjoint functor r. Let

Q := r(P ) ∈ CAlg(Mod⊗HK,Z). Let DM→
∏

Z DMZ be the left Quillen symmetric

monoidal functor which carries M to (Mi) where M0 = M and Mi = 0 if i 6= 0.

Thus we have a symmetric monoidal functor DM→ DMZ, and again by the relative

version of the adjoint functor theorem we obtain a lax symmetric monoidal functor

s : DMZ → DM as the right adjoint. Therefore there exists a diagram of symmetric

monoidal ∞-categories

Modl(Q)(DM
⊗
Z )

u

��
ModQ(Mod⊗HK,Z)

l̃

66

u◦l̃ //

b

��

ModP (DM⊗Z )

t

��

s◦t

&&
ModHK,Z

l //

a

OO

DMZ
r

oo
s // DM

such that

• l̃ is a symmetric monoidal functor induced by l,

• u is the symmetric monoidal base change functor induced by the counit map

l(Q) = l(r(P ))→ P ,

• t is the forgetful monoidal functor which is a lax symmetric monoidal functor,

• a is the base change functor, and b is the forgetful functor.

Let z := s ◦ t ◦ u ◦ l̃. We recall the theorem by Spitzweck [34, Theorem 4.3] (see

also its proof):

Theorem 6.5 ([34]). The composite z : ModQ(Mod⊗HK,Z) → DM gives an equiv-

alence

ModQ(Mod⊗HK,Z) ' DTM

of symmetric monoidal ∞-categories.
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Remark 6.6. This result is extended in [20] to a more general situation by a

different method.

Furthermore, we can see that z gives an equivalence of the above categories

as HK-linear symmetric monoidal ∞-categories. To see this, it is enough to show

that z can be promoted to an HK-linear symmetric monoidal functor. To treat

problems of this type, the following lemma is useful.

Lemma 6.7. Let C⊗ be in CAlg(Ĉat
L,st

∞ ). Denote by C the underlying∞-category.

Suppose that a unit 1 of C⊗ is compact in C. Let C1 ⊂ C be the smallest stable

subcategory which admits small colimits and contains 1. The∞-category C1 admits

a symmetric monoidal structure induced by that of C⊗. Then there exist A in CAlg

and an equivalence Mod⊗A ' C⊗ of symmetric monoidal ∞-categories. Moreover,

if R is a commutative ring spectrum and p : Mod⊗R → C⊗ is a symmetric monoidal

colimit-preserving functor, then p factors through C⊗1 ⊂ C⊗ and there exists a

morphism R → A in CAlg, up to the contractible space of choices, which induces

Mod⊗R → C
⊗
1 ' Mod⊗A (as the base change).

Proof. The first assertion follows from [28, 8.1.2.7], the characterization of sym-

metric monoidal stable ∞-categories of module spectra. Since p preserves small

colimits, p factors through C⊗1 ⊂ C⊗. The last assertion can be deduced from [28,

6.3.5.18].

Remark 6.8. Under the assumption of Lemma 6.7, A is considered to be the “en-

domorphism algebra” of the unit, and we can say that giving an R-linear structure,

that is, a symmetric monoidal colimit-preserving functor Mod⊗R → C⊗, is equiva-

lent to giving a morphism R→ A in CAlg.

We return to the case of HK-linear symmetric monoidal ∞-category DTM⊗.

The endomorphism algebra of the unit of DTM⊗ is HK (i.e. K), and its HK-linear

structure is determined by the identity HK→ HK. Thus, to promote z to an HK-

linear symmetric monoidal functor, it is enough to show that f ◦ a ◦ q : Mod⊗HK →
DTM⊗ induces the identity morphism HK→ HK of the endomorphism algebras

of units, where q is the inclusion Mod⊗HK → Mod⊗HK,Z into the degree zero part.

This claim is clear from our construction.

§6.3. Realization functor and augmentation

Let E be a mixed Weil theory with K-coefficients (cf. [7, Definition 2.1]). A mixed

Weil theory is a presheaf of commutative dg K-algebras on the category of smooth

affine schemes over k, which satisfies the Nisnevich descent property, A1-homotopy,

Künneth formula and axioms of dimensions, etc. (for a precise definition see [7,
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2.1.4]). For example, algebraic de Rham cohomology determines a mixed Weil

theory with K = k: to any smooth affine scheme X we associate a commutative

dg k-algebra Γ(X,Ω∗X/k) where Ω∗X/k is the algebraic de Rham complex arising

from the exterior OX -algebra generated by Ω1
X/k. Another example is l-adic étale

cohomology with K = Ql (see [7, Section 3]). To a mixed Weil theory E we can

associate a morphism

RE : DM⊗ → Mod⊗HK

in CAlg(Ĉat
L,st

∞ )Mod⊗HK /, which we call the homological realization functor with

respect to E (see [19, Section 5.1, 5.2], [7, 2.6]). From now on we usually omit the

subscript E. According to [7, 2.7.14], when E is the mixed Weil theory associated

to algebraic de Rham cohomology, for any smooth affine scheme X the image

R(h(X)) in ModHK is equivalent to the dual complex of derived global sections

RΓ(X,Ω∗X/k) where by [19, 5.10] we identify ModHK with the ∞-category of

unbounded complexes of K-vector spaces. We denote by RT the composition

DTM⊗ ↪→ DM⊗ → Mod⊗HK,

which we call the homological realization of Tate motives (with respect to E). By re-

strictions, it gives rise to a morphism DTM⊗∨ → PMod⊗HK in CAlg(Catst
∞)PMod⊗HK /,

which we also denote by RT .

Combining this with Theorem 6.5 we have a sequence of symmetric monoidal

colimit-preserving functors

Mod⊗HK,Z
a−→ Mod⊗Q(ModHK,Z) ' DTM⊗

RT−−→ Mod⊗HK .

By the relative version of the adjoint functor theorem, the composition admits a

lax symmetric monoidal right adjoint functor ξ. In particular, if we set R = ξ(1HK)

with 1HK the unit of Mod⊗HK, then R belongs to CAlg(Mod⊗HK,Z). By functoriality

and the construction ofQ, we have a natural morphismQ→ R in CAlg(Mod⊗HK,Z).

There is a commutative diagram (up to homotopy) of symmetric monoidal ∞-

categories

Mod⊗Q(Mod⊗HK,Z)
∼
z

//

��

DTM⊗
RT

//

��

Mod⊗HK

Mod⊗R(Mod⊗HK,Z)
z̃
// Mod⊗f(R)(DTM

⊗)
R̃T

// Mod⊗RT (z(R))(Mod⊗HK)

OO

where z̃ and R̃T are induced by z and RT respectively, the left and central vertical

arrows are base change functors, and the right vertical arrow is the counit map
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RT (z(R))→ HK in CAlg(Mod⊗HK). Note that all functors in the diagram are HK-

linear symmetric monoidal functors. The commutativity of the right square follows

from the observation that the counit map RT (z(R))→ HK is an augmentation of

the structure map HK→ RT (z(R)).

Lemma 6.9. The composite h : C⊗ := Mod⊗R(Mod⊗HK,Z) → D⊗ := Mod⊗HK

in the above diagram gives an equivalence of HK-linear symmetric monoidal ∞-

categories.

Proof. It will suffice to show that the underlying functor is a categorical equiva-

lence.

The symmetric monoidal functor h is HK-linear. Thus h is essentially surjec-

tive.

Next we will show that h is fully faithful. Let Kn := (. . . , 0,K, 0, . . .) be the

object in ModHK,Z such that K sits in the n-th degree. Let R(n) be the image

of Kn by the base change functor ModHK,Z → ModR(Mod⊗HK,Z). (For any n ∈ Z,

h(R(n)) ' HK.) It is enough to prove that

MapC(R(i), R(j))→ MapD(h(R(i)), h(R(j)))

is an equivalence in S. Indeed, C is generated by the sets {R(i)}i∈Z under finite

(co)limits, translations, and filtered colimits. Since R(i) and h(R(i)) are com-

pact for each i ∈ Z and h is colimit-preserving, we are reduced to showing that

the above map is an equivalence in S. (Assuming this to hold, note first that

MapC(R(i), N) → MapD(h(R(i)), h(N)) is an equivalence in S for N being in

the smallest stable subcategory C′ generated by {R(i)}i∈Z. Then since R(i) and

h(R(i)) are compact, Ind(C′) ' C, and h preserves small colimits, thus for any

N ∈ C, MapC(R(i), N) → MapD(h(R(i)), h(N)) is an equivalence. Since C is

generated by {R(i)}i∈Z under finite colimits, translations and filtered colimits,

we conclude that for any M,N ∈ C, MapC(M,N) → MapD(h(M), h(N)) is an

equivalence.) Note that MapC(R(i), R(j)) ' MapC(R(i− j), R), and therefore we

may and will assume that j = 0. Then by using adjunctions we can identify

MapC(R(i), R)→ MapD(h(R(i)), h(R)) with the composition

MapC(R(i), R)
∼−→MapModQ(Mod⊗HK,Z)(Q(i), R)

∼−→MapModHK
(RT (z(Q(i))), HK)

∼−→MapModHK
(HK, HK).

This proves our lemma.
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Proposition 6.10. There exists an HK-linear symmetric monoidal equivalence

Mod⊗HK,Z → Mod⊗BGm
.

Proof. We will construct a symmetric monoidal functor Mod⊗HK,Z → Mod⊗BGm

which preserves colimits.

For this purpose, we will construct Mod⊗BGm
in an explicit way. Regard the

group scheme Gm over K as a simplicial scheme, denoted by G•, such that Gi is

the i-fold product G×im . This corresponds to the cosimplicial K-algebra Γ(G)• such

that Γ(G)i ' K[t±1 , . . . , t
±
i ]. The cosimplicial K-algebra Γ(G)• naturally induces

a cosimplicial diagram ρ : N(∆) → Ĉat∞ such that ρ([i]) = N(Comp(Γ(G)i)c).

Here Comp(Γ(G)i) denotes the category of chain complexes of Γ(G)i-modules

which is endowed with the projective model structure, and Comp(Γ(G)i)c is its

full subcategory of cofibrant objects. Each category Comp(Γ(G)i)c has a (natural)

symmetric monoidal structure, and thus ρ is promoted to ρ : N(∆)→ CAlg(Ĉat∞),

where CAlg(Ĉat∞) is the ∞-category of symmetric monoidal ∞-categories (i.e.,

commutative algebra objects in the Cartesian symmetric monoidal ∞-category

Ĉat∞). The symmetric monoidal category Comp(Γ(G)i)c admits the subset of

edges of weak equivalences. Inverting weak equivalences in Comp(Γ(G)i)c, we have

ρ′ : N(∆)→ CAlg(Ĉat∞) and the natural transformation ρ→ ρ′ such that ρ′([i])

is the symmetric monoidal ∞-category obtained from Comp(Γ(G)i)c by inverting

weak equivalences.

By the explicit unstraightening functor [27, 3.2.5.2], the maps ρ, ρ′ : N(∆) ⇒
CAlg(Ĉat∞) give rise to coCartesian fibrations C⊗pre → N(Fin∗)×N(∆) and C⊗ →
N(Fin∗)×N(∆). The natural transformation ρ→ ρ′ induces a map of coCartesian

fibrations

C⊗pre
σ //

&&

C⊗

xx
N(Fin∗)×N(∆)

which preserves coCartesian edges. Note that for each [i] ∈ ∆, the fiber ρ−1([i])→
N(Fin∗) × {[i]} ∼= N(Fin∗) is the symmetric monoidal ∞-category associated to

the diagram of Comp(Γ(G)i)c’s. The fiber (ρ′)−1([i]) → N(Fin∗) is the symmet-

ric monoidal ∞-category obtained from Comp(Γ(G)i)c by inverting weak equiva-

lences.

Next we define a map of simplicial sets Sec(C⊗pre) → N(Fin∗) as follows. For

any a : T → N(Fin∗), giving a map T → Sec(C⊗pre) over N(Fin∗) amounts to giving

φ : T × N(∆) → C⊗pre which commutes with a × Id : T × N(∆) → N(Fin∗) ×
N(∆) and C⊗pre → N(Fin∗) × N(∆). Let Sec(C⊗pre) be the largest subcomplex of
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Sec(C⊗pre) which consists of the following vertexes: a vertex v ∈ Sec(C⊗pre) lying

over 〈i〉 belongs to Sec(C⊗pre) exactly when v : {〈i〉} × N(∆) → C⊗pre carries all

edges in {〈i〉} ×N(∆) to coCartesian edges in C⊗pre. We define Sec(C⊗)→ N(Fin∗)

and Sec(C⊗) → N(Fin∗) in a similar way. According to [27, 3.1.2.1(1)], we see

that Sec(C⊗pre) → N(Fin∗) and Sec(C⊗) → N(Fin∗) are coCartesian fibrations

(notice that Sec(C⊗pre) = N(Fin∗) ×Fun(N(∆),N(Fin∗)×N(∆)) Fun(N(∆), C⊗pre)) where

N(Fin∗) → Fun(N(∆),N(Fin∗) × N(∆)) is induced by the identity N(Fin∗) ×
N(∆) → N(Fin∗) × N(∆)). Moreover, by [27, 3.1.2.1(2)], Sec(C⊗pre) → N(Fin∗)

and Sec(C⊗)→ N(Fin∗) are coCartesian fibrations. By construction, Sec(C⊗pre)→
N(Fin∗) is furthermore a symmetric monoidal ∞-category. Since the procedure

of inverting weak equivalences commutes with finite products [28, 4.1.3.2], we see

that Sec(C⊗)→ N(Fin∗) is also a symmetric monoidal ∞-category. We will abuse

notation and denote by Sec(C⊗pre) and Sec(C⊗) the underlying ∞-categories. Note

that σ (which preserves coCartesian edges) induces a symmetric monoidal functor

Sec(C⊗pre)→ Sec(C⊗).

Observe that the symmetric monoidal ∞-category Sec(C⊗) → N(Fin∗) is

equivalent to the symmetric monoidal ∞-category Mod⊗BGm
. By [27, 3.3.3.2] and

[28, 3.2.2.4], the symmetric monoidal ∞-category Sec(C⊗) is a limit of the dia-

gram ρ′ : N(∆) → CAlg(Ĉat∞). Note that by [28, 8.1.2.13], ρ′([i]) is equivalent

to Mod⊗Γ(G)i . Moreover, the functor Θ : CAlg→ CAlg(Ĉat
L,st

∞ ) which carries A to

Mod⊗A (see Section 3.1) is fully faithful [28, 6.3.5.18]. For a symmetric monoidal

functor φ : Mod⊗A → Mod⊗B in CAlg(Ĉat
L,st

∞ ), one can recover f : A → B with

Θ(f) ' φ as the induced morphism from the endomorphism spectrum of a unit of

Mod⊗A to that of the unit in Mod⊗B . Therefore from the construction of ρ′ (and ρ)

and the definition of Mod⊗BGm
, we conclude that Sec(C⊗)→ N(Fin∗) is equivalent

to Mod⊗BGm
.

Therefore, to construct Mod⊗HK,Z → Mod⊗BGm
it suffices to construct a sym-

metric monoidal functor from
∏

Z Comp(A)c to Sec(C⊗pre) which carries weak equiv-

alences in
∏

Z Comp(A)c to edges in Sec(C⊗pre) whose images in Sec(C⊗) are equiva-

lences (note the universality of Mod⊗HK,Z [28, 4.1.3.4]). Let Kn in
∏

Z Comp(A)c be

the K which sits in the n-th degree with respect to
∏

Z. To Kn we attach the weight

n representation of Gm on K. The weight n representation gives rise, in the obvious

way, to an object of Sec(C⊗pre) which we denote by K′n. To (Mi)i∈Z ∈
∏

Z Comp(A)c,

we attach
⊕

i∈ZMi⊗K′i. Here we considerMi to be an object in Sec(C⊗pre), that is, a

complex endowed with the trivial action of Gm. This naturally induces a symmetric

monoidal functor having the desired property. To prove that the induced functor

ModHK,Z → ModBGm preserves small colimits, it is enough to show that the com-

posite ModHK,Z → ModBGm → ModHK, where the second functor is forgetful,
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preserves small colimits since the forgetful functor is conservative and preserves

small colimits (an exact functor p : K → L between stable ∞-categories is said to

be conservative if for any K ∈ K, p(K) ' 0 implies that K ' 0). The composite

carries (Mi)i∈Z to
⊕

i∈ZMi and thus we conclude that the composite preserves

small colimits. To prove that Mod⊗HK,Z → Mod⊗BGm
can be promoted to an HK-

linear symmetric monoidal functor, according to Lemma 6.7 (see also the discussion

at the end of 6.3), it suffices to observe that Mod⊗HK,Z → Mod⊗BGm
induces the

identity morphism HK→ HK of the endomorphism algebras of units. To see this,

we are reduced to showing that the composite Mod⊗HK,Z → Mod⊗BGm
→ Mod⊗HK,

where the second functor is the forgetful functor, induces the identity morphism

HK→ HK of the endomorphism algebras of units. This is clear.

We have constructed a symmetric monoidal colimit-preserving functor

Mod⊗HK,Z → Mod⊗BGm
with the (lax symmetric monoidal) right adjoint functor (the

existence is ensured by the relative version of the adjoint functor theorem). To see

that Mod⊗HK,Z → Mod⊗BGm
is an equivalence of symmetric monoidal ∞-categories,

it is enough to show that it induces a categorical equivalence ModHK,Z → ModBGm

of the underlying ∞-categories. Moreover, by [19, 5.8], it suffices to check that it

induces an equivalence h(ModHK,Z) → h(ModBGm) of their homotopy categories.

The desired equivalence now follows from [35, Section 8, Theorem 8.5] (see also

the strictification theorem [17, 18.7]).

Let A be an object in CAlg(Mod⊗BGm
). Let A denote the image

of A in CAlg(Mod⊗HK) (via the pullback of SpecHK → BGm). With

the notation in the proof of Proposition 6.10, there is a natural aug-

mented simplicial diagram G• → BGm. This induces a natural functor

CAlg(ModBGm
) → lim[i]∈∆ CAlg(ModHΓ(G)i). We write A• for the image of A

in lim[i]∈∆ CAlg(ModHΓ(G)i). It gives rise to the quotient stack [SpecA/Gm]

(see Example 4.1). The construction of the quotient derived stack is as follows:

The cosimplicial diagram {Γ(G)i}[i]∈∆ of ordinary commutative K-algebras has

a natural map from the constant simplicial diagram {K}. Both cosimplicial di-

agrams naturally induce cK, cG : N(∆) → Ĉat∞ such that cK is the con-

stant diagram of CAlgHK, and cG([i]) = CAlgHΓ(G)i and [i] → [j] maps to

CAlgHΓ(G)i → CAlgHΓ(G)j ;R 7→ HΓ(G)j ⊗HΓ(G)i R. By [27, 3.2.0.1, 4.2.4.4]

the cosimplicial diagrams cK and cG give rise to coCartesian fibrations pr2 :

CAlgHK×N(∆) → N(∆) and CAlgG → N(∆) respectively. The morphism

cK → cG induced by {K} → {Γ(G)i}[i]∈∆ gives rise to a morphism of coCarte-

sian fibrations α : CAlgHK×N(∆) → CAlgG over N(∆) that preserves coCarte-

sian edges. By [28, 8.3.2.7], there is a right adjoint β of α relative to N(∆). Let

s : N(∆) → CAlgG be a section corresponding to A• (cf. [27, 3.3.3.2]). Then the
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composite

ξ : N(∆)
s−→ CAlgG

β−→ CAlgHK×N(∆)
pr1−−→ CAlgHK

gives rise to a simplicial diagram ξop : N(∆)op → AffHK. We define [SpecA/Gm]

to be a colimit (geometric realization) of the simplicial diagram ξop in Sh(AffHK).

If s1 : N(∆) → CAlgG is the section corresponds to the initial object of

lim[i]∈∆ CAlg(ModHΓ(G)i), then the composite pr1 ◦ β ◦ s1 : N(∆) → CAlgHK

is equivalent to the cosimplicial diagram {HΓ(G)i}. Thus we have a natural mor-

phism π : [SpecA/Gm] → BGm. It is easy to see that this morphism makes

[SpecA/Gm] a quotient stack.

Proposition 6.11. There exists a natural equivalence

Mod⊗A(Mod⊗BGm
) ' Mod⊗

[SpecA/Gm]
.

Proof. We first construct a symmetric monoidal colimit-preserving functor

Mod⊗A(Mod⊗BGm
)→ Mod⊗

[SpecA/Gm]
.

Let π∗ : Mod⊗BGm
→ Mod⊗

[SpecA/Gm]
be the symmetric monoidal functor induced

by the natural morphism π : [SpecA/Gm] → BGm. By the relative version of the

adjoint functor theorem, there is a lax symmetric monoidal right adjoint fucntor

π∗ : Mod[SpecA/Gm] → ModBGm . If 1[SpecA/Gm] is a unit of Mod⊗
[SpecA/Gm]

, by the

definition of [SpecA/Gm] and the base-change formula, π∗(1[SpecA/Gm]) is equiva-

lent to A in CAlg(Mod⊗BGm
). Thus we have the composition of symmetric monoidal

colimit-preserving functors

h : Mod⊗A(Mod⊗BGm
)→ Modπ∗(A)(Mod⊗

[SpecA/Gm]
)→ Mod⊗

[SpecA/Gm]

where the second functor is induced by the counit map π∗(A)'π∗(π∗(1[SpecA/Gm]))

→ 1[SpecA/Gm]. Note that the composite is naturally an HK-linear symmetric

monoidal functor.

Next we will show that h gives an equivalence of symmetric monoidal ∞-

categories. It will suffice to prove that the underlying functor of ∞-categories is

a categorical equivalence. We first show that h is fully faithful. Let 1BGm(i) ∈
Mod⊗BGm

be the object corresponding to Kn in the proof of Lemma 6.9. Let A(i)

be the image of 1BGm(i) under the natural functor ModBGm → ModA(Mod⊗BGm
).

Unwinding the definition of h and using adjunctions, we see that

MapMod⊗A(Mod⊗BGm
)(A(i), A(j))→ MapMod⊗

[SpecA/Gm]

(
h(A(i)), h(A(j))

)



550 I. Iwanari

can be identified with

MapModA(Mod⊗BGm
)(A(i), A(j))'MapModA(Mod⊗BGm

)(A(i− j), A)

'MapModBGm
(1BGm

(i− j), A)

'MapMod[SpecA/Gm]

(
π∗(1BGm(i− j)), 1[SpecA/Gm]

)
'MapMod[SpecA/Gm]

(
1[SpecA/Gm](i), 1[SpecA/Gm](j)

)
.

Note that A(i) and h(A(i)) are compact for each i, and h preserves small colimits.

The stable presentable ∞-category ModA(Mod⊗BGm
) is generated by {A(i)}i∈Z,

that is, Mod⊗A(Mod⊗BGm
) is the smallest stable subcategory which contains the

set {A(i)}i∈Z of objects and admits filtered colimits. Therefore for any N ∈
ModA(Mod⊗BGm

),

MapModA(Mod⊗BGm
)(A(i), N)→ MapMod⊗

[SpecA/Gm]

(
h(A(i)), h(N)

)
is an equivalence in S. Furthermore, it follows from the fact that h is colimit-

preserving that for any M,N ∈ ModA(Mod⊗BGm
),

MapModA(Mod⊗BGm
)(M,N)→ MapMod⊗

[SpecA/Gm]

(h(M), h(N))

is an equivalence in S. It remains to show that h is essentially surjective. To

this end, note that Mod[SpecA/Gm] ' Ind(E) where E is the smallest stable sub-

category which contains {1[SpecA/Gm](i)}i∈Z. To see this, since 1[SpecA/Gm](i) are

compact, by [2, Definition 3.7] it is enough to observe that the right orthogonal

of {1[SpecA/Gm](i)}i∈Z is zero, where 1[SpecA/Gm](i) = π∗(1BGm
(i)). The condition

that

MapMod[SpecA/Gm]
(1[SpecA/Gm](i), N) ' MapModBGm

(1BGm
(i), π∗(N)) = 0

for any i ∈ Z implies that π∗(N) = 0. Since π∗ is conservative we deduce that

N = 0, as desired. Since the set {1[SpecA/Gm](i)}i∈Z of compact objects generates

Mod[SpecA/Gm] (in the above sense), we have Ind(h(D)) ' Mod[SpecA/Gm] (see [27,

5.3.5.11]) where D is the smallest stable subcategory in ModA(Mod⊗BGm
) which

contains {A(i)}i∈Z. It follows that h is essentially surjective, by noting that h is

colimit-preserving and fully faithful.

§6.4. Tannakization and derived stack of mixed Tate motives

Propositions 6.10, 6.11 and Lemma 6.9 allow us to identify the realization functor

RT : DTM⊗ → Mod⊗HK with

ρ∗ : Mod⊗
[SpecQ/Gm]

→ Mod⊗
[SpecR/Gm]
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induced by the morphism of derived stacks ρ : [SpecR/Gm]→ [SpecQ/Gm]. Here

R is the image of R in CAlg(Mod⊗HK).

Observe that [SpecR/Gm] ' SpecHK. To see this, note that by the property

of the realization functor the composite of symmetric monoidal left adjoint functors

ModBGm
→ ModHK,Z → ModQ(Mod⊗HK,Z) ' DTM→ ModHK

is equivalent to the forgetful functor (since the heart of the standard t-structure on

ModBGm
maps to the heart of the standard t-structure on ModHK as the forgetful

functor). Thus if π : SpecHK → BGm denotes the natural projection, its right

adjoint functor sends 1HK to the object R = π∗(1HK), i.e., the coordinate ring

of Gm (equipped with the natural action of Gm). Hence [SpecR/Gm] ' SpecHK.

We refer to [SpecQ/Gm] and ρ : SpecHK→ [SpecQ/Gm] as the derived stack

of mixed Tate motives and the point determined by the mixed Weil cohomology E

respectively.

Theorem 6.12. Let MTG be the derived affine group scheme over HK which

represents the automorphism group functor of RT : DTM⊗∨ → PMod⊗HK, that is,

the tannakization. Then MTG is equivalent to the derived affine group scheme

arising from the Čech nerve of ρ : SpecHK→ [SpecQ/Gm].

Proof. Apply Corollary 4.9 to ρ.

§6.5. Cycle complex and Q

We describe the (Z-graded) complex Q in terms of Bloch’s cycle complexes. We

here regard Q as the object in the ∞-category ModHK,Z. (The results of this

subsection will not be used in other sections and the reader may skip them.)

For this purpose, we need an explicit right adjoint functor r : DMZ →
ModHK,Z of l : ModHK,Z → DMZ. To this end, recall the Quillen adjoint pair

1⊗ (−) : Comp(A) � DMeff(k) : Γ

where the right-hand side is the model category in [6, Example 4.12] (cf. Section

6.1) and the left adjoint functor carries a complex M to the tensor product 1⊗M
with the (cofibrant) unit 1 of DMeff(k). Here the tensor product 1⊗M is considered

to be a complex of sheaves with transfers U 7→ L(Spec k)(U) ⊗K M . The right

adjoint functor sends a complex of Nisnevich sheaves with transfers P to the

complex Γ(P ) of sections at Spec k. Let F be a Nisnevich sheaf with transfers.

Let 4• be the cosimplicial scheme where 4n = Spec k[x0, . . . , xn]/(
∑n
i=0 xi = 0)

and the j-th face 4n ↪→ 4n+1 is determined by xj = 0 (see e.g. [30]). We then

have the Suslin complex C∗(F ) in DMeff(k), that is, the complex of sheaves with

transfers, defined by X 7→ F (4• ×k X) (take the Moore complex).
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Lemma 6.13. Let F be a Nisnevich sheaf with transfers. Let F → F ′ be a fibrant

replacement in DMeff(k). Then the global section F ′(Spec k) is quasi-isomorphic

to C∗(F )(Spec k).

Proof. It is well-known that the natural morphism F → C∗(F ) is a weak equiva-

lence in DMeff(k) (cf. [30, 14.4]). Let C∗(F ) → C∗(F )′ be a fibrant replacement.

Then F ′ → C∗(F )′ (induced by the functorial fibrant replacement) is a weak equiv-

alence. According to [30, 2.19, 13.8], cohomology sheaves of C∗(F ) are homotopy

invariant. By [30, 13.8, 14.8] and the definition of A1-local objects [6, 4.12], C∗(F ),

C∗(F )′ and F ′ are A1-local. Thus both C∗(F ) → C∗(F )′ and F ′ → C∗(F )′ in-

duce isomorphisms of cohomology sheaves. Therefore, taking the Nisnevich topol-

ogy of Spec k into account, we deduce that C∗(F )(Spec k) is quasi-isomorphic to

F ′(Spec k).

For an equidimensional scheme X over k, we denote by zn(X, ∗) the Bloch

cycle complex of X (cf. e.g. [30, Lecture 17]).

Corollary 6.14. Let n ≥ 0. The total right Quillen derived functor RΓ sends

K(n) to a complex which is quasi-isomorphic to zn(Spec k, ∗)[−2n].

Proof. The comparison theorems [30, 16.7, 19.8] together with Lemma 6.13 im-

plies that RΓ(K(n)) is quasi-isomorphic to zn(An, ∗)[−2n], where An is the n-

dimensional affine space. The homotopy invariance of higher Chow groups (cf. [30,

17.4 (4)]) shows that zn(An, ∗)[−2n] is quasi-isomorphic to zn(Spec k, ∗)[−2n].

Remark 6.15. Let n be a negative integer. Then every morphism from K to

K(n)[i] in DM is null-homotopic for any i ∈ Z. Thus by adjunction, the right

adjoint functor of the canonical functor ModHK → DM carries K(n) to zero in

ModHK.

Proposition 6.16. Let Qn ∈ ModHK denote the complex of the n-th degree of

Q ∈ ModHK,Z (this is not the homological degree). Then Qn is equivalent to

zn(Spec k, ∗)[−2n] for any n ≥ 0, and Qn ' 0 for n < 0.

Proof. Recall that Q is the image of

K(∗) := (. . . ,K(−1),K(0),K(1), . . .)

under r : DMZ → ModHK,Z (we adopt the notation of Section 6.2). The natural

functor Σ∞ : DMeff → DM is fully faithful by Voevodsky’s cancellation theorem,

and thus the right adjoint Ω∞ : DM → DMeff sends K(i) to K(i) for i ≥ 0. Now

our claim follows from Corollary 6.14 and Remark 6.15.
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§7. Mixed Tate motives assuming the Beilinson–Soulé

vanishing conjecture

In this section, we adopt the notation of Section 6. In contrast to the previous

section, in this section we will assume the Beilinson–Soulé vanishing conjecture

for the base field k: the motivic cohomology

Hn,i(Spec k,K)

is zero for n ≤ 0 and i > 0. Here Hn,i(Spec k,K) denotes the motivic cohomology

(following the notation of [30, Definition 3.4]). What we need is that this condition

implies that Q is cohomologically connective, that is, πn(Q) = 0 for n > 0, and

π0(Q) = K. For example, the Beilinson–Soulé vanishing conjecture holds when k

is a number field. The goal of this section is to prove Theorem 7.16, which relates

our tannakization MTG of DTM⊗∨ to the Galois group of mixed Tate motives

constructed by Bloch–Kriz [4], Kriz–May [25], Levine [26] (all group schemes are

known to be equivalent to one another) under this vanishing conjecture.

§7.1. Motivic t-structure on DTM

Under the Beilinson–Soulé vanishing conjecture, one can define a motivic t-struc-

ture on DTM, as proved by Levine [26] and Kriz–May [25]. We will construct a

t-structure in our setting (we do not claim any originality).

We fix our convention on t-structures. Let C be a stable ∞-category. A t-

structure on C is a t-structure on the triangulated category h(C) (the homotopy

category is naturally endowed with the structure of triangulated category, see [28,

Chapter 1]). That is, there is a pair of full subcategories (C≥0, C≤0) of C such that

• C≥0[1] ⊂ C≥0 and C≤0[−1] ⊂ C≤0,

• for X ∈ C≥0 and Y ∈ C≤0, the group Homh(C)(X,Y [−1]) is zero,

• for X ∈ C, there exists a distinguished triangle

X ′ → X → X ′′

in h(C) such that X ′ ∈ C≥0 and X ′′ ∈ C≤0[−1].

We here assume that full subcategories are stable under equivalences. We use

homological indexing. Our references on t-structures are [28] and [23]. We shall

write C≥n and C≤n for C≥0[n] and C≤0[n] respectively. We denote by τ≥n the right

adjoint to C≥n ⊂ C. Similarly, we denote by τ≤n the left adjoint to C≤n ⊂ C.
Let RT : DTM → ModHK be the realization functor of a fixed mixed Weil

theory E. Let (ModHK,≥0,ModHK,≤0) be the standard t-structure of ModHK such
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that X belongs to ModHK,≥0 (resp. ModHK,≤0) exactly when the homotopy group

πn(X) of the underlying spectra is zero for n < 0 (resp. n > 0).

Proposition 7.1. Let

DTM∨,≥0 := R−1
T (ModHK,≥0) ∩ DTM∨,

DTM∨,≤0 := R−1
T (ModHK,≤0) ∩ DTM∨.

Then the pair (DTM∨,≥0,DTM∨,≤0) is a bounded t-structure on DTM∨. (Of course,

the realization functor is t-exact.)

Proof. Since RT is exact, DTM∨,≥0[1] ⊂ DTM∨,≥0 and DTM∨,≤0[−1] ⊂ DTM∨,≤0.

We next claim that the realization functor induces a conservative functor

DTM∨ → ModHK. (Recall again that an exact functor p : K → L between stable

∞-categories is said to be conservative if for any K ∈ K, p(K) ' 0 implies that

K ' 0.) Note that the realization functor DTM ' Mod[SpecQ/Gm]

ρ∗−→ ModHK

is induced by ρ : SpecHK → [SpecQ/Gm] (see Section 6.4). The morphism ρ

extends to ρ : SpecHK→ SpecQ. Thus the realization functor decomposes into

DTM ' Mod[SpecQ/Gm] → ModSpecQ

ρ∗−→ ModHK .

By the definition, the pullback of the projection Mod[SpecQ/Gm] → ModSpecQ

is conservative. Furthermore, the stable ∞-category ModQ admits a t-structure

(ModQ,≥0,ModQ,≤0) such that X in ModQ belongs to ModQ,≤0 if and only if

πn(X) = 0 for n > 0 (see, [29, VIII, 4.5.4]). According to [29, VIII, 4.1.11], the

composite
⋃
n∈Z ModQ,≤n → ModHK is conservative. Observe that every object

X ∈ PModQ lies in
⋃
n∈Z ModQ,≤n. To see this, note that PModQ is the smallest

stable subcategory which contains Q and is closed under retracts. Since Q be-

longs to
⋃
n∈Z ModQ,≤n, and

⋃
n∈Z ModQ,≤n is closed under retracts, we see that

PModQ ⊂
⋃
n∈Z ModQ,≤n. Therefore the composite DTM∨ ' PMod[SpecQ/Gm] →

ModHK is conservative. By using this fact, we verify the second condition of the

definition of t-structure.

It remains to show the third condition of t-structure. For this purpose, note

first that if Z ⊂ Mod[SpecQ/Gm] denotes the inverse image of
⋃
n∈Z ModQ,≤n and

f : Z → ModHK denotes the restriction of the realization functor, we have

f−1(PModHK) = PMod[SpecQ/Gm]. Clearly, f−1(PModHK) ⊃ PMod[SpecQ/Gm]

since the realization functor is symmetric monoidal. An object in Mod[SpecQ/Gm] is

dualizable if and only if its image in ModQ is dualizable. Thus it is enough to show

that g−1(PModHK) = PModQ where g :
⋃
n∈Z ModQ,≥n → ModHK. According

to [28, VIII 4.5.2(7)], we have a natural symmetric monoidal fully faithful functor⋃
n∈Z ModQ,≤n → limQ→B ModB where B runs over connective commutative ring
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spectra under Q. An object M ∈ limQ→B ModB belongs to its essential image if

and only if the image M(HK) of M in ModHK under the natural projection has

trivial homotopy groups, πm(M(HK)) = 0, for sufficiently large m� 0. Note that

every morphism Q→ B factors through Q→ HK since Q is cohomologically con-

nected. Consequently, we deduce that g−1(PModHK) ' limQ→B PModB . Thus all

objects in g−1(PModHK) are dualizable. It follows that g−1(PModHK) = PModQ.

Next consider

Mod[SpecQ/Gm],≥0 := Mod[SpecQ/Gm]×ModQ
ModQ,≥0 .

This category is presentable, by [27, 5.5.3.13]. Define Mod[SpecQ/Gm],≤0 by replac-

ing ≥ 0 on the right-hand side by ≤ 0. Then the comonad of Mod[SpecQ/Gm] �
ModQ is given by M 7→M⊗HKHK[t±] (this is checked by using right adjointabil-

ity; Lemma 4.3). Therefore we can apply [29, VII 6.20] to deduce that

(Mod[SpecQ/Gm],≥0,Mod[SpecQ/Gm],≤0)

is a t-structure. Note that since ModQ → ModHK is t-exact (by [29, VIII,

4.1.10, 4.5.4 (2)]), Mod[SpecQ/Gm] → ModHK is also t-exact. We now claim

that PMod[SpecQ/Gm] is stable under the truncations τ≥0 and τ≤0. Let M ∈
PMod[SpecQ/Gm]. Then τ≥0M and τ≤0M are contained in Z. Thus, to prove that

τ≥0M and τ≤0M belong to PMod[SpecQ/Gm], it will suffice to prove that g(τ≥0M)

and g(τ≤0M) belong to PModHK. Let Hi = τ≥i ◦ τ≤i = τ≤i ◦ τ≥i (this notation

slightly differs from the standard one). Using t-exactness, we have

Hi(g(τ≥0M)) = g(Hi ◦ τ≥0M) = g(τ≤i ◦ τ≥i ◦ τ≥0M) = g(Hi(M)) = Hi(g(M))

for i ≥ 0. It follows that Hi(g(τ≥0M))[−i] is equivalent to a finite-dimensional

K-vector space, and the set

{i ∈ Z | Hi(g(τ≥0M))[−i] 6= 0}

is finite. This implies that g(τ≥0M) lies in PModHK. Similarly, g(τ≤0M) lies in

PModHK. Therefore for any M ∈ PMod[SpecQ/Gm] we have the distinguished

triangle (at the level of homotopy category)

τ≥0M →M → τ≤−1M

such that RT (τ≥0M) ∈ ModHK,≥0 and RT (τ≤−1M) ∈ ModHK,≤0[−1], as desired.

Finally, this t-structure is clearly bounded.

Remark 7.2. The definition of t-structure in Proposition 7.1 is compatible with

the definition of motivic t-structure on the triangulated category of (all) mixed
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motives developed by Hanamura [15] (up to anti-equivalence). In [15], the expected

motivic t-structure is constructed using Grothendieck’s standard conjectures, the

Bloch–Beilinson–Murre conjecture and the Beilinson–Soulé vanishing conjecture

for smooth projective varieties.

In Proposition 7.1, by the extension of coefficients Q→ K we can replace K

by Q.

We refer to (DTM∨,≥0,DTM∨,≤0) as the motivic t-structure on DTM∨. We

let DTM♥∨ := DTM∨,≥0 ∩ DTM∨,≤0 be the heart. At first sight, it depends on the

choice of our realization functor. But the mapping space Map(SpecHK,SpecQ)

is connected since Q is cohomologically connected (cf. [29, VIII, 4.1.7]). Therefore

ρ∗ : Mod⊗
[SpecQ/Gm]

→ Mod⊗HK is unique up to equivalence.

As a by-product of the proof, we have

Corollary 7.3. In the notation of the proof of Proposition 7.1, the realization

functor induces a conservative functor f :
⋃
n∈Z Mod[SpecQ/Gm],≤n → ModHK. In

particular, DTM∨ → PModHK is conservative. Moreover, f−1(PModHK) coin-

cides with DTM∨.

Recall DTM is compactly generated. Namely, we have a natural equivalence

Ind(DTM◦) ' Ind(DTM∨) ' DTM.

Corollary 7.4. Let DTM≥0 := Ind(DTM∨,≥0) and DTM≤0 := Ind(DTM∨,≤0).

Then (DTM≥0,DTM≤0) is an accessible right complete t-structure on DTM.

Proof. This follows from Proposition 7.1, [29, VIII, 5.4.1] and [28, 1.4.4.13].

Let (Mod♥HK)⊗ be the symmetric monoidal abelian category such that the un-

derlying category is ModHK,≥0 ∩ModHK,≤0 and its symmetric monoidal structure

is induced by that of Mod⊗HK. It is (the nerve of) the symmetric monoidal category

of K-vector spaces. For an affine group scheme G over K (which can be viewed as a

derived affine group scheme over HK), we let Rep(G)⊗ be the symmetric monoidal

full subcategory z−1((Mod♥HK)⊗) of Mod⊗BG where z : Mod⊗BG → Mod⊗HK is the

natural projection determined by SpecHK → BG. We denote by Rep(G)⊗∨ the

symmetric monoidal full subcategory of Rep(G)⊗ which consists of dualizable ob-

jects. Applying the classical Tannaka duality by Saavedra, Deligne-Milne, Deligne

[33], [11], [10] to the faithful symmetric monoidal exact functor of abelain cate-

gories (DTM♥∨ )⊗ → (Mod♥HK)⊗ induced by the realization functor, we have

Corollary 7.5. There are an affine group scheme MTG over K and an equiva-

lence (DTM♥∨ )⊗
∼−→ Rep(MTG)⊗∨ of symmetric monoidal ∞-categories.
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We here give a symmetric monoidal equivalence between the abelian cat-

egory DTM♥∨ and the abelian category TMk which is constructed via the ax-

iomatic formulation in [26]. Let i be an integer. Let W≥iDTMgm ⊂ DTMgm

(resp. W≤iDTMgm ⊂ DTMgm) be the smallest stable subcategory generated by

K(n) for −2n ≥ i (resp. K(n) for −2n ≤ i). Then according to [26, Lemma

1.2], the pair (W≥iDTMgm,W≤iDTMgm) is a t-structure. Let GrWi : DTMgm →
WiDTMgm := W≥iDTMgm ∩W≤iDTMgm be the functor H0 with respect to this

t-structure. When i is even, the∞-category WiDTMgm is equivalent to the full sub-

category h(PModHK) of h(ModHK) spanned by bounded complexes of K-vector

spaces whose (co)homology is finite-dimensional. This equivalence is given by the

exact functor h(PModHK) → WiDTMgm which carries K[r] to K(−i/2)[r]. If i

is odd, WiDTMgm is zero. This gives rise to a natural symmetric monoidal ex-

act functor Gr : h(DTMgm) → h(ModHK,Z), which sends X to {GrWi (X)}i∈Z,

of homotopy categories (which are furthermore triangulated categories). The tri-

angulated category h(ModHK,Z) '
∏

Z h(ModHK) has the standard t-structure

determined by the product of the pair (ModHK,≥0,ModHK,≤0). We denote it by

(h(ModHK,Z)≥0,h(ModHK,Z)≤0). Let DTMgm,≥0 := Gr−1(h(ModHK,Z)≥0) and

DTMgm,≤0 := Gr−1(h(ModHK,Z)≤0). Then by [26, Theorem 1.4], we have

Lemma 7.6 ([26]). The pair (DTMgm,≥0,DTMgm,≤0) is a bounded t-structure,

and Gr is t-exact and conservative.

Let TMk be its heart.

Lemma 7.7. The realization functor Rgm : DTMgm → ModHK (induced by RT :

DTM→ ModHK) is t-exact.

Proof. We will show that the essential image of DTMgm,≤0 is contained in

ModHK,≤0. The dual case is similar. Let X ∈ DTMgm,≤0. Let m be the cardinality

of the set of integers i such that Hi(X)[−i] is not zero (recall our (nonstandard)

notation Hi = τ≤i ◦ τ≥i). We proceed by induction on m. If m = 0, we conclude

that X ' 0 (since the t-structure on DTMgm is bounded). Hence this case is clear.

By [26, Theorem 1.4(iii)] we see that the essential image of TMk are contained in

Mod♥HK. Hence the case m = 1 follows. Suppose that our claim holds for m ≤ n.

To prove the case when m = n+ 1, consider the distinguished triangle

Hi(X)→ X → τ≤i−1X

where i is the largest number such that Hi(X)[−i] 6= 0. Note that the functor

DTMgm → ModHK is exact, and the images of Hi(X) and τ≤i−1X are contained

in ModHK,≤0. Thus the image of X is also contained in ModHK,≤0.
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Lemma 7.8. DTMgm,≥0 (resp. DTMgm,≤0) is the inverse image of ModHK,≥0

(resp. ModHK,≤0) under Rgm : DTMgm → ModHK.

Proof. We will deal with the case DTMgm,≤0. The other case is similar. We have

already proved that Rgm is t-exact in the previous lemma. It will suffice to show

that if X does not belong to DTMgm,≤0, then Rgm(X) does not lie in ModHK,≤0.

For such X, there exists i ≥ 1 such that Hi(X) 6= 0. According to Corollary 7.3,

Rgm is conservative. By t-exactness, we deduce that Hi(Rgm(X))[−i] 6= 0. This

implies that Rgm(X) is not in ModHK,≤0, as required.

By Lemma 7.8, we have a t-exact fully faithful functor DTMgm → DTM∨, and

it induces a natural fully faithful functor TMk → DTM♥∨ between (the nerves of)

symmetric monoidal abelian categories.

Proposition 7.9. The natural inclusion TMk → DTM♥∨ is an equivalence.

Proof. Since TMk is (the nerve of) an abelian category, and in particular it is

idempotent complete, it is enough to prove that TMk → DTM♥∨ is an idempo-

tent completion. Recall that DTMgm → DTM∨ is an idempotent completion. Let

X ∈ TMk. The direct summand of X (which automatically belongs to DTM∨)

lies in DTM♥∨ by the definition of t-structure of DTM∨. Conversely, if Y ∈ DTM♥∨ ,

then there exists X ∈ DTMgm such that Y is equivalent to a direct summand

of X. Then Y is a direct summand of H0(X) ∈ TMk (note that we here use the

t-exactness of DTMgm → DTM∨). Consequently, TMk → DTM♥∨ is an idempotent

completion.

Corollary 7.10. The Tannaka dual of TMk (endowed with the realization

functor) is equivalent to MTG.

Warning 7.10.1. In [26], one works over rational coefficients. In this note, we

work over K. Therefore MTG is the base change of the Tannaka dual of the

abelian category of mixed Tate motives in [26] over Q to K.

§7.2. Completion and locally dimensional ∞-category

Let DTM⊗ → DTM
⊗

be the left completion of DTM⊗ with respect to the t-

structure (DTM≥0,DTM≤0) (we refer the reader to [28, 1.2.1.17] and [29, VIII,

4.6.17] for the notions of left completeness and left completion). It is symmetric

monoidal, t-exact and colimit-preserving. Here, the ∞-category DTM is the limit

of the diagram indexed by Z

· · · → DTM≤n+1
τ≤n−−→ DTM≤n

τ≤n−1−−−−→ DTM≤n−1
τ≤n−2−−−−→ · · ·
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of ∞-categories. Note that according to [27, 3.3.3] the ∞-category DTM can be

identified with the full subcategory of Fun(N(Z),DTM) spanned by functors φ :

N(Z)→ DTM such that

• for any n ∈ Z, φ([n]) belongs to DTM≤−n,

• for any m ≤ n ∈ Z, the associated map φ([m]) → φ([n]) gives an equivalence

τ≤−nφ([m])→ φ([n]).

Let DTM≥0 (resp. DTM≤0) be the full subcategory of DTM spanned by φ :

N(Z)→ DTM such that φ([n]) belongs to DTM≥0 (resp. DTM≤0) for each n ∈ Z.

The functor DTM → DTM induces an equivalence DTM≤0 → DTM≤0. The pair

(DTM≥0,DTM≤0) is an accessible, left complete and right complete t-structure of

DTM.

Proposition 7.11. (i) DTM≤0 is closed under filtered colimits.

(ii) The unit 1 belongs to the heart DTM
♥

:= DTM≥0 ∩ DTM≤0.

(iii) DTM≥0 and DTM≤0 are closed under the tensor product DTM × DTM →
DTM.

(iv) The unit 1 is compact in DTM≤n for each n ≥ 0.

(v) There exists a full subcategory DTM
♥
fd of DTM

♥
such that every object in

DTM
♥
fd has the dual in DTM

♥
fd, and DTM

♥
fd generates DTM

♥
under filtered

colimits.

(vi) π0(MapDTM(1, 1)) = K.

(vii) For any X ∈ DTM
♥
fd, the composite

1→ X ⊗X∨ → 1

of the coevaluation map and the evaluation map corresponds to a nonnegative

integer dim(X) ∈ Z ⊂ K.

Proof. From our construction and DTM≤0 = DTM≤0, (i) is clear. Since the unit

of DTM lies in DTM♥ := DTM≥0 ∩ DTM≤0, (ii) follows.

Next we will prove (iii). Taking into account the definition of DTM∨,≤0 and

DTM∨,≥0 and the conservativity of RT : DTM∨ → ModHK, we see that DTM∨,≤0

and DTM∨,≥0 are stable under the tensor operation. Since Ind(DTM∨,≤0) =

DTM≤0 and the tensor operation preserves colimits in each variable, we deduce

that DTM≤0 is stable under the tensor operation. Since DTM≥0 is stable under

the tensor operation of DTM, by definition we also see that DTM≥0 is stable under

the tensor operation.

The unit 1 is compact in DTM, and so is in DTM≤n for any n ∈ Z. Noting

that DTM≤n = DTM≤n, we have (iv).
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To prove (v), note first that DTM→ DTM induces equivalences
⋃
n∈Z DTM≤n

→
⋃
n∈Z DTM≤n and DTM♥ ' DTM

♥
. In particular, DTM∨ → DTM is fully

faithful. Let X ∈ DTM
♥

= DTM♥. Then X is the filtered colimit of a dia-

gram I → DTM∨,≥0 in DTM (or in DTM): colimλ∈I Xλ ' X. (Recall DTM♥ ⊂
Ind(DTM∨,≥0).) Note that Xλ ∈ DTM∨ and by definition DTM∨,≥0, DTM∨,≤0

and their hearts are stable under the tensor operation. The heart is stable under

taking dual objects. It follows that τ≤0(Xλ) = H0(Xλ) is dualizable, that is, it

belongs to DTM♥fd := DTM∨∩DTM♥ and the dual of H0(Xλ) lies in DTM♥fd. Since

τ≤0 is a left adjoint, the natural morphism colimλ τ≤0(Xλ) → τ≤0(colimλXλ) is

an equivalence. This shows that DTM♥fd generates DTM♥ = DTM
♥

under filtered

colimits.

We remark that H0,0(Spec k,K)=K. Hence (vi) holds. Finally, we prove (vii).

For any X ∈ DTM
♥
fd, the element in K corresponding to the composite 1 →

X ⊗ X∨ → 1 is equal to the element in K corresponding to RT (1) → RT (X) ⊗
RT (X)∨ → RT (1). The latter element is nothing but the dimension of RT (X),

which lies in Z.

Remark 7.12. Let C⊗ be a symmetric monoidal stable subcategory of DM⊗∨
which is closed under taking retracts and dual objects. Suppose that C⊗ admits a

nondegenerate t-structure (C≥0, C≤0) such that

• the realization functor C⊗ ⊂ DM⊗∨ → Mod⊗HK is t-exact,

• both C≥0 and C≤0 are stable under the tensor operation C × C → C.

As observed in [1, 1.3], the heart C≥0 ∩ C≤0 is a tannakian category equipped

with the realization functor as a fiber functor, and the realization functor C →
ModHK is conservative. Let Ĉ≥0 (resp. Ĉ≤0) be the left completion of Ind(C≥0)

(resp. Ind(C≤0)). Then as above the pair (Ĉ≥0, Ĉ≤0) is an accessible, both right

complete and left complete t-structure on the left completion Ĉ of Ind C (with

respect to (Ind(C≥0), Ind(C≤0))). The argument of the above proof shows that the

analogous assertions to Proposition 7.11 also hold for (Ĉ≥0, Ĉ≤0). (Consequently,

analogues of Corollary 7.13 and Proposition 7.14 also hold.)

Corollary 7.13. The symmetric monoidal ∞-category DTM
⊗

endowed with the

t-structure (DTM≥0,DTM≤0) is a locally dimensional ∞-category in the sense of

[29, VIII, 5.6].

To state the next result which follows from the theory of locally dimensional

∞-categories, we prepare some notation. We say that a commutative ring spectrum

S is discrete if πi(S) = 0 for i 6= 0. This property is equivalent to the property that

there exists a (usual) commutative ring R such that HR ' S in CAlg. Let CAlgdis
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be the∞-category of discrete commutative ring spectra. The∞-category CAlgdis is

equivalent to the nerve of the category of (usual) commutative rings (via Eilenberg–

MacLane spectra). Let S : CAlgdis → Ŝ be the functor which carries A ∈ CAlgdis

to the space Map
CAlg(Ĉat

L,st

∞ )
(DTM

⊗
,Mod⊗A) (which can be constructed from Θ of

Section 3.1 and Yoneda embedding). Let ξ : CAlgdis → Ŝ be the functor which

carries A ∈ CAlgdis to the space Map
CAlg(Ĉat

L,st

∞ )
(Mod⊗HK,Mod⊗A). Since there

exists a natural equivalence

Map
CAlg(Ĉat

L,st

∞ )
(Mod⊗HK,Mod⊗A) ' MapCAlg(HK, A)

(cf. [13, Section 5], [28, 6.3.5.18]), ξ is corepresented by HK. We here write

SpecHK for ξ. There is a sequence of functors Mod⊗HK → DTM
⊗ → Mod⊗HK

whose composite is equivalent to the identity. Therefore we have SpecHK
η−→

S→ SpecHK whose composite is the identity. Let V : CAlgdis → Ŝ be a functor

equipped with V → SpecHK. To f : HK → A in CAlgdis
HK := (CAlgdis)HK/ we

associate {f}×SpecHK(A)V (A). This yields a functor V0 : CAlgdis
HK → Ŝ. The mor-

phism η : SpecHK → S induces η0 : (SpecHK)0 → S0. Note that (SpecHK)0

is equivalent to the constant functor taking the value ∆0, that is, the final object.

The following result was essentially proved by Lurie in the context of locally

dimensional∞-categories (see [29, VIII, 5.2.12, 5.6.1, 5.6.19 and their proofs]). We

here state only the version related to Corollary 7.13, which fits in with our need.

Proposition 7.14 ([29]). Let Grpdis be the nerve of the category of (usual)

groups. Consider the functor π1(S0, η0) : CAlgdis
HK → Grpdis which is given by

A 7→ π1(S0(A), η0). Then π1(S0, η0) is represented by MTG, that is, the Tannaka

dual of (DTM♥∨ )⊗.

§7.3. Comparison theorem

Definition 7.15. Let G : CAlgHK → Grp(S) be a derived affine group scheme

over HK. Let π0 : Grp(S) → Grpdis be the truncation functor given by G 7→
π0(G). Here Grpdis denotes the nerve of the category of groups. If the composition

G′ : CAlgdis
HK ↪→ CAlgHK

G−→ Grp(S)
π0−→ Grpdis

is represented by an affine group scheme G0 over K, we say that G0 is an excellent

coarse moduli space of G. If there is an affine group scheme G0 (considered as

CAlgdis
HK → Grp(S)) and a morphism G|CAlgdis

HK
→ G0 that is universal among

morphisms into affine group schemes over K, we say that G0 is a coarse moduli

space of G. We remark that an excellent coarse moduli space is a coarse moduli

space.
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Theorem 7.16. Let MTG denote the tannakization of RT : DTM⊗∨ → PMod⊗HK

(cf. Theorem 6.12). Then MTG is an excellent coarse moduli space of MTG.

Proof. For A ∈ CAlgdis, we set ModA,≥0 = {X ∈ ModA | πi(X) = 0 for i < 0} and

ModA,≤0 = {X ∈ ModA | πi(X) = 0 for i > 0}. Then the pair (ModA,≥0,ModA,≤0)

is an accessible, left and right complete t-structure. Thus we have

Maprex

CAlg(Ĉat
L,st

∞ )
(DTM

⊗
,Mod⊗A) ' Maprex

CAlg(Ĉat
L,st

∞ )
(DTM⊗,Mod⊗A)

↪→Map
CAlg(Ĉat∞)

(DTM⊗∨ ,Mod⊗A)

where Maprex indicates the full subcategory spanned by right t-exact functors, and

the second arrow is fully faithful by Proposition 4.7. (The essential image consists

of symmetric monoidal exact functors which are right t-exact.) Note that RT :

DTM⊗ → Mod⊗HK is t-exact, and it belongs to Maprex

CAlg(Ĉat
L,st

∞ )
(DTM⊗,Mod⊗A).

Consider the automorphism group functor Aut(RT ) : CAlgHK → Grp(S) of

RT : DTM⊗∨ → PMod⊗HK in CAlg(Catst
∞) (we abuse notation for RT ). According

to Theorem 6.12, Aut(RT ) is represented by MTG. On the other hand, using the

above equivalence and unfolding the definitions of π1(S0, η0) and Aut(RT ), we see

that the composite

CAlgdis
HK ↪→ CAlgHK

Aut(RT )−−−−−→ Grp(S)
π0−→ Grpdis

is equivalent to π1(S0, η0). Combining this with Proposition 7.14 we complete the

proof.

Remark 7.17. The truncation procedure given in [19, Section 5] also allows us

to construct the (usual) affine group scheme MTG ′ = SpecH0(τB) over K from

MTG = SpecB where B is a commutative differential graded algebra. Here we

adopt the notation of [19, Section 5]. This MTG ′ coincides with the above MTG .

To observe this, we invoke τ of [19] to have Spec τB, and we regard Spec τB

as a functor CAlgdis
HK → Grp(S). As functors CAlgdis

HK → Grp(S), Spec τB and

SpecB are equivalent. Also, let us regard MTG as a functor CAlgdis
HK → Grp(S).

Then we have a natural morphism Spec τB → MTG . Also, the composition with

Spec τB → MTG induces an equivalence of spaces

MapFun(CAlgdis
HK,Grp(S))(MTG,F )→ MapFun(CAlgdis

HK,Grp(S))(Spec τB, F )

for any F : CAlgdis
HK → Grpdis ⊂ Grp(S). On the other hand, by the construction

in [19], Spec τB → MTG ′ is universal among morphisms to usual affine group

schemes over K. Hence MTG ' MTG ′.
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§8. Artin motives and absolute Galois group

Let Gk denote the absolute Galois group Gal(k̄/k) with k̄ an algebraic closure

of a perfect field k. For the sake of completeness, we will construct a natural

homomorphism
MGE → Gk

where MGE is the derived motivic Galois group. This represents the automorphism

functor of RE : DM⊗∨ → PMod⊗HK. Here DM⊗∨ denotes the symmetric monoidal

full subcategory of DM⊗ spanned by dualizable objects. To this end, we consider

the full subcategory of DM which consists of Artin motives, and we will finish by

proving that its tannakization is the absolute Galois group (Proposition 8.3).

Let CorK,0 be the full subcategory of CorK spanned by smooth schemes X

which are étale over Spec k. We write simply Cor0 and Cor for CorK,0 and CorK re-

spectively. The classical Galois theory says that the category of schemes which are

étale over k is equivalent to the category of finite Gk-sets. Consequently, we easily

see that there is a fully faithful functor Cor0 → K[Gk]-Mod which carries X to

the K-vector space generated by the set X(k̄) endowed with an action of Gk. Here

K[Gk]-Mod denotes the category of K[Gk]-modules, i.e. abelian groups equipped

with (left) actions of K[Gk]. The essential image consists of permutational repre-

sentations (see [38, p. 216]).

Let ι : Cor → Cor0 be the left adjoint of the inclusion Cor0 ↪→ Cor. The

functor ι carries X to the Zariski spectrum of the integral closure of k in Γ(X).

Let PSh(Cor0) be the category of presheaves (of K-vector spaces) with transfers,

that is, the category of K-linear functors (Cor0)op → K-Vect where K-Vect is the

category of K-vector spaces. Note that PSh(Cor0) contains Cor0 as a full subcate-

gory by the enriched Yoneda lemma [24]. There is a symmetric monoidal structure

on PSh(Cor0) which makes Cor0 ↪→ PSh(Cor0) symmetric monoidal such that

the tensor product PSh(Cor0)×PSh(Cor0)→ PSh(Cor0) preserves small colimits

separately in each variable. Such a symmetric monoidal structure is usually called

Day convolution [8]. This exhibits PSh(Cor0) as a symmetric monoidal abelian

category. We define Sh(Cor) to be the symmetric monoidal category of Nisnevich

sheaves with transfer (see [6]). Composition with ι and sheafification induces a

symmetric monoidal functor PSh(Cor0)→ Sh(Cor). This gives rise to a functor

Comp(PSh(Cor0))→ Comp(Sh(Cor)).

Let us equip the category Comp(Sh(Cor)) with the model structure given in [6, 2.4],

in which weak equivalences are quasi-isomorphisms. We equip Comp(PSh(Cor0))

with the model structure of [6, 2.5] by choosing the descent structure (G,H) in [6,

2.2] as G := sheaves represented by objects in Cor0, and H = {0}. Then by [6, 2.14]
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the above functor is a left Quillen adjoint symmetric monoidal functor. Hence we

take its localization and obtain the symmetric monoidal colimit-preserving functor

N(Comp(PSh(Cor0))c)⊗∞ → N(Comp(PSh(Cor))c)⊗∞

of symmetric monoidal ∞-categories. By the construction of DM (cf. [6, 7.15])

there is a natural symmetric monoidal colimit-preserving functor

N(Comp(Sh(Cor))c)⊗∞ → DM⊗

which is induced by localization with respect to A1-homotopy equivalence and by

stabilization with respect to the Tate sphere. Thus by composition we obtain the

symmetric monoidal functor

A : Q⊗ := N(Comp(PSh(Cor0))c)⊗∞ → DM⊗ ' SpTate(HK)⊗.

The image of the inclusion Cor0 ↪→ Comp(PSh(Cor0)) is contained in

Comp(PSh(Cor0)c). Let Art(k) be the smallest stable idempotent complete subcat-

egory which contains its essential image. Alternatively, if we let A be the triangu-

lated thick subcategory of h(Q) generated by the essential image of Cor0 → h(Q),

then Art(k) ' Q ×h(Q) A. Observe that by elementary representation theory and

the fully faithful embedding Cor0 ⊂ Gk-Mod, the idempotent completion Cor∼0 of

Cor0 (in PSh(Cor0)) can be identified with the abelian category of discrete rep-

resentations of Gk (that is, actions ρ : Gk → Aut(V ) of Gk on finite-dimensional

K-vector spaces V that factor through some finite quotient Gk → H). The abelian

category Cor∼0 is semisimple. Hence the stable subcategory Art(k) of Q is spanned

by bounded complexes C such that Cn belongs to Cor∼0 for each n ∈ Z (indeed

such complexes are cofibrant). Note that the symmetric monoidal structure of Q⊗

induces the symmetric monoidal structure of Art(k). According to [38, 3.4.1] and

Voevodsky’s cancellation theorem together with [19, Lemma 5.8], we deduce:

Lemma 8.1. The natural functor Art(k)→ DM is fully faithful.

We identify Art(k)⊗ with a symmetric monoidal full subcategory of DM⊗ and

refer to it as the∞-category of Artin motives. We remark that Art(k) is contained

in the full subcategory of DM spanned by compact objects.

We regard Gk as a limit lim(Gal(L/k)) where L runs through all finite Ga-

lois extensions L of k. Let Gal(L/k)-Perm be the K-linear category of permu-

tational representations. We define PSh(Gal(L/k)-Perm) to be the symmetric

monoidal category of presheaves (of K-vector spaces) on Gal(L/k)-Perm in the

same way as PSh(Cor0). Let us equip the category Comp(PSh(Gal(L/k)-Perm))

with the symmetric monoidal model structure given in [6, 2.5, 3.2] by choosing

the descent structure (G,H) of [6, 2.2] as G := sheaves represented by objects
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of Gal(L/k)-Perm and H = {0}. Let Gal(L/k)-Perm∼ be the idempotent com-

pletion of Gal(L/k)-Perm which can be identified with the abelian category of

finite-dimensional representations of Gal(L/k). Let AL be the stable subcategory

of BL := N(Comp(PSh(Gal(L/k)-Perm))c)∞ spanned by bounded complexes C

such that Cn lies in Gal(L/k)-Perm∼ for each n ∈ Z. The full subcategory AL
is a symmetric monoidal full subcategory of B⊗L (spanned by dualizable objects).

The quotient homomorphism πL : Gk → Gal(L/k) naturally induces a symmetric

monoidal functor PSh(Gal(L/k)-Perm) → PSh(Cor0) which is a left Kan exten-

sion of the natural functor ξ : Gal(L/k)-Perm ↪→ Cor0 ↪→ PSh(Cor0). This left

adjoint is given by the formula M 7→ colimHσ→M ξ(Hσ) where Hσ is a presheaf

represented by σ ∈ Gal(L/k)-Perm and Hσ → M runs through the overcategory

Gal(L/k)-Perm/M . This gives rise to a symmetric monoidal colimit-preserving

functor

Comp(PSh(Gal(L/k)-Perm))→ Comp(PSh(Cor0)).

By the definition of the model structures this is a left Quillen adjoint, and we

obtain a symmetric monoidal colimit-preserving functor

N(Comp(PSh(Gal(L/k)-Perm))c)⊗∞ → Q⊗ = N(Comp(PSh(Cor0))c)⊗∞.

Taking account of all finite Galois extensions L we have

f : colimL(A⊗L )→ Art(k)⊗.

Lemma 8.2. The functor f is an equivalence of symmetric monoidal ∞-cate-

gories.

Proof. By [28, 3.2.3.1, 4.2.3.5] we can regard the underlying ∞-category of

colimL(A⊗L ) as a colimit of the diagram of the underlying ∞-categories AL in

Cat∞. Moreover, the filtered colimit of the stable ∞-categories AL is also stable

[28, 1.1.4.6]. Thus by [19, Lemma 5.8] it is enough to observe that f : colimL(AL)→
Art(k) induces an equivalence of their homotopy categories. Clearly, f is essentially

surjective. By computing the hom sets in the homotopy category we see that f

induces a fully faithful functor h(AL) → h(Art(k)) of homotopy categories for

each L.

Let R′ : Art(k)⊗ → PMod⊗HK be the composition of Art(k)⊗ → DM⊗∨ and the

realization functor R : DM⊗∨ → PMod⊗HK associated to a mixed Weil theory E. We

study the automorphism group of R′. We will show that it is represented by Gk.

Here for a finite Galois extension L, we regard Gal(L/k) as the constant derived

affine group scheme over HK and we think of Gk as the limit of derived affine

group schemes Gal(L/k).
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Let Ét/k be the category of étale schemes over k. There is a natural functor

Ét/k → Cor0 determined by graphs. Then we have the composition

Ét/k → Cor0 → Art(k)→ PModHK

where the second functor is the natural functor induced by Cor0 →
Comp(PSh(Cor0)). (We often do not indicate taking the simplicial nerves of the

ordinary categories.) Note that the second functor is fully faithful. The essen-

tial image is contained in the heart of PModHK with respect to the standard

t-structure, that is, the category of K-vector spaces (the standard t-structure is

determined by a pair of full subcategories: the first consists of spectra which are

concentrated in nonnegative degrees, and the second consists of spectra which are

concentrated in nonpositive degrees). Then this gives rise to Ét/k → K-Vect.

Now suppose that the mixed Weil theory E is either l-adic étale cohomol-

ogy theory or Betti cohomology, see [7] (K depends on the choice of a mixed

Weil cohomology theory). Then Ét/k → K-Vect carries X to the K-vector space

generated by the set of X(k̄) (k̄ is the algebraic closure). Applying [30, 6.5] (af-

ter taking the dual vector spaces) we see that there exists a unique extension

Cor0 → K-Vect of Ét/k → K-Vect. Such a functor Cor0 → K-Vect is given

by Cor0 ' K[Gk]-Perm → K-Vect where K[Gk]-Perm denotes the category of

permutational representations and the second functor is the forgetful functor (it

is also symmetric monoidal). Consequently, the restriction Cor∼0 → K-Vect of

Art(k)→ PModHK to Cor∼0 (contained in Art(k) as a symmetric monoidal full sub-

category) is equivalent to the forgetful functor K[Gk]-rep→ K-Vect as a symmet-

ric monoidal functor. Here K[Gk]-rep is the category of finite-dimensional discrete

representations of Gk. The stable ∞-category AL has the standard t-structure,

whose heart is Gal(L/k)-Perm∼. Recall that this idempotent completion is equiv-

alent to the category of finite-dimensional representations of Gal(L/k). The com-

position A⊗L → Art(k)⊗ → PMod⊗HK induces a (K-linear) symmetric monoidal

functor (Gal(L/k)-Perm∼)⊗ → K-Vect⊗ which we can identify with the forget-

ful functor. According to the main theorem in [13, Section 5] together with the

classical Tannaka duality (cf. [11]), A⊗L → PMod⊗HK is equivalent to the forgetful

functor PRep⊗Gal(L/k) → PMod⊗HK.

Proposition 8.3. The absolute Galois group Gk is the tannakization of Art⊗(k)

→ PMod⊗HK.

Proof. By Lemma 8.2, we are reduced to showing that the tannakization of the

forgetful functor A⊗L → PMod⊗HK is the constant finite group scheme Gal(L/k)

over HK. Our claim follows from Corollary 4.9.
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[6] D.-C. Cisinski and F. Déglise, Local and stable homological algebra in Grothendieck abelian
categories, Homotopy Homology Appl. 11, (2009), 219–260. Zbl 1175.18007 MR 2529161

[7] , Mixed Weil cohomologies, Adv. Math. 230 (2012), 55–130. Zbl 1244.14014
MR 2900540

[8] B. Day, On closed categories of functors, in Reports of the Midwest Category Seminar,
Lecture Notes in Math. 137, Springer, 1970, 1–38. Zbl 0203.31402 MR 0272852
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[32] O. Röndigs and P. A. Østvær, Modules over motivic cohomology, Adv. Math. 219 (2008),
689–727. Zbl 1180.14015 MR 2435654

[33] N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Math. 265, Springer, 1972.
Zbl 0241.14008 MR 0338002

[34] M. Spitzweck, Periodizable motivic ring spectra, arXiv:0907.1510v2 (2009).

[35] , Derived fundamental groups for Tate motives, arXiv:1005.2670v2 (2010)

[36] T. Terasoma, DG-categories and simplicial bar complexes, Moscow Math. J. 10 (2010),
231–267. Zbl 1215.14015 MR 2668834
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