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Optimal low-degree hardness of
maximum independent set

Alexander S. Wein

Abstract. We study the algorithmic task of finding a large independent set in a sparse Erdős–
Rényi random graph with n vertices and average degree d . The maximum independent set
is known to have size .2 log d=d/n in the double limit n ! 1 followed by d ! 1, but
the best known polynomial-time algorithms can only find an independent set of half-optimal
size .logd=d/n. We show that the class of low-degree polynomial algorithms can find indepen-
dent sets of half-optimal size but no larger, improving upon a result of Gamarnik, Jagannath,
and the author. This generalizes earlier work by Rahman and Virág, which proved the analogous
result for the weaker class of local algorithms.

1. Introduction

We consider the problem of finding a large independent set (i.e., a set of vertices
such that no two are adjacent) in the sparse Erdős–Rényi graph G.n; d=n/, where
each of the

�
n
2

�
potential edges on vertex set Œn� occurs independently with probabil-

ity d=n. In the double limit n! 1 followed by d ! 1, the largest independent
set Smax is known to have asymptotic size .2 log d=d/n. More precisely, as n!1
with d > 0 fixed we have 1

n
jSmaxj ! ˛d with high probability, for some ˛d satisfying

˛d D .1C od .1//.2 log d=d/ as d !1 [6, 20]. We will be interested in the asso-
ciated algorithmic task: give a polynomial-time algorithm that takes as input a graph
drawn from G.n; d=n/ and outputs (with high probability) a large independent set.
We assume d is known to the algorithm, although it can be estimated easily from the
total number of edges. The influential work of Karp [31] showed that a simple greedy
algorithm can find an independent set of asymptotic size .log d=d/n, which is half
of the optimum. Decades later, we still do not know a polynomial-time algorithm to
find an independent set of size .1C "/.log d=d/n for any fixed " > 0 (independent
of both d and n). Moreover, evidence has emerged to suggest that no such algorithm
exists. It was shown by Coja-Oghlan and Efthymiou [15] (building on [1]) that the
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independent sets of size larger than half-optimal are “clustered” in a way that implies
slow mixing of the Metropolis process for sampling such sets. Furthermore, it was
shown by Rahman and Virág [39] (building on [24, 33]) that the class of local algo-
rithms can find independent sets of half-optimal size and no larger. Here, a local
algorithm (also called i.i.d. factors) allows each vertex to decide whether or not to
include itself in the set based only on its local neighborhood in the graph (of constant
radius) along with i.i.d. random variables attached to the vertices (see Section 3 for a
formal definition).

The above results suggest that .logd=d/n may be the fundamental limit for poly-
nomial-time algorithms. In this work we provide further evidence for this by showing
that .logd=d/n is the fundamental limit for the class of low-degree polynomial algo-
rithms (to be defined formally in the next section) where each vertex’s membership
(or non-membership) in the independent set is determined by thresholding a low-
degree multivariate polynomial of the edge-indicator variables that describe the input
graph. This class of low-degree algorithms includes the class of local algorithms
mentioned above (see Remark 3.2), and also (as discussed in [22, Appendix A])
includes other popular algorithmic paradigms such as approximate message passing1

(e.g., [7,18,30,35,37]) and power iteration2. Furthermore, starting from the influential
line of work [5, 26, 27, 29], it has been established that low-degree algorithms (with
degree logarithmic in the dimension) are precisely as powerful as the best known
polynomial-time algorithms for a number of problems in high-dimensional statistics
including planted clique, sparse PCA, community detection, tensor PCA, and many
others [3,4,11,12,14,17,26,27,29,32,34,41]. Thus, failure of low-degree algorithms
is a form of concrete evidence for computational hardness of statistical problems. For
more on low-degree algorithms, we refer the reader to [32] (for a survey on the setting
of hypothesis testing), [41] (for the setting of estimation), or [22] (for the setting of
random optimization problems, which is the relevant setting for this work).

Most prior work on low-degree algorithms has focused on problems with a “plant-
ed” signal, in which case failure of low-degree algorithms can be shown via a direct
linear-algebraic computation. This technique does not apply to “non-planted” prob-
lems such as the maximum independent set problem that we consider here, and so
a different approach is needed which leverages structural properties of the solution

1Notably, approximate message passing (AMP) algorithms include the algorithms of [18,
37] (which build on the earlier works [2, 42]) for optimizing the Sherrington–Kirkpatrick and
p-spin models of spin glasses.

2Notably, low-degree algorithms capture power iteration on any matrix that is itself low-
degree in the input. This allows for non-trivial spectral methods such as the tensor unfolding
method for tensor PCA [28, 40], which outperforms more “standard” algorithms such as mes-
sage passing and gradient descent [8, 40].
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space (see Section 1.2). For non-planted problems, the first results for low-degree
algorithms were given by Gamarnik, Jagannath, and the author [22] (building on [21]),
who showed that low-degree algorithms cannot find independent sets of size exceed-
ing .1C 1=

p
2/.logd=d/n inG.n;d=n/. Here we improve this to the optimal thresh-

old .logd=d/n. We also provide the matching positive result, showing that .logd=d/n
is achievable by low-degree algorithms (following a proof sketch given in [22]). This
is the first non-planted problem for which matching upper and lower bounds have
been obtained on the objective value attainable by low-degree algorithms (apart from
trivial cases where the global optimum value can be reached). One conceptual advan-
tage of our results over the existing results for local algorithms is that low-degree
algorithms offer a unified framework to explain computational hardness in a wide
variety of high-dimensional problems, whereas local algorithms are specific to prob-
lems involving sparse graphs. This is exemplified by the fact that our impossibility
result can be extended to the case of dense graphs such as G.n; 1=2/; see Section 1.3.

1.1. Main results

We now formally define the problem setup, following [22]. We say that a function
f WRm ! Rn is a polynomial of degree (at most) D if it may be written in the form

f .Y / D .f1.Y /; : : : ; fn.Y //; (1)

where each fi WRm ! R is a multivariate polynomial (in the usual sense) of degree
at most D with real coefficients. We also define a random polynomial f WRm ! Rn

in the same way but where the coefficients may be random (but independent from the
input Y ): formally, for some probability space .�;P!/, f is a map f WRm ��!Rn

such that f .�; !/ is a degree-D polynomial for each “seed” ! 2 �. (We will see that
randomness does not actually help; see Lemma 2.11.)

For our purposes, the input to f will be an n-vertex graph encoded as Y 2 ¹0; 1ºm

with m D
�
n
2

�
, where each entry of Y is the indicator variable for the presence of a

particular edge. We write Y � G.n; d=n/ for an Erdős–Rényi graph, i.e., the entries
of Y are i.i.d. Bernoulli.d=n/.

We need to define what it means for a polynomial f WRm ! Rn to find an inde-
pendent set in a graph Y . Instead of asking f .Y / to be the indicator vector of an
independent set, we relax this somewhat and ask only for a “near-indicator vec-
tor” of a “near-independent set”. More precisely, the following “rounding” procedure
from [22] will be used to extract an independent set from the output of f .

Definition 1.1. Let f WRm ! Rn be a random polynomial with m D
�
n
2

�
. For Y 2

¹0; 1ºm, and � � 0, let V �
f
.Y; !/ be the independent set in the graph Y obtained by
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the following procedure. Let

A D ¹i 2 Œn� W fi .Y; !/ � 1º;

zA D ¹i 2 A W i has no neighbors in A in the graph Y º;

and
B D ¹i 2 Œn� W fi .Y; !/ 2 .1=2; 1/º:

Then define

V
�

f
.Y; !/ D

(
zA if jA n zAj C jBj � �n;
; otherwise.

(2)

Informally speaking, fi should output a value � 1 to indicate that vertex i is in
the independent set and should output a value � 1=2 to indicate that it is not; the
set A can be thought of as a candidate independent set. We allow a small number of
“errors”: there can be up to �n vertices where either fi .Y / 2 .1=2; 1/ (this happens
for i 2 B) or the independent set constraint is violated (this happens for i 2 A n zA).
Vertices that violate the independent set constraint (that is, i 2 A n zA) are thrown out,
and if too many errors are made then the output is the empty set ; (which is thought of
as a “failure” event). While the choice of thresholds 1 and 1=2 is somewhat arbitrary,
the interval .1=2; 1/ of disallowed outputs is important for our impossibility result
(Theorem 1.3), as this ensures that a small change in f .Y; !/ cannot induce a large
change in the resulting independent set V �

f
.Y; !/ without encountering the failure

event ;. On the other hand, our achievability result (Theorem 1.4) will give a low-
degree polynomial for which most outputs fi .Y / lie in ¹0; 1º exactly, i.e., it succeeds
even under the more stringent definitions

A D ¹i 2 Œn� W fi .Y; !/ D 1º and B D ¹i 2 Œn� W fi .Y; !/ … ¹0; 1ºº:

Definition 1.2. For parameters k > 0, ı 2 Œ0; 1�,  � 1, and � > 0, a random poly-
nomial f W Rm ! Rn is said to .k; ı; ; �/-optimize the independent set problem
in G.n; d=n/ if the following are satisfied when Y � G.n; d=n/:

� EY;!
�
kf .Y; !/k2

�
� k, and

� PY;!
�
jV
�

f
.Y; !/j � k

�
� 1 � ı.

Here, k is the size of the independent set that is produced, ı is the algorithm’s
failure probability,  is a normalization parameter, and � is the error tolerance of the
rounding procedure V �

f
.

We now state our main results. Theorem 1.3 shows that no low-degree polynomial
can find an independent set of size .1C "/ logd

d
n, while Theorem 1.4 shows that some

low-degree polynomial can find an independent set of size .1 � "/ logd
d
n. The proofs
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are given in Sections 2 and 3, respectively. The results are interpreted in the remarks
below.

Theorem 1.3 (Impossibility). For any " > 0, there exists d� > 0 such that for any
d � d�, there exists n� > 0, � > 0, C1 > 0, and C2 > 0 (depending on "; d ) such
that the following holds. Let n � n�,  � 1, and 1 � D � C1n

 logn , and suppose ı � 0
satisfies

ı � exp.�C2D logn/: (3)

Then for k D .1C "/ logd
d
n, there is no random degree-D polynomial that .k; ı; ; �/-

optimizes the independent set problem in G.n; d=n/.

We emphasize that the constants �; C1; C2 above do not depend on n or D.

Theorem 1.4 (Achievability). For any " > 0 there exists d� > 0 such that for any
d � d� and any � > 0 there exists n� > 0, D > 0,  � 1, and C > 0 (depending
on "; d; �) such that the following holds for all n � n�. For k D .1 � "/

logd
d
n and

ıD exp.�Cn1=3/, there exists a (deterministic) degree-D polynomial that .k; ı; ;�/-
optimizes the independent set problem in G.n; d=n/.

Remark 1.5. The results are non-asymptotic but can be thought of as capturing the
double limit n ! 1 followed by d ! 1. In other words, d is a large constant
depending on ", and n must then be chosen sufficiently large (where “sufficiently
large” depends on d ). In the sequel, asymptotic notation such as O.�/ pertains to the
limit n!1 with all other parameters fixed; parameters not depending on n are con-
sidered “constants”.

Remark 1.6. The “tolerance” parameter � should be thought of as a small constant.
The impossibility result shows that some � > 0 (depending on "; d ) is not achiev-
able (for very small failure probability ı verifying (3); see Remark 1.7), whereas the
achievability result shows that any � > 0 is achievable. The “normalization” parame-
ter  should be thought of as a large constant. The impossibility result shows that any
 � 1 is not achievable (again, for small ı), whereas the achievability result shows
that some  � 1 (depending on "; d; �) is achievable.

Remark 1.7. Typically, when proving impossibility results for low-degree algorithms,
the goal is to rule out any degree D D O.log n/ because polynomials of this degree
can capture the best known algorithms for a wide array of problems. In our case, a
constant degree D (depending on "; d; �) is sufficient for the achievability result. On
the other hand, our impossibility result rules out a much wider range of D values:
D . n= logn.

However, the requirement (3) gives an additional tradeoff between D and the
failure probability ı. This is present for technical reasons, and ideally we would



A. S. Wein 226

replace (3) by a milder condition such as ı D o.1/. Still, note that the parameters
D D O.1/ and ı D exp.��.n1=3// in our achievability result lie well within the
set of .D; ı/ pairs ruled out by our impossibility result. More explicitly, if D > 0

and  � 1 are constants and ı D exp.�Cn1=3/ for a constant C > 0 (these are the
parameters from the achievability result), then (3) is satisfied for all sufficiently large n
(that is, for all n � n� where n� is a constant depending on D; ; C and on the con-
stant C2 from (3)).

Remark 1.8. In the achievability result, the value of ı can likely be improved from
exp.�Cn1=3/ to exp.�Cn/. This can perhaps be accomplished by using the powerful
machinery of [9] in place of Corollary 3.5, but we do not attempt this here.

1.2. Proof techniques

We now give an overview of the proof techniques and discuss their relation to prior
work. We first discuss the achievability result (Theorem 1.4). It is known already that
local algorithms can find independent sets of size .1 � "/ logd

d
n [39]. Our proof trans-

fers this to a result about low-degree algorithms by showing that any local algorithm
can be well-approximated by a constant-degree polynomial. A proof sketch of this
reduction was given already in Appendix A of [22], but here we give the full details
and determine the values of the parametersD;ı; ; �. The main difficulty lies in estab-
lishing that the failure probability ı is very small; for this we appeal to a result of [10]
that gives tail bounds for certain “local” functions on sparse random graphs.

We now discuss the impossibility result (Theorem 1.3), which is our main contri-
bution. This result falls into a line of work initiated by Gamarnik and Sudan [24], who
showed that local algorithms fail to find independent sets larger than .1C1=

p
2/

logd
d
n.

Their proof harnessed the so-called overlap gap property (OGP): in a typical graph
drawn from G.n; d=n/, there are no two independent sets that each have size exceed-
ing .1C 1=

p
2/

logd
d
n and have intersection size (“overlap”) roughly logd

d
n. They used

an interpolation argument to show that if a hypothetical local algorithm were to suc-
ceed at finding independent sets larger than .1 C 1=

p
2/

logd
d
n, this could be used

to construct two independent sets violating the OGP, leading to a contradiction. This
proof technique was subsequently extended in two important ways. First, Rahman and
Virág [39] improved the threshold for failure of local algorithms down to logd

d
n, which

is optimal. The proof involves establishing a more intricate “forbidden” structure that
involves many independent sets with a particular intersection pattern (in contrast to
the OGP, which involves only two sets). Again, a hypothetical local algorithm can
be used to construct this forbidden structure, leading to a contradiction. This idea
inspired further work in the area of random constraint satisfaction problems [16, 23].
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A separate line of work [13, 21, 22] extended the ideas of Gamarnik and Sudan [24]
in a different direction: instead of the basic OGP discussed above, they consider an
“ensemble” variant of OGP in which a particular overlap between two large indepen-
dent sets is forbidden even when the independent sets do not come from the same
graph but from two correlated random graphs. This variant of OGP can be used not
only to rule out local algorithms, but also to rule out any sufficiently “stable” algo-
rithm (which roughly means that a small change to the input only causes a small
change to the output); this idea was used by [21] to rule out message-passing algo-
rithms and later by [22] to show that low-degree algorithms – which are stable –
cannot find independent sets larger than .1C 1=

p
2/

logd
d
n.

To prove our impossibility result, we combine the two main ideas discussed above:
we consider a forbidden structure that involves many independent sets and also involves
many correlated random graphs. The crux of the proof lies in the specific choice of
this forbidden structure (see Proposition 2.3), which is carefully chosen so that (i)
with high probability, no instance of this structure occurs, and (ii) a hypothetical
stable algorithm can be used to construct an instance of this structure, leading to a
contradiction. On a technical level, our forbidden structure is quite different from the
one used by Rahman and Virág [39] in that theirs is highly symmetric, e.g., any two
of the sets involved have the same intersection size. This is suitable for their purposes
because due to special properties of local algorithms, a hypothetical local algorithm
can be used to construct such a symmetric collection of sets. In our case, however, it
is not clear that a hypothetical low-degree algorithm can be used to construct a sym-
metric collection of sets; we instead define a new class of forbidden structures that are
not necessarily symmetric. Finally, we remark that the only property of low-degree
polynomials that we use is their “stability” (in the sense of Proposition 2.6), and so
the proof actually rules out all “stable” algorithms.

1.3. Extensions and future directions

In this work we have given the first techniques for obtaining sharp impossibility results
for low-degree algorithms in random optimization problems (with no planted signal).
Hopefully these techniques can be adapted to other non-planted settings such as ran-
dom constraint satisfaction problems (e.g., [1, 16, 23]) and spin glass optimization
problems [18, 21, 22, 37, 42]. Low-degree algorithms are a promising candidate for a
unified framework to explain computational hardness in a wide array of non-planted
problems, analogous to the more established low-degree framework for planted prob-
lems.

One possible extension of our results is to consider the same independent set prob-
lem but in denser graphs. For instance, in G.n; 1=2/ the largest independent set has
size 2 log2 n, but the best known polynomial-time algorithm is a simple greedy algo-
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rithm which can find an independent set of half-optimal size log2 n [31]. An argument
nearly identical to the proof of Theorem 1.3 yields the following result which shows
that low-degree algorithms cannot improve upon this.

Theorem 1.9. For any " > 0 there exists n� > 0, z� > 0, C1 > 0, and C2 > 0 (depend-
ing on ") such that the following holds. Let n � n�,  � 1, and 1 �D � C1 log2 n


, and

suppose ı � 0 satisfies
ı � exp.�C2D � 2 logn/:

Then for k D .1C "/ log2 n and � D z� log2 n=n, there is no random degree-D poly-
nomial that .k; ı; ; �/-optimizes the independent set problem in G.n; 1=2/.

However, the matching achievability result remains open: it is not clear how to
write the greedy algorithm as a low-degree polynomial or otherwise give a low-degree
algorithm that finds an independent set of size .1� "/ log2 n. We expect that it should
be possible to obtain such a low-degree algorithm (perhaps of degree D D O.log n/
and failure probability ı D exp.��.log2 n//) via the approximate message passing
framework, which has been successful in other non-planted settings [18, 19, 37, 38].

Notation

Asymptotic notation such as o.1/ or �.n/ pertains to the limit n!1 with all other
parameters (such as d ) held fixed; in other words, parameters not depending on n are
considered “constants” and may be hidden by this notation. On the other hand, od .1/
denotes a quantity that depends on d but not n, and tends to 0 as d !1 (with all
other parameters held fixed).

Throughout, we will use the shorthand m D
�
n
2

�
and ˆ D logd

d
n. We define Œn� D

¹1; 2; : : : ; nº and use k � k for the `2-norm of a vector. All logarithms use the natural
base unless stated otherwise. All graphs are assumed to have no self-loops nor parallel
edges.

2. Proof of impossibility

In this section we prove our main impossibility result (Theorem 1.3) which shows that
low-degree algorithms cannot find independent sets of size .1C "/ logd

d
n.

2.1. Interpolation path

Here we define a sequence of correlated random graphs that will be central to the
argument. We will represent a graph on vertex set Œn� by Y 2 ¹0; 1ºm where m D

�
n
2

�
.
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Here Y1; : : : ; Ym are indicator variables for the edges (where 0 indicates a non-edge
and 1 indicates an edge), listed in some fixed but arbitrary order.

Definition 2.1. For T 2 N, consider the length-T interpolation path Y .0/; : : : ; Y .T /

sampled as follows. First, Y .0/ � G.n; d=n/. Then for 1 � t � T , Y .t/ is obtained
from Y .t�1/ by resampling coordinate �.t/ 2 Œm� from Bernoulli.d=n/. Here �.t/ D
t � ktm, where kt is the unique integer for which 1 � �.t/ � m.

2.2. Forbidden structures

The proof will hinge on the non-existence of certain structures (primarily the one
defined in Proposition 2.3) with high probability over the interpolation path. The fol-
lowing standard bounds will be used repeatedly:�

n

k

�
�

�en
k

�k
for all integers 1 � k � n; (4)

.1 � x/r � exp.�rx/ for all x 2 R; r > 0: (5)

We start with a well-known upper bound on the size of the maximum independent
set in G.n; d=n/.

Lemma 2.2. Fix " > 0. If d > 0 is a sufficiently large constant (depending on "),
then with probability 1 � exp.��.n// there is no independent set in G.n; d=n/ of
size exceeding .2C "/ logd

d
n.

Lemma 2.2 is a folklore result that can be proved via a straightforward first moment
calculation. We include the proof for completeness.

Proof. Let ˆ D logd
d
n and define a � 2C " so that aˆ D d.2C "/ˆe. Let N denote

the number of independent sets of size exactly aˆ; our goal is to show N D 0 with
high probability. The proof will use a simple first moment method: we compute EŒN �

and show that it is exponentially small. We have

EŒN � D

�
n

aˆ

�
.1 � d=n/.

aˆ
2 /

�

�
en

aˆ

�aˆ
exp

�
�
d

n

�
aˆ

2

��
using (4) and (5)

D exp
�
aˆ log

�
ed

a log d

�
�
da2ˆ2

2n
CO.1/

�
D exp

�
ˆ log d

�
a �

a2

2
C o.1/C od .1/

��
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� exp
�
ˆ log d

�
� "C o.1/C od .1/

��
using a � 2C "

D exp.��.n//

for sufficiently large d . The result follows by Markov’s inequality.

The forbidden structure defined in the following result will be the crux of the
proof.

Proposition 2.3. Fix constants " > 0 and K 2 N with K � 1 C 5="2. Consider
the interpolation path Y .0/; : : : ; Y .T / from Definition 2.1, of any length T D nO.1/.
If d > 0 is a sufficiently large constant (depending on "; K), then with probability
1 � exp.��.n// there does not exist a sequence of sets S1; : : : ; SK � Œn� satisfying
the following properties:

(i) for each k 2 ŒK� there exists 0 � tk � T such that Sk is an independent set
in Y .tk/,

(ii) jSkj � .1C "/
logd
d
n for all k 2 ŒK�, and

(iii) jSk n .[`<k S`/j 2
�
"
4

logd
d
n; "

2
logd
d
n
�

for all 2 � k � K.

Proof. Let N denote the number of sequences .S1; : : : ; SK/ satisfying the proper-
ties (i)–(iii). The proof will use the first moment method: we compute EŒN � and show
that it is exponentially small. Let ˆ D logd

d
n. Let ak and bk be defined by

jSkj D akˆ and jSk n .[`<k S`/j D bkˆ;

and note that (ii) and (iii) state that ak � 1C " and bk 2
�
"
4
; "
2

�
. Also let c be defined

by j [k Skj D cˆ, and note that (iii) implies c � a1 C .K � 1/ "2 . By Lemma 2.2, we
can assume ak � 2C ". Thus, c is upper-bounded by a constant C."; K/ that does
not depend on d . We need to count the number of sequences .S1; : : : ; SK/. There are
at most n2K choices for the values ¹akº and ¹bkº. Once ¹akº and ¹bkº are fixed, the
number of ways to choose ¹Skº is at most�

n

a1ˆ

� KY
kD2

�
n

bkˆ

��
cˆ

.ak � bk/ˆ

�
�

�
en

a1ˆ

�a1ˆ KY
kD2

�
en

bkˆ

�bkˆ
�

ec

ak � bk

�.ak�bk/ˆ

using (4)

D exp
²
a1ˆ log

�
ed

a1 log d

�
C

KX
kD2

�
bkˆ log

�
ed

bk log d

�
C .ak � bk/ˆ log

�
ec

ak � bk

��³
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D exp
²
ˆ log d

�
a1 C

KX
kD2

bk C od .1/

�³
;

where we have used ak 2 Œ1C "; 2C "�, bk 2
�
"
4
; "
2

�
, and c � C."; K/ to conclude

that certain terms are od .1/.
Now for a fixed ¹Skº satisfying (ii) and (iii), we need to upper-bound the prob-

ability that (i) is satisfied. We will take a union bound over the possible choices
of ¹tkº in property (i); there are .T C 1/K such choices. Let E be the number of
edges j 2

�
Œn�
2

�
of the complete graph such that there exists k such that both endpoints

of j lie within Sk . For fixed ¹Skº and ¹tkº, property (i) occurs iff a certain collection
of (at least) E independent non-edges occur in the sampling of ¹Y .t/º; this happens
with probability at most .1 � d=n/E � exp.�Ed=n/. Furthermore, we have

E �

�
a1ˆ

2

�
C

KX
kD2

bk.ak � bk/ˆ
2

D
a21ˆ

2

2
�O.n/C

KX
kD2

bk.ak � bk/ˆ
2

D
n

d
�ˆ log d

�
a21
2
C

KX
kD2

bk.ak � bk/ � o.1/

�
;

where in the first step, the first term counts edges within S1 and the kth term of the
sum counts edges within Sk that have exactly one endpoint in [`<k S`. (Note that no
edges are double-counted here.)

Putting it all together, we have

EŒN � � n2K.T C 1/K sup
¹akº;¹bkº

exp
²
ˆ log d

�
a1 C

KX
kD2

bk C od .1/

�³
exp

�
�
d

n
E

�
where ¹akº and ¹bkº are subject to the constraints ak � 1C " and bk 2

�
"
4
; "
2

�
� n2K.T C 1/K sup

¹akº;¹bkº

exp
²
ˆ log d

�
a1 C

KX
kD2

bk �
a21
2

�

KX
kD2

bk.ak � bk/C o.1/C od .1/

�³
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D n2K.T C 1/K sup
¹akº;¹bkº

exp
²
ˆ log d

�
a1 �

a21
2

�

KX
kD2

bk.ak � bk � 1/C o.1/C od .1/

�³
;

� n2K.T C 1/K exp
²
ˆ log d

�
1

2
�

KX
kD2

"2

8
C o.1/C od .1/

�³
where we have used the fact supa2R

�
a� a2

2

�
D
1
2

along with ak�1C " and bk 2
�
"
4
; "
2

�
� n2K.T C 1/K exp

²
ˆ log d

�
�
1

8
C o.1/C od .1/

�³
;

where we have used K � 1C 5="2

D exp.��.n//

for sufficiently large d . The result follows by Markov’s inequality.

Finally, we will need the following simple result which states that no independent
set of G.n; d=n/ has large intersection with a fixed set of vertices.

Lemma 2.4. Fix constants " > 0 and a > 0. Fix S � Œn� with jS j � a logd
d
n. If d > 0 is

a sufficiently large constant (depending on ";a), then with probability 1�exp.��.n//
there is no independent set S 0 in G.n; d=n/ satisfying jS \ S 0j � " logd

d
n.

Proof. The proof is similar to that of Lemma 2.2. As usual, define ˆ D logd
d
n. We

again use the first moment method. Let N be the number of subsets U � S such
that jU j D d"ˆe DW bˆ and U is an independent set in G.n; d=n/; it is sufficient to
show N D 0 with high probability. We have

EŒN � D

�
jS j

bˆ

�
.1 � d=n/.

bˆ
2 /

�

�
ea

b

�bˆ
exp

�
�
d

n

�
bˆ

2

��
using (4) and (5)

D exp
�
bˆ log

�
ea

b

�
�
db2ˆ2

2n
CO.1/

�
D exp

�
ˆ log d

�
�
b2

2
C o.1/C od .1/

��
using b 2 Œ"; a�

D exp.��.n//

for sufficiently large d . The result follows by Markov’s inequality.
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2.3. Stability of low-degree polynomials

The main result of this section (Proposition 2.6) states that the output of a low-degree
polynomial is resilient to changes in the input, in a particular sense. Throughout this
section we will use the shorthand p WD d=n. We think of Y � G.n; p/ as simply
Y 2 ¹0; 1ºm with i.i.d. Bernoulli.p/ coordinates, where m D

�
n
2

�
; the graph struc-

ture will not be used in this section. We consider the hypercube graph with vertex
set ¹0; 1ºm and an edge .y; y0/ whenever y; y0 differ on exactly one coordinate.

Definition 2.5. Let f W ¹0; 1ºm! Rn and let c > 0. An edge .y; y0/ of the hypercube
¹0; 1ºm is said to be c-bad for f if

kf .y/ � f .y0/k2 � c EY�G.n;p/
�
kf .Y /k2

�
:

Also, for y 2 ¹0; 1ºm, let Bfi .y/ denote the event that the edge traversed by flipping
the i th coordinate of y is c-bad for f .

The interpolation path (Definition 2.1) can be thought of as a random walk on
the hypercube graph (which is allowed to either remain in place or traverse an edge
at each step). The following main result of this section shows that with non-trivial
probability, this walk encounters no bad edges. This result is similar to Theorem 4.2
of [22] (which corresponds to the case L D 1).

Proposition 2.6. LetL2N and c>0. Consider the interpolation path Y .0/; : : : ; Y .T /

from Definition 2.1 of length T D Lm, with p WD d=n � 1=2. Let f W ¹0; 1ºm ! Rn

be a degree-D polynomial. Then

P
�
no edge of Y .0/; : : : ; Y .T / is c-bad for f

�
� p4LD=c :

The proof will follow from the following two lemmas. The first is essentially an
upper bound on the total number (weighted by the measureG.n;p/) of bad edges that
a low-degree polynomial can have. This was proved in [22] based on standard facts
about the total influence of low-degree polynomials.

Lemma 2.7 ([22, Lemma 4.3]). If p � 1=2 and f W ¹0; 1ºm ! Rn is a degree-D
polynomial then

cp

2

mX
iD1

PY�G.n;p/
�
B
f
i .Y /

�
� D; (6)

where Bfi .y/ is defined in Definition 2.5.

The next lemma gives an inequality that can be interpreted as follows. Roughly
speaking, the right-hand side is large if there are many bad edges, and the left-hand
side is large if the probability of having no bad edges on the interpolation path is
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small. Therefore, the inequality tells us that if the total number of bad edges is small
then it is likely for the interpolation path to have no bad edges.

Lemma 2.8. Consider the interpolation path Y .0/; : : : ; Y .T / and the associated func-
tion � W ŒT �! Œm� from Definition 2.1. Let q.y/ denote the probability that no edge of
the interpolation path is bad, conditioned on the starting point Y .0/ D y. Then

�EY�G.n;p/ log q.Y / � H.p/
TX
tD1

PY�G.n;p/
�
B�.t/.Y /

�
; (7)

where H is the binary entropy function H.p/ D �p logp � .1 � p/ log.1 � p/.

Remark 2.9. The proof of Lemma 2.8 does not make use of the specific notion of
c-bad from Definition 2.5. The result still holds if any arbitrary subset of the hyper-
cube edges are designated “bad” (so long as q.y/ andBfi .y/ both use the same notion
of “bad”).

Remark 2.10. Lemma 2.8 holds not just for the specific choice of � from Defini-
tion 2.1 but for any sequence � W ŒT �! Œm� of coordinates to resample. (In fact, this
level of generality will be important for the inductive argument in the proof.)

Proof of Lemma 2.8. Proceed by induction on T . The base case T D 0 is immediate.
For the case T � 1, define zq.y/ to be the probability that the sub-walk Y .1/; : : : ; Y .T /

never traverses a bad edge, conditioned on the starting point Y .1/ D y. Write y�i
for the all-but-i th coordinates of y, and write y�i Œb� 2 ¹0; 1ºm to denote the vector
obtained from y�i by setting coordinate i to the value b 2 ¹0; 1º. Note that the event
B
f
i .y/ does not depend on yi , so we can write

B
f
i .y�i / WD B

f
i .y/:

Let j D �.1/ be the coordinate resampled in the first step. For any fixed value of y�j ,
we will consider

'.y�j / WD �.1 � p/ log q
�
y�j Œ0�

�
� p log q

�
y�j Œ1�

�
;

which can be thought of as the contribution from y�j to the left-hand side of (7). If
the event Bfj .y�j / holds then

q
�
y�j Œ0�

�
D .1 � p/zq

�
y�j Œ0�

�
and q

�
y�j Œ1�

�
D p zq

�
y�j Œ1�

�
;

and so

'.y�j / D �.1 � p/ log
�
.1 � p/zq

�
y�j Œ0�

��
� p log

�
p zq
�
y�j Œ1�

��
D H.p/ � .1 � p/ log zq

�
y�j Œ0�

�
� p log zq

�
y�j Œ1�

�
:
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On the other hand, if the complement event Bfj .y�j / holds then

q
�
y�j Œ0�

�
D q

�
y�j Œ1�

�
D .1 � p/zq

�
y�j Œ0�

�
C p zq

�
y�j Œ1�

�
;

and so

'.y�j / D � log
�
.1 � p/zq

�
y�j Œ0�

�
C p zq

�
y�j Œ1�

��
� �.1 � p/ log zq

�
y�j Œ0�

�
� p log zq

�
y�j Œ1�

�
;

where we have used convexity of x 7! � log x. Therefore in general we have

'.y�j / � H.p/ 1
B

f

j
.y�j /

� .1 � p/ log zq
�
y�j Œ0�

�
� p log zq

�
y�j Œ1�

�
:

Now, with Y � G.n; p/, we can write

�E log q.Y / D E'.Y�j /

� E
�
H.p/ 1

B
f

j
.Y�j /

� .1 � p/ log zq
�
Y�j Œ0�

�
� p log zq

�
Y�j Œ1�

��
D H.p/P

�
B
f
j .Y /

�
� E log zq.Y /:

By the inductive hypothesis,

�E log zq.Y / � H.p/
TX
tD2

P
�
B�.t/.Y /

�
;

so this completes the proof.

Proof of Proposition 2.6. We will combine Lemmas 2.7 and 2.8. First note that since
p � 1=2 we have �p logp � �.1 � p/ log.1 � p/, and so

H.p/ � �2p logp: (8)

Define q.y/ as in Lemma 2.8. The probability that no edge of the interpolation path
is c-bad is E q.Y /, where Y � G.n; p/. We have

� log E q.Y / � �E log q.Y / by Jensen’s inequality

� H.p/

TX
tD1

P ŒB�.t/.Y /� by Lemma 2.8

D H.p/ � L

mX
iD1

P ŒBfi .Y /� by Definition 2.1
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� H.p/ � L �
2D

cp
by Lemma 2.7

� �4c�1LD logp by (8);

which can be rearranged to yield the result.

2.4. Putting it together

As in [22], we start by observing that a random polynomial can be converted to a
deterministic polynomial that works almost as well.

Lemma 2.11. Suppose f is a random degree-D polynomial that .k; ı;;�/-optimizes
the independent set problem inG.n;d=n/. Then for any c > 2 there exists a determin-
istic degree-D polynomial that .k; cı; c; �/-optimizes the independent set problem
in G.n; d=n/.

Proof. By definition, we have

EY;!
�
kf .Y; !/k2

�
� k and PY;!

�
jV
�

f
.Y; !/j < k

�
� ı:

By Markov’s inequality,

P!
h

EY
�
kf .Y; !/k2

�
� ck

i
�
1

c
<
1

2
;

P!
h

PY
�
jV
�

f
.Y; !/j < k

�
� cı

i
�
1

c
<
1

2
;

and so there exists a seed !� 2 � for which the resulting deterministic polynomial
f . � / D f . � ; !�/ satisfies

EY
�
kf .Y /k2

�
� ck and PY

�
jV
�

f
.Y /j < k

�
� cı;

as desired.

We now prove our main impossibility result.

Proof of Theorem 1.3. For any given " > 0, setK D d1C 5="2e, T D .K � 1/m, and
� D

" logd
16d

. The constant d� D d�."/ � 1 will be chosen so that d is sufficiently large
to apply Lemma 2.2, Proposition 2.3, and Lemma 2.4 in the sequel. Let ˆ D logd

d
n.

Assume on the contrary that the random polynomial that we wish to rule out,
exists. By Lemma 2.11, there exists a deterministic degree-D polynomial f that sat-
isfies

EY
�
kf .Y /k2

�
� 3.1C "/ˆ and PY

�
jV
�

f
.Y /j < .1C "/ˆ

�
� 3ı: (9)
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Sample the interpolation path Y .0/; : : : ; Y .T / as in Definition 2.1, and let Ut D
V
�

f
.Y .t// be the resulting independent sets. Consider the following process to con-

struct a sequence of sets S1; : : : ; SK � Œn�. Let S1 D U0. Then for k D 2; 3; : : : ; K,
let Sk D Utk , where tk 2 ŒT � is the minimum t for which jUt n .[`<k S`/j � "

4
ˆ;

if no such t exists then the process fails. We will show that with positive probability
(over the interpolation path), the following events all occur simultaneously:

(i) jUt j � .1C "/ˆ for all 0 � t � T , and the process S1; : : : ; SK succeeds,

(ii) no edge on the interpolation path is c-bad for f , where c D "
96.1C"/

,

(iii) the conclusion of Proposition 2.3 holds (i.e., no instance of the forbidden
structure exists).

We will first show that events (i)–(iii) occur simultaneously with positive probabil-
ity, and then we will show that this yields a contradiction. By Proposition 2.6, event (ii)
occurs with probability at least .d=n/4.K�1/D=c . By Proposition 2.3, event (iii) occurs
with probability 1 � exp.��.n//. It remains to consider event (i).

For each fixed t we have that Y .t/ is distributed as G.n; d=n/, so by combining
Lemma 2.2 with the second property of f from (9), we have

.1C "/ˆ � jUt j � .2C "/ˆ

with probability at least 1 � 3ı � exp.��.n//; we will take a union bound over t .
Now suppose that for some 0 � T 0 � T � m, Y .0/; : : : ; Y .T

0/ have been sampled
so far, and 0D t1 < t2 < � � � < tK0 are the indices of the sets SkDUtk selected so
far (tK0�T 0). Note that Y .T

0Cm/ is independent from ¹Y .t/ºt�T 0 and so, provided

jSkj � .2C "/ˆ

for 1 � k � K 0, Lemma 2.4 (with S D [k�K0 Sk and a D .2C "/K 0) implies

jUT 0Cm \ .[k�K0 Sk/j � "ˆ

with probability 1 � exp.��.n//. Provided jUT 0Cmj � .1C "/ˆ, this implies

jUT 0Cm n .[k�K0 Sk/j � ˆ �
"

4
ˆ;

and so tK0C1 � T 0 C m; thus by induction, tk � .k � 1/m for all k 2 ŒK� and so
the process ¹Skº succeeds by timestep T D .K � 1/m. We therefore conclude that
event (i) holds with probability at least 1 � 3ı.T C 1/ � exp.��.n//.

Using 3ı.T C 1/D 3ıŒ.K � 1/mC 1� � 3ıKm, we now have that events (i)–(iii)
occur simultaneously with positive probability, provided

.d=n/4.K�1/D=c > 3ıKmC exp.��.n//: (10)
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For sufficiently large n, the term exp.��.n// is at most exp.�Cn/ for some constant
C D C."; d/ > 0. Also recall m D

�
n
2

�
< n2

2
. Thus, to satisfy (10), it is sufficient to

have

.d=n/4.K�1/D=c � 3ıKn2 and .d=n/4.K�1/D=c � 2 exp.�Cn/: (11)

For d � 1, the second condition in (11) is implied by

D � .Cn � log 2/
c

4.K � 1/ logn
:

For sufficiently large n, and using c D "
96.1C"/

, this is implied by D � C1n
 logn , where

C1 D C1."; d/ > 0 is a constant. For d � 1, the first condition in (11) is implied by

ı � exp
�
�
4.K � 1/D

c
logn � 2 logn � log.3K/

�
:

Since �1 andD�1, for sufficiently large n this is implied by ı�exp.�C2D logn/
for another constant C2 D C2."; d/ > 0.

To complete the proof, it remains to show that if events (i)–(iii) occur simultane-
ously, this results in a contradiction. The idea is to use the stability property from (ii)
to show that the sets S1; : : : ; SK from (i) are an instance of the forbidden structure
that is disallowed by (iii).

We will first show jUt 4 Ut�1j � "
4
ˆ for all 1 � t � T , where 4 denotes the

symmetric difference operation on sets. From (i) we know that the failure event in V �
f

(the second case of (2)) does not occur on any of the inputs Y .t/ (because otherwise
the output Ut of V �

f
would be ;, violating (i)). By definition of symmetric difference,

there are exactly jUt 4 Ut�1j coordinates i 2 Œn� such that the indicator 1i2Ut
differs

from the indicator 1i2Ut�1
; call these coordinates J � Œn�. From the definition of V �

f

(Definition 1.1), each i 2 J falls into one of two cases (or both):

(a) among the values fi .Y .t// and fi .Y .t�1//, one is � 1 and the other is � 1=2; or

(b) i lies in the set .An zA/[B (see Definition 1.1) for either V �
f
.Y .t// or V �

f
.Y .t�1//.

Recall from above that the failure event in V �
f

(the second case of (2)) does not occur
on any of the inputs Y .t/, and so (using (2)) we have

jA n zAj C jBj � �n

for each t . Also note that j.A n zA/[Bj D jA n zAj C jBj becauseA and B are disjoint
by definition. This means there are at most 2�n coordinates i 2 J for which case (b)
occurs. Therefore, the number of coordinates for which case (a) occurs must be at
least

jJ j � 2�n D jUt 4 Ut�1j � 2�n;
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and so there are at least jUt 4 Ut�1j � 2�n coordinates i 2 Œn� for which

jfi .Y
.t// � fi .Y

.t�1//j � 1=2:

This gives the bound

kf .Y .t// � f .Y .t�1//k2 �
1

4

�
jUt 4 Ut�1j � 2�n

�
: (12)

Using event (ii) along with the definition of c-bad (Definition 2.5) and the first prop-
erty of f from (9), we also have

kf .Y .t// � f .Y .t�1//k2 � c EY�G.n;d=n/
�
kf .Y /k2

�
� 3c.1C "/ˆ: (13)

Now (12) and (13) can be combined to give

jUt 4 Ut�1j � 12c.1C "/ˆC 2�n D
"

4
ˆ

as desired, where we have used c D "
96.1C"/

and � D " logd
16d

.
Recall that for 2 � k � K, Sk is defined to be the first Ut for which

jUt n .[`<k S`/j �
"

4
ˆ;

which means jUt�1 n .[`<k S`/j< "
4
ˆ. Using the fact jUt 4Ut�1j � "

4
ˆ from above

(in other words, the sets Ut and Ut�1 only differ on at most "
4
ˆ entries), this means

jSk n .[`<k S`/j �
"

2
ˆ:

Combining this with event (i) and the fact that Sk is an independent set in Y .tk/, we
have that S1; : : : ; SK satisfies the properties of the forbidden structure from event (iii).
This yields a contradiction and completes the proof.

3. Proof of achievability

In this section we prove our main achievability result (Theorem 1.4) which shows that
low-degree algorithms can find independent sets of size .1 � "/ logd

d
n. We begin by

defining some terminology pertaining to local algorithms on graphs. Throughout this
section we will consider graphs G D .V; E/ with possibly-infinite vertex set V , but
which are locally finite, i.e., each vertex has a finite number of neighbors. We will
consider functions that take as input .G; v/, where GD.V; E/ is a graph and v2V
is a designated “root” vertex; let ƒ denote the set of such .G; v/ pairs. We will also
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consider functions that take as input .G; v; X/, where G and v are as before and
X W V ! Œ0; 1� is a labelling of the vertices; let zƒ denote the set of such .G; v; X/
pairs.

For a graph G D .V; E/ and a vertex v 2 V , the r-neighborhood of v, denoted
Nr.G; v/, is the rooted graph with root v that contains all vertices reachable from v

by a path of length � r , along with all edges on such paths. We will use jNr.G; v/j
to denote the number of edges in the r-neighborhood. Two rooted graphs are said to
be isomorphic if there is a root-preserving graph isomorphism between them. A func-
tion g with domainƒ is said to be r-local if g.G;v/ depends only on the isomorphism
class of Nr.G; v/. (Informally, g has access to the “shape” of the r-neighborhood but
not the identity of the specific vertices.)

In the presence of vertex labels X WV ! Œ0; 1�, we generalize the above notions as
follows. The labeled r-neighborhood of v in G, denoted zNr.G; v;X/, is the r-neigh-
borhood along with the vertex labels given by X (restricted to the r-neighborhood).
Two rooted labeled graphs are said to be isomorphic if there is a root-preserving and
label-preserving graph isomorphism between them. A function h with domain zƒ is
said to be r-local if h.G;v;X/ depends only on the isomorphism class of zNr.G;v;X/.

The Poisson Galton–Watson tree with parameter d > 0, denoted PGW.d/, is the
distribution over rooted (possibly-infinite) trees .T; o/ generated as follows:

� Start with a root vertex o at level 0.

� For ` D 0; 1; 2; : : :, each vertex at level ` independently spawns Pois.d/ child
vertices at level `C 1.

� Every vertex (except the root) is connected to its parent by an edge.

It is well known that the distribution of the r-neighborhood of any fixed vertex
in G.n; d=n/ converges to the r-neighborhood of the root in PGW.d/ as n ! 1
with r held fixed (as discussed in e.g., [39]); see Lemma 3.3 below for one precise
sense in which this convergence holds.

An r-local algorithm for the maximum independent set problem is an r-local
function hW zƒ! ¹0; 1º with the property that ¹v 2 V W h.G; v; X/ D 1º is an inde-
pendent set for any graph G D .V; E/ with any vertex labels X . A line of prior
work [24, 25, 33, 39] has considered the problem of choosing h to maximize the
expected size of the independent set whenG � G.n; d=n/ and X is i.i.d. Unif.Œ0; 1�/.
Due to the convergence of local neighborhoods to PGW.d/, this task is equivalent (up
to sub-leading terms in n) to maximizing the probability that h.T; o; X/ D 1 when
.T; o/ � PGW.d/ and X is again i.i.d. Unif.Œ0; 1�/.

The following result of [39] shows that local algorithms can produce large inde-
pendent sets in PGW.d/. As discussed in Section 4 of [39], this implies that local
algorithms can produce independent sets of expected size .1� "/ logd

d
n in G.n; d=n/.
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Theorem 3.1 ([39, Theorem 4.1]). For any "> 0 and any sufficiently large d (depend-
ing on "), there exists r D r."; d/ and an r-local function hW zƒ! ¹0; 1º satisfying the
following. If .T; o/� PGW.d/ and vertex labels ¹Xvºv2V.T / are drawn i.i.d. from the
uniform distribution on Œ0; 1�, then

� the vertex set ¹v 2 V.T / W h.T; o; X/ D 1º is an independent set in T with prob-
ability 1, and

� E
�
h.T; o;X/

�
� .1 � "/

logd
d

.

Remark 3.2. Our proof of Theorem 1.4 will show how to approximate the local
algorithm from Theorem 3.1 by a low-degree algorithm. We will not use any specifics
of the local algorithm, and so our proof actually shows how to approximate any local
algorithm by a low-degree algorithm. More precisely: for any fixed " > 0, � > 0,
and d � 1, if we are given an r-local algorithm h for independent sets with

E
�
h.T; o;X/

�
� ˛;

then for any n� n�.";�;d; r;˛/we can produce a deterministic degree-D polynomial
that .k; ı; ; �/-optimizes the independent set problem in G.n; d=n/ with parameters
k D .1 � "/ ˛n and ı D exp.�Cn1=3/, where D > 0;  � 1, C > 0 are constants
depending on "; �; d; r; ˛.

The next result, which is a special case of Lemma 12.4 of [10], quantifies the
convergence of local neighborhoods of G.n; d=n/ to PGW.d/.

Lemma 3.3 (see [10, Lemma 12.4]). Let G � G.n; d=n/, and let .T; o/ � PGW.d/.
Let gWƒ ! Œ�1; 1� be an r-local function. For all sufficiently large n (depending
on d; r) and for any v 2 Œn�,ˇ̌

E
�
g.G; v/

�
� E

�
g.T; o/

�ˇ̌
� cn�1=4 logn;

where c > 0 is a universal constant.

The next result is a special case of (the first statement in) Proposition 12.3 of [10].

Proposition 3.4 (see [10, Proposition 12.3]). Let G � G.n; d=n/ with d � 1. Let
gWƒ! Œ�1; 1� be an r-local function. For all p � 2,

E

�ˇ̌̌ X
v2Œn�

g.G; v/ � E
X
v2Œn�

g.G; v/
ˇ̌̌p�
�
�
c
p
np3=2.2d/r

�p
;

where c > 0 is a universal constant.

A simple consequence of the above moment inequality is a tail bound for local
functions.
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Corollary 3.5. Let G � G.n; d=n/ with d � 1. Let gWƒ ! Œ�1; 1� be an r-local
function. For a universal constant c > 0 and for all t � .2e/3=2c

p
n.2d/r ,

P

�ˇ̌̌ X
v2Œn�

g.G; v/ � E
X
v2Œn�

g.G; v/
ˇ̌̌
� t

�
� exp

�
�

3t2=3

2ec2=3n1=3.2d/2r=3

�
:

Proof. Let c be the constant from Proposition 3.4. Choosing

p D e�1
�
c
p
n.2d/r=t

��2=3
� 2;

we have

P

�ˇ̌̌ X
v2Œn�

g.G; v/ � E
X
v2Œn�

g.G; v/
ˇ̌̌
� t

�
D P

�ˇ̌̌ X
v2Œn�

g.G; v/ � E
X
v2Œn�

g.G; v/
ˇ̌̌p
� tp

�
� t�p E

�ˇ̌̌ X
v2Œn�

g.G; v/ � E
X
v2Œn�

g.G; v/
ˇ̌̌p�

� t�p
�
c
p
np3=2.2d/r

�p
D exp

�
�
3

2
p
�
D exp

�
�

3t2=3

2ec2=3n1=3.2d/2r=3

�
;

as desired.

We will also need the following standard multiplicative version of the Chernoff
bound [36].

Proposition 3.6. Suppose Z1; : : : ; Zn are independent random variables taking val-
ues in ¹0; 1º. Let Z D

P
i Zi and � D EŒZ�. For any 0 � ı � 1,

P
�
Z � .1 � ı/�

�
� exp

�
�
ı2�

2

�
:

Also, for any ı � 0,

P
�
Z � .1C ı/�

�
� exp

�
�
ı2�

2C ı

�
;

and so for ı � 1,

P
�
Z � .1C ı/�

�
� exp

�
�
ı�

3

�
:
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Proof of Theorem 1.4. Given " > 0, apply Theorem 3.1 (with "=5 in place of ") to
obtain d�."/ > 1, r D r."; d/ and an r-local function hW zƒ! ¹0; 1º that outputs
independent sets with

E
�
h.T; o;X/

�
� .1 � "=5/

log d
d

when .T; o/ � PGW.d/ and X is i.i.d. Unif.Œ0; 1�/.
By Lemma 2.11, it is sufficient to prove the result for a random polynomial instead

of a deterministic one (up to a change in the constants ; C ). We will construct a
random polynomial f W ¹0; 1º.

n
2/ ! Rn as follows. The input Y to f encodes a graph

on vertex set Œn�. The internal randomness of f samples vertex labels ¹Xvºv2Œn� i.i.d.
from Unif.Œ0; 1�/. We will construct f with the following property:

for any v 2 Œn�, if Nr.Y; v/ is a tree with jNr.Y; v/j � s,
then fv.Y;X/ D h.Y; v;X/,

(14)

where s D s."; d; �/ is a constant to be chosen later.
Concretely, we construct f as follows. Let Gv;r;s be the collection of graphs G on

vertex set Œn� for which jE.G/j � s and every non-isolated vertex is reachable from v

by a path of length� r . (In other words, Gv;r;s consists of all possible r-neighborhoods
for v of size � s.) Let

fv.Y;X/ D
X

G2Gv;r;s

˛.G; v;X/
Y

e2E.G/

Ye; (15)

where the coefficients ˛.G; v; X/ are chosen in the following manner so that (14) is
satisfied. Suppose that G 2 Gv;r;s is the true r-neighborhood of v. Then

fv.Y;X/ D
X

G02Gv;r;s

E.G0/�E.G/

˛.G0; v; X/:

Since h is r-local, we have h.Y; v; X/ D h.G; v; X/. Therefore, once the values
˛.G0; v; X/ have been determined for all G0 such that E.G0/ ¨ E.G/, there is a
unique choice for ˛.G0; v; X/ that will satisfy (14), namely

˛.G; v;X/ D h.G; v;X/ �
X

G02Gv;r;s

E.G0/¨E.G/

˛.G0; v; X/: (16)

We therefore define ˛.G; v; X/ for all G 2 Gv;r;s according to the recursive defini-
tion (16), and this ensures that (14) is satisfied.
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Note f is a degree-s polynomial in Y , so we will take D D s. It remains to
check that f .k; ı; ; �/-optimizes the independent set problem inG.n;d=n/ with the
desired parameters k; ı; ; �, by verifying the two conditions in Definition 1.2. This is
carried out in Lemmas 3.10 and 3.9 below.

Next we will need a concentration result for neighborhood counts in a random
graph. For a constant r , let T r be a set of rooted trees consisting of one representative
from each isomorphism class of rooted trees of depth at most 2r . Let T r

s � T r contain
only those trees with at most s edges. Let Y � G.n; d=n/, and for T 2 T r , let nT
denote the number of occurrences of the neighborhood T in Y , i.e.,

nT D j¹v 2 Œn� W N2r.Y; v/ Š T ºj

whereŠ denotes isomorphism of rooted graphs. Also, for T 2 T r , let pT denote the
probability that T occurs as the neighborhood of the root in PGW.d/, i.e.,

pT D P .U;o/�PGW.d/
�
N2r.U; o/ Š T

�
:

Also, let �T denote the probability over X that

h.Y; v;X/ D 1

conditioned on N2r.Y; v/ Š T . (Note that the event ¹h.Y; v; X/ D 1º depends only
on X and Nr.Y; v/ since h is r-local.)

Lemma 3.7. For any � > 0 and any T 2 T r , for sufficiently large n (depending
on d; r; � ) we have

P
�
jnT � pT nj � � n

�
� exp.�Cn1=3/

for some C D C.d; r; �/ > 0.

Proof. By applying Lemma 3.3 to the function g.G; v/ D 1N2r .G;v/ŠT , we have

jEŒnT � � pT nj � cn
3=4 logn (17)

for sufficiently large n (depending on d; r). By Corollary 3.5, for any

t � .2e/3=2c
p
n.2d/2r ;

we have

P
�
jnT � EŒnT �j � t

�
� exp

�
�

3t2=3

2ec2=3n1=3.2d/2r=3

�
: (18)

Combining (17) and (18) gives the result.



Optimal low-degree hardness of maximum independent set 245

Next we will show that with high probability, the rounding procedure V �
f
.Y; X/

does not encounter the failure event (the second case of (2)).

Lemma 3.8. For any � > 0, the following holds for sufficiently large s (depending
on ";d; r;�). Let f be defined as in (15) and letA; zA;B be defined as in Definition 1.1.
With probability 1 � exp.��.n1=3//, we have

jA n zAj C jBj � �n:

Here �.�/ hides a constant depending on "; d; r; �; s.

Proof. Suppose some vertex v is such that N2r.Y; v/ is a tree with jN2r.Y; v/j � s.
Then for all u 2 N1.Y; v/ we have that Nr.Y; u/ is a tree with jNr.Y; u/j � s and so
by (14),

fu.Y;X/ D h.Y; u;X/ 2 ¹0; 1º:

Since h outputs independent sets, it follows that v is not in the “bad” set .A n zA/[B
from the definition of V �

f
(Definition 1.1). We have now shown that .A n zA/ [ B is

disjoint from the set

Vs WD
[
T2T r

s

¹v 2 Œn� W N2r.Y; v/ Š T º:

For each T 2 T r
s , we have from Lemma 3.7 that jnT � pT nj � �n=.2jT r

s j/ with
probability 1 � exp.��.n1=3//. Choose s large enough so thatX

T2T r
s

pT � 1 � �=2:

Noting that A \ B D ; by definition, we now have

jA n zAj C jBj D j.A n zA/ [ Bj � n � jVsj D n �
X
T2T r

s

nT

� n �
X
T2T r

s

�
pT n �

�n

2jT r
s j

�
D

�
1 �

X
T2T r

s

pT

�
nC

�n

2
� �n;

as desired.

Next we will show that the independent set produced by rounding f is large with
high probability.

Lemma 3.9. The following holds for sufficiently large s > 0 (depending on "; d; r; �).
Let f be defined as in (15). The independent set I WD V �

f
.Y;X/ has size

jI j � .1 � "/
log d
d

n

with probability 1 � exp.��.n1=3// over both Y and X .
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Proof. In light of Lemma 3.8 and the definition of V �
f

(Definition 1.1), it suffices to
show j zAj � .1 � "/ logd

d
n with probability 1 � exp.��.n1=3//. From the guarantees

on h, �
1 �

"

5

� log d
d
� E.T;o/�PGW.d/

�
h.T; o;X/

�
D

X
T2T r

pT �T :

Choose s large enough so that X
T2T r

s

pT � 1 �
"

5

log d
d

:

Since �T 2 Œ0; 1�, this impliesX
T2T r

s

pT �T �

� X
T2T r

pT �T

�
�
"

5

log d
d
�

�
1 �

2"

5

� log d
d

:

Again using Lemma 3.7, with probability 1 � exp.��.n1=3// over Y ,X
T2T r

s

nT �T �
X
T2T r

s

�
pT n �

"

5jT r
s j

log d
d

n

�
�T

�

� X
T2T r

s

pT �T

�
n �

"

5

log d
d

n �
�
1 �

3"

5

� log d
d

n: (19)

Now fix Y satisfying (19) and consider the randomness of X . Recall from the
proof of Lemma 3.8 that .A n zA/ [ B is disjoint from Vs . Thus, for v satisfying
N2r.Y;v/Š T for some T 2 T r

s , we have v 2 zA iff h.Y;v;X/D 1, which occurs with
probability �v WD �T (over the randomness ofX ). We will partition the elements of Vs
into “bins” W1; : : : ; WsC1 such that for each bin Wi , the vertices in Wi have disjoint
r-neighborhoods and so the random variables ¹1v2 zAºv2Wi

are independent (condi-
tioned on Y ). Each vertex v 2 Vs has at most s C 1 vertices in its 2r-neighborhood,
and so there are at most s vertices u2Vs such that u¤ v andNr.Y;v/\Nr.Y;u/¤;.
Since there are s C 1 bins, we can greedily assign vertices to bins in order to achieve
the desired disjointness property. Now that the bins ¹Wiº have been constructed, we
have by the Chernoff bound (Proposition 3.6) that for each i ,

PX

� X
v2Wi

1v2 zA �
�
1 �

"

5

�
�i

�
� exp

�
�
1

2

� "
5

�2
�i

�
; (20)

where
�i D EX

X
v2Wi

1v2 zA D
X
v2Wi

�v: (21)
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Call a bin Wi “large” if �i � "
5.sC1/

logd
d
n and “small” otherwise. Using (20) and a

union bound over i , we have with probability 1� exp.��.n// that every large binWi
satisfies

P
v2Wi

1v2 zA �
�
1 � "

5

�
�i . Provided this holds, we now have

j zAj �
X
v2Vs

1v2 zA �
X

i WWi large

X
v2Wi

1v2 zA �
X

i WWi large

�
1 �

"

5

�
�i

D

�
1 �

"

5

��X
i

�i �
X

i WWi small

�i

�
�

�
1 �

"

5

���X
i

�i

�
�
"

5

log d
d

n

�
using the definition of “small”

D

�
1 �

"

5

��� X
v2Vs

�v

�
�
"

5

log d
d

n

�
using the definition of �i (21)

D

�
1 �

"

5

��� X
T2T r

s

nT �T

�
�
"

5

log d
d

n

�
�

�
1 �

"

5

���
1 �

3"

5

� log d
d

n �
"

5

log d
d

n

�
using (19)

D

�
1 �

"

5

��
1 �

4"

5

� log d
d

n � .1 � "/
log d
d

n;

completing the proof.

Finally, we need to check the normalization condition.

Lemma 3.10. There exists a constant  D ."; d; �/ � 1 such that

EY;X
�
kf .Y;X/k2

�
� .1 � "/

log d
d

n:

Proof. By linearity of expectation, it is sufficient to show EY;X Œfv.Y; X/2� D O.1/

uniformly over v. Fix a vertex v 2 Œn� and define the random variableN D jNr.Y; v/j.
Recall the expansion (15) for fv . For each G 2 Gv;r;s , the corresponding term in the
sum can be nonzero only ifG is a subgraph ofNr.Y; v/. Thus, the number of nonzero
terms is at most �

N

� s

�
D

sX
iD0

�
N

i

�
�

sX
iD0

N i
� .N C 1/s:

Furthermore, we can see from (16) that the coefficient of each term is bounded by a
constant, uniformly over v andX , that is, j˛.G; v;X/j � a for some a D a.r; s/. This
means

fv.Y;X/
2
�
�
a.N C 1/s

�2
D a2.N C 1/2s: (22)
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In order to bound the expectation of this quantity, we will need a tail bound forN .
Starting from m0 D 1, let mi be the number of vertices whose distance in Y from v

is exactly i . Conditioned on mi , we have that miC1 is stochastically dominated by
Binomial.min; d=n/. Using the Chernoff bound (Proposition 3.6), for fixed mi � 1
and any ı � 1,

P
�
miC1 � .1C ı/dmi

�
� exp

�
�
ıdmi

3

�
� exp

�
�
ıd

3

�
:

Therefore, with probability at least 1 � r exp.�ıd=3/, we have mi < Œ.1C ı/d �i for
all 0 � i � r and so

N <

rX
iD0

Œ.1C ı/d �i �
�
.1C ı/d C 1

�r
:

For ı � 1 and d � 1 we have .1C ı/d C 1 � 2ıd C 1 � 3ıd , so we can rewrite the
above as

P
�
N � .3ıd/r

�
� r exp.�ıd=3/:

Letting t D .3ıd/r , we now have a tail bound for N : for all t � .3d/r ,

P ŒN � t � � r exp.�t1=r=9/:

Finally, combining this with (22), we have

EY;X
�
fv.Y;X/

2
�
�

1X
tD0

a2.t C 1/2s P ŒN D t �

�

d.3d/reX
tD0

a2.t C 1/2s C

1X
tDd.3d/re

a2.t C 1/2sr exp.�t1=r=9/;

which is finite and independent of n. This completes the proof.
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