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Exponential moments for disk counting statistics
at the hard edge of random normal matrices

Yacin Ameur, Christophe Charlier, Joakim Cronvall, and Jonatan Lenells

Abstract. We consider the multivariate moment generating function of the disk counting statis-
tics of a model Mittag-Leffler ensemble in the presence of a hard wall. Let n be the number of
points. We focus on two regimes: (a) the “hard edge regime” where all disk boundaries are at
a distance of order 1

n
from the hard wall, and (b) the “semi-hard edge regime” where all disk

boundaries are at a distance of order 1p
n

from the hard wall. As n! C1, we prove that the
moment generating function enjoys asymptotics of the form

exp
�
C1nC C2 lnnC C3 C

C4
p
n
CO.n�

3
5 /
�

for the hard edge;

exp
�
C1nC C2

p
n C C3 C

C4
p
n
CO

� .lnn/4
n

��
for the semi-hard edge:

In both cases, we determine the constants C1; : : : ; C4 explicitly. We also derive precise asymp-
totic formulas for all joint cumulants of the disk counting function, and establish several central
limit theorems. Surprisingly, and in contrast to the “bulk”, “soft edge”, and “semi-hard edge”
regimes, the second and higher order cumulants of the disk counting function in the “hard edge”
regime are proportional to n and not to

p
n.
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1. Introduction and statement of results

1.1. Hard wall constraints in random matrix theory

In this work we study random normal matrix eigenvalues on subsets of the plane
which are obtained by imposing a hard wall constraint. These eigenvalues can also be
seen as repelling Coulomb gas particles at the inverse temperature ˇ D 2. While we
shall soon specialize to a class of Mittag-Leffler ensembles, it is convenient to start
out from a broader perspective.

Thus, we fix an arbitrary lower semi-continuous function Q0WC ! R [ ¹C1º.
Along with Q0 we fix a suitable closed subset C of C and consider the modification
(“external potential”):

Q.z/ D

´
Q0.z/ if z 2 C;

C1 otherwise:

The external potential is assumed to be finite on some set of positive capacity and to
satisfy the basic growth constraint

Q.z/ � ln jzj2 !C1 as z !1: (1.1)

Observe that Q may satisfy the growth condition (1.1) even if Q0 fails to do so.
In particular, this is the case if Q0 is a constant, or if Q0 is an Elbau–Felder potential
[13, 42, 52, 59]:

Q0.z/ D
1

t0
.jzj2 � 2Re.t1z C � � � C tkzk//:

Another basic class of hard walls is obtained by taking C D R, which leads to the
Hermitian random matrix theory.

Given a confining potential Q, we associate Coulomb gas ensembles in the fol-
lowing way (as mentioned, we will only consider the inverse temperature ˇ D 2). We
consider configurations of n points ¹zj ºnjD1 � C. The total energy, or Hamiltonian of
the configuration, is defined by

Hn D

nX
j;kD1
j¤k

ln
1

jzj � zkj
C n

nX
jD1

Q.zj /;

and the associated Boltzmann–Gibbs measure on Cn is

dPn D
1

Zn
e�Hn

nY
jD1

d2zj ;
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where d2z is the two-dimensional Lebesgue measure. The Coulomb gas ensemble (or
“system”) ¹zj ºnjD1 corresponding to the external potentialQ is a configuration picked
randomly with respect to this measure.

To a first order approximation, the system tends to follow Frostman’s equilibrium
measure � associated to the potentialQ. This is the unique minimizer of the weighted
logarithmic energy functional

IQŒ�� D

“
C2

ln
1

jz � wj
d�.z/d�.w/C

Z
C

Q.z/ d�.z/

among all compactly supported Borel probability measures on C. The support of
� is called the droplet and is denoted S D SŒQ�. If the potential is C 2-smooth in
a neighborhood of S , then the equilibrium measure is absolutely continuous with
respect to the two-dimensional Lebesgue measure d2z and takes the form (see [68])

d�.z/ D
1

4�
�Q.z/�S .z/ d

2z; (1.2)

where �S is the indicator function of S and � is the standard Laplacian.
It is known that the system ¹zj ºn1 tends to condensate on the droplet under quite

general conditions [6, 24, 41, 51, 54, 55, 66], in the sense that as n!1 the empirical
measures 1

n

Pn
jD1 ızj converge weakly to � in probability.

Consider now a smooth confining potential Q0 on the plane whose droplet is S0.
A case of some interest is obtained by placing the hard wall exactly along the edge
of the droplet, i.e., we take C D S0, where the equilibrium measure is still absolutely
continuous and of the form (1.2). In this case, we obtain a so-called local droplet
with a soft/hard edge. Such droplets have been studied in for example [12, 51, 59]
and references therein. While the equilibrium measure is unchanged, the soft/hard
edge produces some statistical effects near the edge. Interestingly, the concept of
local droplets permits us to define some new and non-trivial ensembles, such as the
“deltoid” – a droplet with three maximal cusps which arises for the cubic potential
jzj2 C c Re.z3/ for a certain critical value of the constant c, see e.g. [18].

However, the main case of interest for the present investigation is that of a hard
wall in the bulk of the droplet. To study this case, we choose an external potential
Q0 giving rise to a well-defined droplet S0 and a closed subset C � Int S0, and we
modify Q0 to a potential Q by defining it as C1 outside C . This has an effect even
at the level of the equilibrium measure. Indeed, if the potential Q0 is C 2-smooth in a
neighborhood of S0, then this effect is given by a balayage process which we briefly
recall.

Let �0 be the equilibrium measure with respect to the potentialQ0, given in (1.2)
(with “S” and “Q” replaced by “S0” and “Q0”). Assuming some regularity of the
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boundary @C , the equilibrium measure �h corresponding to the potential Q is then
given by the formula (see [68, Theorem II.5.12])

�h D �0 � �C C Bal.�0jS0nC ; @C /; (1.3)

where Bal.�0jS0nC ; @C / is the balayage of �0jS0nC onto the boundary @C . The for-
mula (1.3) expresses the fact that the portion �0jS0nC is swept onto the boundary @C
according to the balayage operation, which preserves (up to a constant) the exterior
logarithmic potential in the exterior of the droplet S0. See [68, Sections II.4 and II.5]
as well as [35, 53, 70] for more details about the balayage.

The balayage part of (1.3) is a density on the curve @C , so this part is singular
with respect to the two-dimensional Lebesgue measure. We think of this balayage as
a first approximation of the density for the particles which would have occupied the
forbidden region outside of C , were it not for the hard wall. On a statistical level,
in the generic case where �Q.z/ > 0 for all z 2 @C , the particles which are swept
out of the forbidden region are expected to occupy a very narrow interface about the
boundary @C of width of order 1=n. We call this interface the “hard edge regime.”
The width 1=n is substantially smaller than the two-dimensional microscopic scale
1=
p
n. We shall find below that on a 1=

p
n-scale from @C , we obtain a transitional

regime between hard edge and bulk statistics, which we call “semi-hard edge regime.”
The three regimes (bulk, semi-hard edge, and hard edge) each gives rise to different
kinds of statistical behavior, which we study below for a class of radially symmetric
potentials.

We remark that point-processes ¹zj ºn1 of the above type can be identified with
the eigenvalues of an n � n random normal matrix M , picked randomly according
to the probability measure proportional to e�n trQ.M/dM , where “tr” is the trace and
dM is the measure on the set of n � n normal matrices induced by the flat Euclidian
metric of Cn�n [32, 42, 63]. (Note that this makes precise the identification between
eigenvalues and ˇ D 2 Coulomb gas processes mentioned above.)

The process ¹zj ºn1 can be thought of as a conditional process where the eigenvalue
process associated with Q0 is conditioned on the event that none of the eigenvalues
fall outside of the closed set C . If C � IntS , we are conditioning on a rare event.

We mention in passing that for other conditional point processes, such as the zeros
of Gaussian analytic functions conditioned on a hole event, the situation is drastically
different because of the presence of a forbidden region around the singular part of the
equilibrium measure [49, 65].

Remark 1.1. Hard wall ensembles from Hermitian random matrix theory have been
well studied in the literature, see for example [27, 30, 36, 37, 40, 47, 62]; see also [34]
for a soft/hard edge. We remark that imposing a hard wall in the interior of a one-
dimensional droplet has a well-known global effect on the equilibrium measure, in
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contrast to (1.3) which just alters the measure locally at the edge. However, this
apparent contradiction is quickly dispelled if we note that a one-dimensional droplet
consists of only edge and no interior (regarded as a subset of C).

1.2. Mittag-Leffler ensembles with a hard wall constraint

For what follows, we will restrict our attention to radially symmetric potentials of the
form

Q0.z/ D jzj
2b
�
2˛

n
ln jzj; (1.4)

where b > 0 and ˛ > �1 are fixed parameters. The unconstrained model Mittag-
Leffler ensemble is a configuration ¹�j ºn1 picked randomly with respect to the follow-
ing joint probability density function:

1

nŠZn

Y
1�j<k�n

j�k � �j j
2

nY
jD1

j�j j
2˛e�nj�j j

2b

; �1; : : : ; �n 2 C; (1.5)

where Zn is the normalization constant. It is well known that the droplet S0 corre-
sponding to the potential (1.4) is the disk of radius b�

1
2b centered at 0; the density is

given according to (1.2) by

d�0.z/ D
b2

�
jzj2b�2d2z:

Remark 1.2. The logarithmic and power-like singularities of (1.4) at the origin are
not strong enough to affect the equilibrium measure. The term “Mittag-Leffler poten-
tial” is from [10] and refers to a much broader class of potentials having similar kinds
of singularities at the origin. The motivation for the terminology is that, under some
conditions, the local statistics near the origin can be described by a two-parametric
Mittag-Leffler function [13].

We now fix a parameter � with 0 < � < b�
1
2b and place a hard wall outside the

circle jzj D �. More precisely, we consider the probability density

1

nŠZn

Y
1�j<k�n

jzk � zj j
2

nY
jD1

e�nQ.zj /; z1; : : : ; zn 2 C; (1.6)

where Zn is the normalizing partition function and

Q.z/ D

´
jzj2b � 2˛

n
ln jzj if jzj � �;

C1 if jzj > �:
(1.7)
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This gives the hard-wall Mittag-Leffler process ¹zj ºn1 , conditioned on the forbidden
region ¹jzj > �º. For brevity, we shall in the sequel refer to ¹zj ºn1 corresponding to
the potential (1.7) as the restricted Mittag-Leffler process.

The equilibrium measure �h corresponding to the potential (1.7) can be easily
computed using standard balayage techniques [68] (see also [35, Section 4.1] or [70]
for details) and is given by

�h.d
2z/ D �reg.d

2z/C �sing.d
2z/;

�reg.d
2z/ WD 2b2r2b�1dr

d�

2�
; �sing.d

2z/ WD c�ı�.r/dr
d�

2�
; (1.8)

where z D rei� , r > 0, � 2 .��; �� and

c� WD

b
� 1
2bZ

�

2b2r2b�1dr D 1 � b�2b: (1.9)

Standard arguments [6,51,54] show that the empirical measures 1
n

P
ızj converge

weakly in probability to �h as n!1.
Clearly, the restricted Mittag-Leffler process is an example of a rotation invariant

ensemble, i.e., the joint probability density function (1.6) remains unchanged if all zj
are multiplied by the same unimodular constant eiˇ , ˇ 2 R.

In this work we focus on the case � < b�
1
2b , which means that we are studying a

hard wall in the bulk of the droplet S0. The case of a soft/hard edge, i.e., � D b�
1
2b

could be included as well, but would require a somewhat different (and much simpler)
analysis. We shall therefore omit this case.

Coulomb gas ensembles in the presence of a hard wall have previously been con-
sidered in the literature, but so far the focus has been on large gap probabilities (or
partition functions) [1, 3–5, 29, 46, 48, 50, 53] and on the local statistics [64, 70, 77].
We refer to [11, 12, 23, 51, 59, 69] for studies of local droplets and local statistics near
soft/hard edges.

In recent years, a lot of works dealing with the counting statistics of two-dimen-
sional point processes have appeared [2, 25, 28, 31, 43, 45, 57, 58, 60, 72, 73], see also
[71] for an earlier work. A common feature of these works is that they all deal exclu-
sively with either “the bulk regime” or with “the soft edge regime.”

In this paper we study disk counting statistics of (1.6) near the hard edge ¹jzj D �º.
To be specific, let N.y/ WD #¹zj W jzj j < yº be the random variable that counts the
number of points of (1.6) in the disk of radius y centered at 0. Our main result is
a precise asymptotic formula as n ! C1 for the multivariate moment generating
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b D 1
2 b D 1 b D 2

b D 1
2 b D 1 b D 2

Figure 1. Illustration of the point processes corresponding to (1.5) (first row) and (1.6) (second
row) with n D 4096, � D 4

5
b�

1
2b , ˛ D 0 and the indicated values of b. In each plot, the red

circle is ¹z 2 CW jzj D b�
1
2b º. A narrow interface about the hard wall jzj D �, of width roughly

1=n, accommodates the roughly c�n particles swept out from the forbidden region. The semi-
hard regime of width roughly 1=

p
n is transitional between the hard edge and the bulk.

function (MGF)

E
h mY
jD1

euj N.rj /
i

(1.10)

where m 2 N>0 is arbitrary (but fixed), u1; : : : ; um 2 R, and the radii r1; : : : ; rm are
merging at a critical speed. We consider several regimes:

• hard edge,

0 < r1 < � � � < rm; r` D �
�
1 �

t`

n

� 1
2b
; t1 > � � � > tm � 0I (1.11)

• semi-hard edge,

0 < r1 < � � � < rm; r` D �
�
1 �

p
2s`

�b
p
n

� 1
2b
; s1 > � � � > sm > 0I (1.12)
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• bulk,

0 < r1 < � � � < rm; r` D r
�
1C

p
2s`

rb
p
n

� 1
2b
; s1 < � � � < sm 2 R; (1.13)

with r < � in (1.13).

We emphasize that sm ¤ 0 in (1.12).
We shall prove that, as n!C1, the joint MGF EŒ

Qm
jD1 e

uj N.rj /� enjoys asymp-
totic expansions of the form

exp
�
C1nC C2 lnnC C3 C

C4
p
n
CO.n�

3
5 /
�

for the hard edge; (1.14)

exp
�
C1nC C2

p
n C C3 C

C4
p
n
CO

� .lnn/4
n

��
for the semi-hard edge; (1.15)

exp
�
C1nC C2

p
n C C3 C

C4
p
n
CO

� .lnn/2
n

��
for the bulk: (1.16)

For each of these three regimes, we determine C1; : : : ; C4 explicitly.
As can be seen from (1.14)–(1.16), the counting statistics in the hard edge regime

are drastically different from the counting statistics in the bulk and semi-hard edge
regimes (and also very different from the counting statistics in the soft edge regime
[28, 31]). Indeed, at the hard edge the subleading term is proportional to ln n, while
in all other regimes it is proportional to

p
n. Furthermore, in the hard edge regime,

the leading coefficient C1 will be shown to depend on the parameters u1; : : : ; um in a
highly non-trivial non-linear way.

As we show below, the above asymptotic expansions have several interesting con-
sequences; for example, VarŒN.rj /� � n in the hard edge regime, while VarŒN.rj /� �
p
n in the three other regimes (actually, a similar statement also holds for the higher

order cumulants, as can be seen by comparing Corollary 1.5 with Corollary 1.8 and
[31, Corollary 1.5]). This indicates that the counting statistics near a hard edge are
considerably wilder than near a soft edge, in the bulk or near a semi-hard edge. From
a technical point of view, we also found the hard edge regime to be significantly
harder to analyze than the three other regimes. For example, our control of the error
term in (1.14) is less precise than in (1.15) and (1.16).

In contrast to earlier works on smooth and non-smooth linear statistics in the soft
edge and bulk regime, the leading coefficient C1 in the hard edge regime is not given
by the integral of the test function (in our case

Pm
jD1 uj�.0;rj /.z/) against the equilib-

rium measure �h, and in fact it depends in a non-linear way on the parameters uj . In
a sense this behavior becomes less surprising if we recall that we are not considering
fixed test functions, but rather increasing sequences corresponding to characteristic
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functions of expanding disks, and it is known due to Seo [70] that the 1-point func-
tion varies rather dramatically in the hard edge regime. On the other hand, the fact
that the relationship becomes non-linear might be less clear on this intuitive level. See
also Remark 1.4 below for more about this.

The transition from the hard edge regime to the bulk regime is very subtle. The
semi-hard edge regime lies in between, i.e., it is genuinely different from the hard
edge and the bulk regimes. To the best of our knowledge, it seems that this regime
has been unnoticed (or at least unexplored) in the literature so far.1 Our results for
this regime can be seen as a first step towards understanding the hard-edge-to-bulk
transition. However, the fact that the subleading terms in the hard edge and semi-
hard edge regimes are of different orders indicates that there is still (at least) one
intermediate regime where a critical transition takes place. We will return to this issue
in a follow-up work.

As corollaries of our various results on the generating function (1.10), we also
provide central limit theorems for the joint fluctuations of N.r1/; : : : ;N.rm/, and pre-
cise asymptotic formulas for all cumulants of these random variables (both at the
hard edge and at the semi-hard edge). Our results for the hard edge and semi-hard
edge regimes seem to be new, even for m D 1. Our results about the bulk regime
are less novel. Indeed, in this regime the asymptotics of the MGF have been inves-
tigated in various settings [25, 28, 31, 45, 57]: see [25, Proposition 8.1] for second
order asymptotics of the one-point MGF of counting statistics of general domains in
Ginibre-type ensembles; see [57] for second order asymptotics of the one-point MGF
of the disk counting statistics of rotation-invariant ensembles with a general potential;
see [45] for third order asymptotics for the one-point MGF of disk counting statis-
tics of Ginibre-type ensembles; and see [28, 31] for fourth order asymptotics for the
m-point MGF of disk counting statistics in the Mittag-Leffler ensemble (1.5). Both
the bulk and the soft edge regimes were investigated in [28, 31]; however in [28] the
radii of the disks were taken fixed, while in [31] all radii were assumed to merge at
the critical speed � 1p

n
(in this critical regime one observes non-trivial correlations

in the disk counting statistics). As it turns out, the bulk statistics of (1.5) and (1.6)
are identical up to exponentially small errors (in other words, the points in the bulk
almost do not feel the hard wall). Our formulas for the bulk regime (1.13) are in fact
identical to the corresponding formulas in [31] (the proof is also almost identical, we
only have to handle some additional exponentially small error terms). We have nev-
ertheless decided to include a very short section in this paper on the bulk regime for

1In a different but somewhat related context, namely in the study of the statistics of the
largest modulus of the complex Ginibre ensemble, a new intermediate regime was also recently
discovered in [56].
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completeness. We also point out that for C 2-smooth test functions f on the plane, the
asymptotic normality of fluctuations was worked out quite generally in [9], for poten-
tials having a connected droplet. In this case the asymptotic variance of fluctuations
is given by a Dirichlet norm 1

4�

R
jrf S .z/j2 d2z, where f S equals f in S and is the

bounded harmonic extension of f jS outside of S .
The presentation of our results is organized as follows: Section 1.3 treats the hard

edge regime, Section 1.4 the semi-hard edge regime, and Section 1.5 the bulk regime.

1.3. Results for the hard edge regime

Let r1; : : : ; rm be as in (1.11), let Et WD .t1; : : : ; tm/ be such that t1 > � � � > tm � 0, let
Eu WD .u1; : : : ; um/ 2 Rm, and define

f .xI Et; Eu/ D �
� b�2b

x � b�2b
C
˛

b

� T1.xI Et; Eu/
1C T0.xI Et; Eu/

�
x

2b

T2.xI Et; Eu/
1C T0.xI Et; Eu/

; (1.17)

Tj .xI Et; Eu/ D
mX
`D1

!`t
j

`
e�

t`
b
.x�b�2b/; j � 0; (1.18)

�.Eu/ D 1C T0.b�2bI Et; Eu/ D eu1C���Cum ;

where

!` D !`.Eu/ D

8̂̂<̂
:̂
eu`C���Cum � eu`C1C���Cum if ` < m;

eum � 1 if ` D m;

1 if ` D mC 1:

Recall that the complementary error function is defined by

erfc.t/ D
2
p
�

1Z
t

e�x
2

dx: (1.19)

Throughout the paper ln.�/ denotes the principal branch of the logarithm and

Dı.z0/ D ¹z 2 CW jz � z0j < ıº

denotes an open disk of radius ı centered at z0 2 C.

Theorem 1.3 (Merging radii at the hard edge). Let m 2 N>0, b > 0, � 2 .0; b�
1
2b /,

t1 > � � � > tm � 0, and ˛ > �1 be fixed parameters, and for n 2 N>0, define

r` D �
�
1 �

t`

n

� 1
2b
; ` D 1; : : : ; m: (1.20)
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For any fixed x1; : : : ; xm 2 R, there exists ı > 0 such that

E
h mY
jD1

euj N.rj /
i

D exp
�
C1nC C2 lnnC C3 C

C4
p
n
CO.n�

3
5 /
�

as n!C1 (1.21)

uniformly for u1 2Dı.x1/; : : : ; um 2Dı.xm/, where ¹Cj D Cj .Eu/º4jD1 are given by

C1 D b�
2b

mX
jD1

uj C

1Z
b�2b

ln.1C T0.xI Et; Eu//dx;

C2 D �
b�2b

2

T1.b�2bI Et; Eu/
�.Eu/

D �
b�2b

2

Pm
`D1 t`!`

eu1C���Cum
;

C3 D �
1

2

mX
jD1

uj C
1

2
ln.1C T0.1I Et; Eu//

C

1Z
b�2b

°
f .xI Et; Eu/C

b�2bT1.b�2bI Et; Eu/
�.Eu/.x � b�2b/

±
dx

C b�2b
T1.b�2bI Et; Eu/

�.Eu/
ln
� b�b
p
2�.1 � b�2b/

�
;

C4 D
p
2	b�b

�
�2b

T2.b�2bI Et; Eu/
�.Eu/

�
T1.b�2bI Et; Eu/

�.Eu/
� �2b

T1.b�2bI Et; Eu/2

�.Eu/2

�
;

and the real number 	 2 R is given by

	 D

C1Z
�1

° ye�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y2 C

1

2

i±
dy � �0:81367: (1.22)

In particular, since EŒ
Qm
jD1 e

uj N.rj /� depends analytically on u1; : : : ; um 2 C and
is strictly positive for u1; : : : ; um 2 R, the asymptotic formula (1.21) together with
Cauchy’s formula shows that

@k1u1 : : : @
km
um

°
ln E

h mY
jD1

euj N.rj /
i
�

�
C1nC C2 lnnC C3 C

C4
p
n

�±
D O.n�

3
5 /

as n!C1; (1.23)

for any k1; : : : ; km 2 N, and u1; : : : ; um 2 R.
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Remark 1.4. The leading coefficient in the asymptotics of moment generating func-
tions of linear statistics with respect to a fixed, bounded continuous test function g is
of course given by the integral of g against the relevant equilibrium measure. How-
ever, in the hard edge regime of Theorem 1.3, we rather use a sequence g D gn

of test-functions, given in terms of characteristic functions of expanding disks of
radii (1.20) by gn.z/ D

Pm
jD1 uj�.0;rj /.z/.

A direct computation using (1.2) shows that, as n!C1,

Z
gn.x/d�h.x/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

mX
jD1

uj

rjZ
0

2b2r2b�1dr D b�2b
mX
jD1

uj C o.1/;

mX
jD1

uj

rjZ
0

2b2r2b�1dr C umc� D b�
2b

mX
jD1

uj C umc� C o.1/;

where the first line reads for tm > 0 and the second one for tm D 0, and where c� is
given by (1.9).

Since b�2b
Pm
jD1 uj ¤ C1 ¤ b�

2b
Pm
jD1 uj C umc�, we see that in the hard edge

regime, even the leading coefficient C1 cannot straightforwardly be obtained from
the equilibrium measure, which might be surprising at first sight. What is even more
surprising is that C1 is not even linear in u1; : : : ; um (this contrasts with all previously
studied regimes, and also with the semi-hard edge regime).

For E| 2 .Nm/>0 WD ¹ E| D .j1; : : : ; jm/ 2NWj1C � � � C jm � 1º, the joint cumulant
� E| D � E| .r1; : : : ; rmIn; b; ˛/ of N.r1/; : : : ;N.rm/ is defined by

� E| D �j1;:::;jm WD @
E|

Eu
ln EŒeu1 N.r1/C���Cum N.rm/�j

EuDE0
;

where @ E|
Eu
WD @

j1
u1 : : : @

jm
um . In particular,

EŒN.r/� D �1.r/;

VarŒN.r/� D �2.r/ D �.1;1/.r; r/;

CovŒN.r1/;N.r2/� D �.1;1/.r1; r2/:

Recall from (1.2)–(1.9) that c� D 1 � b�2b D
R
�sing.d

2z/, i.e. c� is the density of
particles accumulating near the hard-edge as n! C1. It turns out that the asymp-
totics of EŒN.r`/� and Cov.N.r`/;N.rk//, which are obtained in Corollary 1.5 below,
are more elegantly described in terms of c�, as well as the new parameter

s` WD
t`

b
.1 � b�2b/

D
c�n

b

�
1 �

�r`
�

�2b�
D 2 �

c�n

2��
� 2�.� � r`/.1CO.n�1//: (1.24)
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Corollary 1.5 (Hard edge). Letm 2N>0, b > 0, � 2 .0;b�
1
2b /, E| 2 .Nm/>0, ˛ >�1,

and t1 > � � � > tm > 0 be fixed. Define s1; : : : ; sm as in (1.24). For n 2 N>0, define
¹r`º

m
`D1

by (1.20).

(a) The joint cumulant � E| satisfies

� E| D @
E|

Eu
C1jEuDE0nC @

E|

Eu
C2jEuDE0 lnn

C @
E|

Eu
C3jEuDE0 C

@
E|

Eu
C4jEuDE0
p
n

CO.n�
3
5 /; n!C1;

whereC1; : : : ;C4 are as in Theorem 1.3. In particular, for any 1� ` < k �m,

EŒN.r`/� D b1.s`/nC c1.s`/ lnnC d1.s`/

C e1.s`/n
� 12 CO.n�

3
5 /;

VarŒN.r`/� D b.1;1/.s`; s`/nC c.1;1/.s`; s`/ lnnC d.1;1/.s`; s`/

C e.1;1/.s`; s`/n
� 12 CO.n�

3
5 /;

Cov.N.r`/;N.rk// D b.1;1/.s`; sk/nC c.1;1/.s`; sk/ lnnC d.1;1/.s`; sk/

C e.1;1/.s`; sk/n
� 12 CO.n�

3
5 /

as n!C1, where

b1.s`/ D 1 � c� C c�
1 � e�s`

s`
;

c1.s`/ D �
1 � c�

c�

bs`

2
;

d1.s`/ D�
1 � e�s`

2
C
1 � c�

c�

bs`

2
ln
�b.1 � c�/

2�c2�

�
� s`

1Z
0

e�s`y.yc�.bs`y C 2˛/C .1 � c�/b.2C s`y//

2c�y

�
2.1 � c�/b

2c�y
dy;

e1.s`/ D
p
2	b��b

1 � c�

c�
s`

�1 � c�
c�

s` � 1
�
;

and, for l � k,

b.1;1/.s`; sk/ D c�
1 � e�s`

s`
� c�

1 � e�s`�sk

s` C sk
; (1.25)

c.1;1/.s`; sk/ D
1 � c�

c�

bsk

2
;
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d.1;1/.s`; sk/ D
e�s`.1 � e�sk /

2
�
1 � c�

c�

bsk

2
ln
�b.1 � c�/

2�c2�

�
�

1Z
0

1

y

°
bsk

1 � c�

c�

C s`e
�s`y

�
b
1 � c�

c�
C ˛y C

bs`

2
y
�
y C

1 � c�

c�

��
� e�.s`Csk/y

��1 � c�
c�

b C ˛y
�
.s` C sk/

C
by

2

�
y C

1 � c�

c�

�
.s2` C s

2
k/
�±
dy;

e.1;1/.s`; sk/ D
p
2	b��b

1 � c�

c�
sk

�
1 �

1 � c�

c�
.2s` C sk/

�
:

(b) As n!C1, the random variable .N1; : : : ;Nm/, where

N` WD
N.r`/ � b1.s`/np
b.1;1/.s`; s`/n

; ` D 1; : : : ; m; (1.26)

convergences in distribution to a multivariate normal random variable of
mean .0; : : : ; 0/ whose covariance matrix † is defined by

†`;k D †k;` D
b.1;1/.s`; sk/p

b.1;1/.s`; s`/b.1;1/.sk; sk/
; 1 � ` � k � m;

where b.1;1/ is given by (1.25).

Remark 1.6. Corollary 1.5 is stated for t1 > � � � > tm > 0. It is important for Corol-
lary 1.5 (b) that tm > 0; note however that Corollary 1.5 (a) in fact also holds for
t1 > � � � > tm � 0. In the case when tm D 0D sm, one finds b1.sm/D n and c1.sm/D
d1.sm/ D e1.sm/ D 0, which is consistent with the fact that N.rm/ D n with proba-
bility 1.

The central limit theorem of Corollary 1.5 (b), even though it only uses b1.s/ and
b.1;1/.s; s/, is a non-trivial result because to determine just the leading term C1 in
Theorem 1.3 one already needs quite subtle asymptotics of the incomplete gamma
function.

Proof of Corollary 1.5. Assertion (a) follows from (1.23) and the expressions for the
Cj given in Theorem 1.3. By Lévy’s continuity theorem, assertion (b) will follow if
we can show that the characteristic function EŒei

Pm
`D1 v`N` � converges pointwise to

e�
1
2

Pm
`;kD1 v`†`;kvk for every v` 2 Rm as n!C1. Letting

u` D
iv`p

b.1;1/.s`; s`/n
;
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(1.26) and (1.21) show that

EŒei
Pm
`D1 v`N` � D EŒe

Pm
`D1 u` N.r`/�e�

Pm
`D1 u`b1.s`/n

D eC1.Eu/nCC2.Eu/ lnnCC3.Eu/CO.n
� 1
2 /e�

Pm
`D1 u`@u`C1jEuDE0n

as n ! C1 for any fixed v` 2 Rm. Since Cj jEuDE0 D 0 for j D 1; 2; 3 and u` D
O.n�1=2/, we obtain

EŒei
Pm
`D1 v`N` � D e

1
2

Pm
`;kD1 u`uk@u`@ukC1jEuDE0nCO.jEuj3nCjEuj lnnCjEujCn�1=2/

D e
1
2

Pm
`;kD1

iv`p
b.1;1/.s`;s`/

ivkp
b.1;1/.sk;sk/

b.1;1/.smin.`;k/;smax.`;k//CO. lnnp
n
/

! e�
1
2

Pm
`;kD1 v`†`;kvk

as n!C1, which proves (b).

Let us analyze the leading coefficient b.1;1/.s; s/ of VarŒN.r/�, where

r WD �
�
1 �

t

n

� 1
2b

and s WD
t

b
c�:

By (1.25),

b.1;1/.s; s/ D c�
1 � e�s

s
� c�

1 � e�2s

2s
: (1.27)

Note that b.1;1/.0;0/ WD lims!0C b.1;1/.s; s/D 0, which, as mentioned in Remark 1.6,
is consistent with the fact that N.�/ D n with probability 1. On the other hand,
b.1;1/.s; s/D

c�
2s
CO.e�s/ as s!C1. It is therefore interesting to investigate where

the maximum of b.1;1/.s; s/ is achieved. It is possible to compute the unique maxi-
mum of s 7! b.1;1/.s; s/ explicitly in terms of the Lambert function W�1.x/, which
for �1

e
� x < 0 is defined as the unique solution to

W�1.x/e
W�1.x/ D x; W�1.x/ � �1:

Indeed, taking the derivative of (1.27) yields

d

ds
b.1;1/.s; s/ D �

c�

2s2
.1 � e�s/.1 � .1C 2s/e�s/; s > 0;

and a direct inspection shows that d
ds
b.1;1/.s; s/ D 0 if and only if s D s?, where

s? D �
�
W�1

�
�1

2
p
e

�
C
1

2

�
� 1:2564:
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Furthermore,

b.1;1/.s?; s?/ D
�2W�1

�
�1

2
p
e

�
� 1

4W�1
�
�1

2
p
e

�2 c� � 0:20363c�:

As � decreases, the hard wall gets stronger (in the sense that the mass c� of �sing

increases), and we observe that b.1;1/.s?; s?/ increases. The graphs of b1.s/ and
b.1;1/.s; s/ are displayed in Figure 2 for certain values of � and b.

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

Figure 2. The coefficients s 7! b1.s/ (blue) and s 7! b.1;1/.s; s/ (orange) for � D 0:6b�
1
2b

and b D 13
10

. The orange dot has coordinates .s?; b.1;1/.s?; s?//.

1.4. Results for the semi-hard edge

Theorem 1.7 (Merging radii at the semi-hard edge). Let m 2 N>0, b > 0, � 2 .0;
b�

1
2b /, s1 > � � � > sm > 0, and ˛ > �1 be fixed parameters, and for n 2 N>0, define

r` D �
�
1 �

p
2s`

�b
p
n

� 1
2b
; ` D 1; : : : ; m: (1.28)

For any fixed x1; : : : ; xm 2 R, there exists ı > 0 such that

E
h mY
jD1

euj N.rj /
i

D exp
�
C1nC C2

p
nC C3 C

C4
p
n
CO

� .lnn/4
n

��
; as n!C1

uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/, where

C1 D b�
2b

mX
jD1

uj ;
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C2 D
p
2b�b

C1Z
�1

�
h0.y/ � �.�1;0/.y/

mX
jD1

uj

�
dy;

C3 D �
�1
2
C ˛

� mX
jD1

uj C b

C1Z
�1

�
4y
�
h0.y/ � �.�1;0/.y/

mX
jD1

uj

�
C
p
2h1.y/

�
dy;

C4 D b�
�b

C1Z
�1

h
6
p
2y2

�
h0.y/ � �.�1;0/.y/

mX
jD1

uj

�
C 4yh1.y/C

p
2h2.y/

i
dy;

where

h0.y/ D ln.g0.y//; h1.y/ D
g1.y/

g0.y/
; h2.y/ D

g2.y/

g0.y/
�
1

2

�g1.y/
g0.y/

�2
;

and

g0.y/ D 1C

mX
`D1

!`
erfc.y C s`/

erfc.y/
;

g1.y/ D

mX
`D1

p
2

3
p
�
!`

°
.5y2 � 1/

e�y
2

erfc.y/
erfc.y C s`/

erfc.y/

� .5y2 C s`y C 2s
2
` � 1/

e�.yCs`/
2

erfc.y/

±
;

g2.y/ D

mX
`D1

!`

° 1

18
p
�

h
50y5 C 70y4s` C y

3.62s2` � 73/C y
2s`.50s

2
` � 33/

� y.3C 18s2` � 16s
4
`/C s`.3 � 22s

2
` C 8s

4
`/
ie�.yCs`/

2

erfc.y/

C
2.1 � 5y2/.5y2 C ys` � 1C 2s

2
`
/

9�

e�y
2

erfc.y/
e�.yCs`/

2

erfc.y/

C
y.3C 73y2 � 50y4/

18
p
�

e�y
2

erfc.y/
erfc.y C s`/

erfc.y/

C
2.1 � 5y2/2

9�

� e�y
2

erfc.y/

�2 erfc.y C s`/

erfc.y/

±
:

In particular, since EŒ
Qm
jD1 e

uj N.rj /� depends analytically on u1; : : : ; um 2 C and
is strictly positive for u1; : : : ; um 2 R, the asymptotic formula (1.31) together with
Cauchy’s formula shows that

@k1u1 : : : @
km
um

°
ln E

h mY
jD1

euj N.rj /
i
�

�
C1nC C2

p
nC C3 C

C4
p
n

�±
D O

� .lnn/4
n

�
as n!C1, for any k1; : : : ; km 2 N and u1; : : : ; um 2 R.
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The proof of the following corollary is similar to that of Corollary 1.5 and is
omitted.

Corollary 1.8 (Semi-hard edge). Let m 2 N>0, b > 0, � 2 .0; b�
1
2b /, E| 2 .Nm/>0,

˛ > �1, and s1 > � � � > sm > 0 be fixed. For n 2 N>0, define ¹r`ºm`D1 by (1.28).

(a) The joint cumulant � E| satisfies

• for E| D 1;

� E| D @
E|

Eu
C1jEuDE0nC @

E|

Eu
C2jEuDE0

p
nC @

E|

Eu
C3jEuDE0 C @

E|

Eu
C4jEuDE0

1
p
n

CO
� .lnn/4

n

�
;

• for E| ¤ 1;

� E| D @
E|

Eu
C2jEuDE0

p
nC @

E|

Eu
C3jEuDE0 C @

E|

Eu
C4jEuDE0

1
p
n
CO

� .lnn/4
n

�
;

as n!C1, where C1; : : : ; C4 are as in Theorem 1.7.
In particular, for any 1 � ` < k � m,

EŒN.r`/� D b1.s`/nC c1.s`/
p
nC d1.s`/C e1.s`/n

� 12

CO..lnn/4n�1/;

VarŒN.r`/� D c.1;1/.s`; s`/
p
nC d.1;1/.s`; s`/C e.1;1/.s`; s`/n

� 12

CO..lnn/4n�1/;

Cov.N.r`/;N.rk// D c.1;1/.s`; sk/
p
nC d.1;1/.s`; sk/C e.1;1/.s`; sk/n

� 12

CO..lnn/4n�1/

as n!C1, where

b1.s`/ D b�
2b;

c1.s`/ D
p
2b�b

C1Z
�1

�erfc.y C s`/

erfc.y/
� �.�1;0/.y/

�
dy;

d1.s`/ D �
�1
2
C ˛

�
C 2b

C1Z
�1

°
2y
�erfc.y C s`/

erfc.y/
� �.�1;0/.y/

�
C
5y2 � 1

3
p
�

e�y
2

erfc.y/
erfc.y C s`/

erfc.y/

C
1 � 5y2 � ys` � 2s

2
`

3
p
�

e�.yCs`/
2

erfc.y/

±
dy;
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e1.s`/ D
b��b

9
p
2�

1Z
�1

1

erfc.y/3
M dy;

where

M WD 108�y2 erfc.y/2 erfc.y C s`/

C
p
� erfc.y/2e�.yCs`/

2

.2s3`.25y
2
� 11/C 2s2`y.31y

2
� 33/

C s`.70y
4
� 57y2 C 3/C 16s4`y C 8s

5
`

C y.50y4 � 193y2 C 21//

C erfc.y/.�e�y
2p
�y.50y4 � 193y2 C 21/ erfc.y C s`/

� 4e�.yCs`/
2�y2.5y2 � 1/.s`y C 2s

2
` C 5y

2
� 1//

C 4e�2y
2

.1 � 5y2/2 erfc.y C s`/ � 108��.�1;0/.y/y
2 erfc.y/3;

and, for l � k,

c.1;1/.s`; sk/

D
p
2b�b

1Z
�1

erfc.y C s`/.erfc.y/ � erfc.y C sk//

erfc.y/2
dy; (1.29)

d.1;1/.s`; sk/ D
2b

3
p
�

C1Z
�1

1

erfc.y/3
M1 dy;

e.1;1/.s`; sk/ D
b��b

9
p
2�

C1Z
�1

e�.yCs`/
2�.yCsk/

2

erfc.y/4
M2 dy;

where

M1 WD erfc.y/2.6
p
�y erfc.y C s`/ � e

�.yCs`/
2

.s`y C 2s
2
` C 5y

2
� 1//

C erfc.y/.e�.yCs`/
2

erfc.y C sk/.s`y C 2s
2
` C 5y

2
� 1/

� 6
p
�y erfc.y C s`/ erfc.y C sk/

C .e�y
2

C e�.yCsk/
2

/ erfc.y C s`/.5y
2
� 1/

C e�.yCsk/
2

erfc.y C s`/sk.2sk C y//

C 2e�y
2

.1 � 5y2/ erfc.y C s`/ erfc.y C sk/

and

M2 WD � erfc.y/2M2;1 C
p
� erfc.y/3e.yCsk/

2

M2;2 C 2 erfc.y/M2;3

� 12.1 � 5y2/2e2.s`Csk/yCs2
`
Cs2

k erfc.y C s`/ erfc.y C sk/;
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with

M2;1 WD
p
� erfc.y C s`/

� .108
p
�y2 erfc.y C sk/e

2.s`Csk/yCs2
`
Cs2

k
C2y2

C .50y4 � 193y2 C 21/ye.yCs`/
2

.esk.skC2y/ C 1/

C ske
.yCs`/

2

.62sky
3
C .50s2k � 57/y

2
C 2sk.8s

2
k � 33/y

C 8s4k � 22s
2
k C 70y

4
C 3//

C
p
�e.yCsk/

2

.2s3`.25y
2
� 11/C 2s2`y.31y

2
� 33/

C s`.70y
4
� 57y2 C 3/C 16s4`y

C 8s5` C y.50y
4
� 193y2 C 21// erfc.y C sk/

C 4.s`y C 2s
2
` C 5y

2
� 1/..5y2 � 1/esk.skC2y/

C sk.2sk C y/C 5y
2
� 1/;

M2;2 WD 108
p
�y2e.yCs`/

2

erfc.y C s`/C 2s
3
`.25y

2
� 11/

C 2s2`y.31y
2
� 33/C s`.70y

4
� 57y2 C 3/

C 16s4`y C 8s
5
` C y.50y

4
� 193y2 C 21/;

M2;3 WD 4.5y
2
� 1/esk.skC2y/.s`y C 2s

2
` C 5y

2
� 1/ erfc.y C sk/

C es`.s`C2y/ erfc.y C s`/

� .
p
�y.50y4 � 193y2 C 21/e.yCsk/

2

erfc.y C sk/

C 2.1 � 5y2/2.esk.skC2y/ C 2/C 4sk.5y
2
� 1/.2sk C y//:

(b) As n!C1, the random variable .N1; : : : ;Nm/, where

N` WD
N.r`/ � .b1.s`/nC c1.s`/

p
n/p

c.1;1/.s`; s`/n1=4
; ` D 1; : : : ; m;

convergences in distribution to a multivariate normal random variable of
mean .0; : : : ; 0/ whose covariance matrix † is defined by

†`;` D 1;

†`;k D †k;` D
c.1;1/.s`; sk/p

c.1;1/.s`; s`/c.1;1/.sk; sk/
; 1 � ` < k � m;

where c.1;1/ is given by (1.29).

1.5. Results for the bulk

It turns out that the points in the bulk only feel the hard wall via exponentially small
corrections. Consequently, the formulas for the bulk regime presented in our next
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theorem are identical to the corresponding formulas for the case without a hard edge
presented in [31]. Moreover, the proof is almost identical to the proof of the analogous
theorem in [31] and is therefore omitted (the only difference between the proofs is that
a number of exponentially small error terms stemming from the hard wall appear in
the proof of Theorem 1.9).

Theorem 1.9 (Merging radii in the bulk). Let m 2 N>0, b > 0, r 2 .0; b�
1
2b /,

s1 < � � � < sm, and ˛ > �1 be fixed parameters, and, for n 2 N>0, define

r` D r
�
1C

p
2s`

rb
p
n

� 1
2b
; ` D 1; : : : ; m: (1.30)

For any fixed x1; : : : ; xm 2 R, there exists ı > 0 such that

E
h mY
jD1

euj N.rj /
i

D exp
�
C1nC C2

p
nC C3 C

C4
p
n
CO

� .lnn/2
n

��
; as n!C1 (1.31)

uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/, where

C1 D br
2b

mX
jD1

uj ;

C2 D
p
2brb

C1Z
0

.ln H1.t I Eu; Es/C ln H2.t I Eu; Es//dt;

C3 D �
�1
2
C ˛

� mX
jD1

uj C 4b

C1Z
0

t .ln H1.t I Eu; Es/ � ln H2.t I Eu; Es//dt

C
p
2b

C1Z
�1

G1.t I Eu; Es/dt;

C4 D
6
p
2b

rb

C1Z
0

t2.ln H1.t I Eu; Es/C ln H2.t I Eu; Es//dt

C
b

rb

C1Z
�1

�
4tG1.t I Eu; Es/ �

G1.t I Eu; Es/
2

p
2

C G2.t I Eu; Es/
�
dt;

where

H1.t I Eu; Es/ WD 1C

mX
`D1

eu` � 1

2
exp

h mX
jD`C1

uj

i
erfc.t � s`/;
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H2.t I Eu; Es/ WD 1C

mX
`D1

e�u` � 1

2
exp

h
�

`�1X
jD1

uj

i
erfc.t C s`/;

and

G1.t I Eu; Es/

WD
1

H1.t I Eu; Es/

mX
`D1

.eu` � 1/ exp
h mX
jD`C1

uj

ie�.t�s`/
2

p
2�

1 � 2s2
`
C ts` � 5t

2

3
;

G2.t I Eu; Es/

WD
1

H1.t I Eu; Es/

mX
`D1

.eu` � 1/ exp
h mX
jD`C1

uj

ie�.t�s`/
2

18
p
2�

M3;

where

M3 WD 50t
5
� 70t4s` � t

3.73 � 62s2`/C t
2s`.33 � 50s

2
`/ � t .3C 18s

2
` � 16s

4
`/

� s`.3 � 22s
2
` C 8s

4
`/:

In particular, since EŒ
Qm
jD1 e

uj N.rj /� depends analytically on u1; : : : ; um 2 C

and is strictly positive for u1; : : : ; um 2 R, the asymptotic formula (1.31) together
with Cauchy’s formula shows that

@k1u1 : : : @
km
um

°
ln E

h mY
jD1

euj N.rj /
i
�

�
C1nC C2

p
nC C3 C

C4
p
n

�±
D O

� .lnn/2
n

�
;

as n!C1, for any k1; : : : ; km 2 N, and u1; : : : ; um 2 R.

Remark 1.10. In the above expressions for C2; C3; C4, the functions H1, H2 appear
inside logarithms. It was proved in [31, Lemma 1.1] that one has H1.t I Eu; Es/ > 0

and H2.t I Eu; Es/ > 0 for all t 2 R, Eu D .u1; : : : ; um/ 2 Rm and s1 < � � � < sm. This
ensures that C2; C3; C4 are well defined and real valued for Eu D .u1; : : : ; um/ 2 Rm,
s1 < � � � < sm.

In a similar way as in Sections 1.3 and 1.4, one could derive from Theorem 1.9
asymptotic formulas for the joint cumulants of N.r1/; : : : ;N.rm/ in the bulk regime.
For example, with r` as in (1.30), i.e. r` D r.1C

p
2s`

rb
p
n
/
1
2b with s` 2 R, we have

EŒN.r`/� D br2bnC
p
2brbs`

p
nC

b � 1 � 2˛

2
CO

� .lnn/2
n

�
; as n!C1:

(1.32)

We do not write down the formulas for the other cumulants as they are identical to the
corresponding formulas in [31, Corollary 1.5].
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It is interesting to compare (1.32) with the corresponding formula for the semi-
hard edge regime of Corollary 1.8. To ease the comparison, it is convenient to replace

s` by �s` in (1.12), i.e., here we take r` D �
�
1 C

p
2s`

�b
p
n

� 1
2b with s` < 0. Then it

follows from Corollary 1.8 that

EŒN.r`/� D b�2bnC c1.�s`/
p
nC d1.�s`/CO.n�

1
2 /; as n!C1: (1.33)

Furthermore, by a long but direct analysis, we obtain as s` ! �1 that

c1.�s`/ D
p
2b�bs` CO.e�cs2

`/; d1.�s`/ D
b � 1 � 2˛

2
CO.e�cs2

`/; (1.34)

for a small but fixed c > 0. Recall that the asymptotic formula (1.33) is proved for
fixed s` < 0. However, if we formally replace c1.�s`/ by

p
2b�bs` and d1.�s`/ by

b�1�2˛
2

in (1.33), then the terms of order
p
n and 1 in (1.32) and (1.34) are identical.

Thus, the above computation suggests that (i) the asymptotic formula (1.33) probably
holds as n!C1 and simultaneously as s` ! �1 at a sufficiently slow speed, and
(ii) that the transition between the semi-hard edge regime and the bulk regime does
not contain an intermediate regime.

Outline of proof. Relying on the determinantal structure of (1.6), we can rewrite
E
�Qm

`D1 e
u` N.r`/

�
as a ratio of two determinants using e.g. [76, Lemma 2.1] or [28,

Lemma 1.9] (see also [22]),

E
h mY
`D1

eu` N.r`/
i
D

1

nŠZn

Z
C

� � �

Z
C

Y
1�j<k�n

jzk � zj j
2

nY
jD1

w.zj /d
2zj

D
1

Zn
det

�Z
C

zj zkw.z/ d2z

�n�1
j;kD0

D
1

Zn
.2�/n

n�1Y
jD0

�Z
0

u2jC1w.u/ du; (1.35)

where

w.z/ WD jzj2˛e�njzj
2b

!.jzj/; !.x/ WD

mY
`D1

´
eu` if x < r`;

1 if x � r`:
(1.36)

For x < �, let us write

!.x/ D

mC1X
`D1

!`1Œ0;r`/.x/; !` WD

8̂̂<̂
:̂
eu`C���Cum � eu`C1C���Cum if ` < m;

eum � 1 if ` D m;

1 if ` D mC 1;

(1.37)
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where rmC1 WD �. Note also that � WD eu1C���Cum D
PmC1
jD1 !j . By (1.36)–(1.37),

�Z
0

u2jC1w.u/du

D

�Z
0

u2jC1u2˛e�nu
2b

duC

mX
`D1

!`

r`Z
0

u2jC1u2˛e�nu
2b

du

D

n�2bZ
0

�y
n

� jC1C˛
b e�y

2by
dy C

mX
`D1

!`

nr2b
`Z

0

�y
n

� jC1C˛
b e�y

2by
dy

D
n�

jC1C˛
b

2b

�

�j C 1C ˛

b
; n�2b

�
C

mX
`D1

!`
�j C 1C ˛

b
; nr2b`

��
;

where .a; z/ is the incomplete gamma function

.a; z/ D

zZ
0

ta�1e�tdt:

Hence,

.2�/n
n�1Y
jD0

�Z
0

u2jC1w.u/du

D n�
n2

2b n�
1C2˛
2b

n�
n

bn

nY
jD1

�

�j C ˛

b
; n�2b

�
C

mX
`D1

!`
�j C ˛

b
; nr2b`

��
:

An expression for Zn in terms of  can be found by setting !1 D � � � D !m D 0 above:

Zn D n
�n

2

2b n�
1C2˛
2b

n�
n

bn

nY
jD1


�j C ˛

b
; n�2b

�
;

and therefore, by (1.35),

ln En D

nX
jD1

ln
�
1C

mX
`D1

!`

�
jC˛
b
; nr2b

`

�

�
jC˛
b
; n�2b

��; (1.38)

where En WD EŒ
Qm
`D1 e

u` N.r`/�. The above formula is the starting point of the proofs
of Theorems 1.3, 1.7 and 1.9. We infer from (1.38) that, to obtain the large n asymp-
totics of En, we need the asymptotics of .a; z/ as a; z tend toC1 at various relative
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speeds. The uniform asymptotics of  are actually well known, and we recall them in
Appendix A.

The approach considered here shows similarities with [21,28,29,31]. The large n
behavior of . jC˛

b
; n�2b/ depends crucially on whether jC˛

b
� n�2b , jC˛

b
� n�2b

or jC˛
b
� n�2b . Hence, for the proofs of both Theorem 1.3 and Theorem 1.7, we will

split the sum in (1.38) into four parts,

ln En D S0 C S1 C S2 C S3;

where S0; : : : ; S3 are defined in (2.4)–(2.5). The sum S0 involves a large but fixed
number of j ’s; the sum S1 corresponds to those j ’s that are “large” and for which
jC˛
b
� n�2b; and the sum S3 involves the j ’s for which jC˛

b
� n�2b . For both

theorems, the most delicate sum is S2: this sum involves the j -terms in (1.38) for
which jC˛

b
� n�2b , and therefore critical transitions occur in the asymptotic behavior

of the functions ¹. jC˛
b
; nr2b

`
/ºm
`D1

and . jC˛
b
; n�2b/ when performing the sum S2.

For the two novel regimes considered in this work, namely the hard edge regime
(1.11) and the semi-hard edge regime (1.12), the proofs require precise Riemann sum
approximations for functions with singularities (the singularities are more difficult
to handle in the hard edge regime). In comparison, the bulk regime of Theorem 1.9
(whose proof is omitted here as it is essentially identical to [31]) is simpler as the
corresponding Riemann sum approximations involve more well-behaved functions.

Related works. By (1.35)–(1.36), we have En D Dn=Zn where Dn is an n � n
determinant with a rotation-invariant weight supported on C and with m merging
discontinuities: for Theorem 1.3, the discontinuities are merging near the hard edge
at speed 1=n; for Theorem 1.7, the discontinuities are merging near the hard edge at
speed 1=

p
n; and for Theorem 1.9, the discontinuities are merging in the bulk at speed

1=
p
n.

The problem of determining asymptotics of structured determinants with discon-
tinuities has a long history. When the weight is supported on the unit circle or on
the real line, this problem was studied by many authors, including Lenard, Fisher,
Hartwig, Widom, Basor, Böttcher, Silbermann, Ehrhardt, Deift, Its, and Krasovsky,
see e.g. [16, 26, 39] for some historical background, [27, 30, 36, 37, 62] for structured
determinants with discontinuities near a hard edge, and [33,44] for merging disconti-
nuities in the bulk.

A central theme in normal random matrix theories concerns the asymptotic dis-
tribution of linear statistics

Pn
1 f .zj / where f is a given test-function on the plane.

The analytical situation depends crucially on whether or not f belongs to the Sobolev
class W 1;2, since this is believed to be the right condition under which we obtain a
well-defined limiting normal distribution (say, after subtracting the expectation). This
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is rigorously verified in the Ginibre case in [67] and if the test-function is C 2-smooth
for more general ensembles in [9]. However, the class W 1;2 excludes certain natural
test-functions, or the logarithm lz.w/ D ln jz � wj (or close relatives like Green’s
functions) which is used in connection with the Gaussian free field, and characteristic
functions �E .z/ which define counting statistics.

The works [25, 28, 31, 45, 57] were already mentioned earlier in the introduc-
tion and deal with determinants with discontinuities in dimension two. Determinants
corresponding to the logarithmic test-function lz , for some special ensembles, have
attracted considerable attention in recent years [20, 21, 38, 76], see also e.g. [13–15,
17, 61].

2. Proof of Theorem 1.3

In this section, the r`’s are as in (1.11). Our proof strategy follows [21, 28, 29, 31].

Let us define

j� WD
lbn�2b
1C "

� ˛
m
; jC WD

jbn�2b
1 � "

� ˛
k
; (2.1)

where " > 0 is independent of n. We assume that " is sufficiently small such that

b�2b

1 � "
< 1; (2.2)

so that, recalling the formula (1.38) for ln En, we can write

ln En D S0 C S1 C S2 C S3; (2.3)

where

S0 D

M 0X
jD1

ln
�
1C

mX
`D1

!`

�
jC˛
b
; nr2b

`

�

�
jC˛
b
; n�2b

��; S1 D

j��1X
jDM 0C1

ln
�
1C

mX
`D1

!`
. jC˛

b
; nr2b

`
/

. jC˛
b
; n�2b/

�
;

(2.4)

S2 D

jCX
jDj�

ln
�
1C

mX
`D1

!`

�
jC˛
b
; nr2b

`

�

�
jC˛
b
; n�2b

��; S3 D

nX
jDjCC1

ln
�
1C

mX
`D1

!`

�
jC˛
b
; nr2b

`

�

�
jC˛
b
; n�2b

��:
(2.5)

In the above, M 0 > 0 is an integer independent of n. For j D 1; : : : ; n and k D
1; : : : ; m, we also define aj WD

jC˛
b

, and

�j;k WD
bnr2b

k

j C ˛
; �j;k WD .�j;k � 1/

s
2.�j;k � 1 � ln�j;k/

.�j;k � 1/2
; (2.6a)
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�j WD
bn�2b

j C ˛
; �j WD .�j � 1/

s
2.�j � 1 � ln�j /

.�j � 1/2
: (2.6b)

With this notation, the summand in (2.4)–(2.5) can be rewritten as

ln
�
1C

mX
`D1

!`
.aj ; aj�j;`/

.aj ; aj�j /

�
:

The notation �j and �j;k in (2.4)–(2.5) is introduced in the same spirit as the notation
� of Lemma A.2. Recall also that � WD eu1C���Cum D

PmC1
jD1 !j .

Lemma 2.1. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S0 DM
0 ln�CO.e�cn/; as n!C1;

uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/.

Proof. We infer from (2.4) and Lemma A.1 that

S0 D

M 0X
jD1

ln
�mC1X
`D1

!`Œ1CO.e�cn/�
�
D

M 0X
jD1

ln�CO.e�cn/; as n!C1:

In the above, the error terms before the second equality are independent of u1; : : : ;um,
so the claim follows.

Lemma 2.2. The constantM 0 can be chosen sufficiently large such that the following
holds. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S1 D .j� �M
0
� 1/ ln�CO.e�cn/;

as n!C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/.

Proof. According to (2.4) and (2.6), we have

S1 D

j��1X
jDM 0C1

ln
�
1C

mX
`D1

!`
.aj ; aj�j;`/

.aj ; aj�j /

�
:

There is a ı > 0 such that �j > 1C ı and �j;` D �j .1 � t`=n/ > 1C ı for all j 2
¹M 0 C 1; : : : ; j� � 1º and ` 2 ¹1; : : : ; mº. Hence, by Lemma A.2 (i) we can choose
M 0 such that

S1 D

j��1X
jDM 0C1

ln
�
1C

mX
`D1

!`
1CO.e�

aj �
2
j;`
2 /

1CO.e�
aj �

2
j
2 /

�
;
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where the error terms are uniform with respect to j and `. The functions j 7! aj�
2
j

and j 7! aj�
2
j;`

are decreasing, because

@j .aj�
2
j / D �

2

b
ln�j < 0; @j .aj�

2
j;`/ D �

2

b
ln�j;` < 0:

Moreover, we have aj��
2
j�
> 2cn and hence aj��

2
j�;`
D aj��

2
j�
CO.1/ > cn for all

sufficiently large n for some c > 0. It follows that

S1 D

j��1X
jDM 0C1

ln
�
1C

mX
`D1

!`
1CO.e�cn/

1CO.e�cn/

�
D

j��1X
jDM 0C1

ln
�
1C

mX
`D1

!`

�
CO.e�cn/;

from which the desired conclusion follows.

To obtain the large n asymptotics of S3, we will rely on the following lemma.

Lemma 2.3 (Adapted from [29, Lemma 3.4]). LetADA.n/;a0D a0.n/,B DB.n/;
b0 D b0.n/ be bounded functions of n 2 ¹1; 2; : : : º, such that

an WD AnC a0 and bn WD BnC b0

are integers. Assume also that B � A is positive and remains bounded away from 0.
Let f be a function independent of n, which is C 2.Œmin¹an

n
; Aº;max¹bn

n
; Bº�/ for all

n 2 ¹1; 2; : : : º. Then as n!C1, we have

bnX
jDan

f
�j
n

�
D n

BZ
A

f .x/dx C
.1 � 2a0/f .A/C .1C 2b0/f .B/

2

CO
�mA;n.f

0/CmB;n.f
0/

n
C

bn�1X
jDan

mj;n.f
00/

n2

�
;

where, for a given function g continuous on
�

min¹an
n
; Aº;max

®
bn
n
; B
¯�

,

mA;n.g/ WD max
x2Œmin¹ann ;Aº;max¹ann ;Aº�

jg.x/j;

mB;n.g/ WD max
x2Œmin¹ bnn ;Bº;max¹ bnn ;Bº�

jg.x/j;

and for j 2 ¹an; : : : ; bn � 1º, mj;n.g/ WD max
x2Œ jn ;

jC1
n �
jg.x/j.

Following the approach of [28, 29], we define

�
.n;"/
C D

�bn�2b
1 � "

� ˛
�
�

�
bn�2b

1 � "
� ˛

�
; � .n;"/� D

�
bn�2b

1C "
� ˛

�
�

�bn�2b
1C "

� ˛
�
:
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Lemma 2.4. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S3 D n

1Z
b�2b

1�"

f1.x/ dx C

1Z
b�2b

1�"

f .x/ dx C
�
˛ C �

.n;"/
C �

1

2

�
f1

� b�2b
1 � "

�

C
1

2
f1.1/CO.n�1/;

as n!C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/, where

f1.x/ WD ln.1C T0.x//

and f and Tj are defined in (1.17) and (1.18).

Proof. Recall that aj , �j , �j;`, �j and �j;` are defined in (2.6). By (2.5), we have

S3 D

nX
jDjCC1

ln.1CXj /; where Xj WD
Pm
`D1 !`.aj ; aj�j;`/

.aj ; aj�j /
: (2.7)

For j � jC C 1 and k 2 ¹1; : : : ; mº, 1 � �j;k and 1 � �j are positive and bounded
away from 0. Hence, using Lemma A.4 (ii), we obtain

Xj D

Pm
`D1 !`

e
�
aj
2
�2
j;`

p
2�

®P1
kD0

S.'k.�j;`//

a
kC1=2

j

CO
�
1

a
5=2

j

�
CO

�
1

.aj �
2
j;`
/5=2

�¯
e
�
aj
2
�2
j

p
2�

®P1
kD0

S.'k.�j //

a
kC1=2

j

CO
�
1

a
5=2

j

�
CO

�
1

.aj �
2
j
/5=2

�¯

D

mX
`D1

!`

e�
aj �

2
j;`
2

�
�1

�j;`�1
1
p
aj
C

1C10�j;`C�
2
j;`

12.�j;`�1/
3

1

a
3=2

j

CO.n�5=2/
�

e�
aj �

2
j
2

�
�1
�j�1

1
p
aj
C

1C10�jC�
2
j

12.�j�1/
3

1

a
3=2

j

CO.n�5=2/
� ; (2.8)

where the above O-terms are uniform for j 2 ¹jC C 1; : : : ; nº. Let x WD j=n. As
n!C1 we have

x 2
h b�2b
1 � "

CO.n�1/; 1
i
; aj D

nx

b
CO.1/;

uniformly for jCC 1� j � n. Thus, multiplying both the numerator and denominator
on the right-hand side of (2.8) by �a1=2j .�j � 1/, we get

Xj D

mX
`D1

!`e
�
aj
2 .�

2
j;`
��2
j
/
Yj;`; (2.9)



Y. Ameur, C. Charlier, J. Cronvall, and J. Lenells 870

where

Yj;` WD

�j�1

�j;`�1
� .�j � 1/

1C10�j;`C�
2
j;`

12.�j;`�1/
3

1
aj
CO.n�2/

1 � .�j � 1/
1C10�jC�

2
j

12.�j�1/
3

1
aj
CO.n�2/

;

and where the above O-terms are uniform for j 2 ¹jC C 1; : : : ; nº. Using that aj D
nxC˛
b

, we get

e
�
aj
2 .�

2
j;`
��2
j
/
D eaj ln.1�

t`
n /Caj

b�2bt`
nxC˛ D e�

t`
b
.x�b�2b/

�
1 �

t2
`
x C 2t`˛

2bn
CO

� 1
n2

��
;

�j;` D
b�2b

x

�
1 �

˛ C xt`

xn
C
˛.˛ C xt`/

x2n2
CO

� 1
n3

��
;

�j D
b�2b

x

�
1 �

˛

xn
C

˛2

x2n2
CO

� 1
n3

��
;

uniformly for jC C 1 � j � n. Substituting these expansions into the expression for
Yj;` in (2.9), a calculation gives ln.1 C Xj / D f1.j=n/ C

1
n
f .j=n/ C O.n�2/ as

n!1 uniformly for jC C 1 � j � n. In view of (2.7), we thus have

S3 D

nX
jDjCC1

�
f1

�j
n

�
C
1

n
f
�j
n

�
CO.n�2/

�
; as n!C1:

The claim then follows after a computation using Lemma 2.3 (with A D b�2b

1�"
, a0 D

1 � ˛ � �
.n;"/
C , B D 1 and b0 D 0).

We now focus on S2. Let M WD n
1
10 . We split S2 in three pieces as follows:

S2 D S
.1/
2 C S

.2/
2 C S

.3/
2 ; (2.10)

where

S
.v/
2 WD

X
j W�j2Iv

ln
�
1C

mX
`D1

!`
.aj ; aj�j;`/

.aj ; aj�j /

�
; v D 1; 2; 3;

and where

I1 D
h
1 � "; 1 �

M
p
n

�
; I2 D

h
1 �

M
p
n
; 1C

M
p
n

i
; I3 D

�
1C

M
p
n
; 1C "

i
:

(2.11)

From (2.10), we see that the large n asymptotics of ¹S .v/2 ºvD1;2;3 involve the asymp-
totics of .a; z/ when a!C1, z !C1 with � D z

a
2 Œ1 � "; 1C "�. These sums
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can also be rewritten using

X
j W�j2I3

D

g��1X
jDj�

;
X

j W�j2I2

D

gCX
jDg�

;
X

j W�j2I1

D

jCX
jDgCC1

;

where g� WD
˙
bn�2b

1C Mp
n

� ˛
�

and gC WD
�
bn�2b

1� Mp
n

� ˛
˘

. Let us also define

� .n;M/
� WD g� �

� bn�2b
1C Mp

n

� ˛
�
D

l bn�2b
1C Mp

n

� ˛
m
�

� bn�2b
1C Mp

n

� ˛
�
;

�
.n;M/
C WD

� bn�2b
1 � Mp

n

� ˛
�
� gC D

� bn�2b
1 � Mp

n

� ˛
�
�

j bn�2b
1 � Mp

n

� ˛
k
:

Clearly, � .n;M/
� ; �

.n;M/
C 2 Œ0; 1/. Note that the individual sums S .1/2 ; S

.2/
2 ; S

.3/
2 depend

on M , although S2 D S
.1/
2 C S

.2/
2 C S

.3/
2 is independent of M . Below, we will first

obtain large n asymptotics of S .1/2 ; S
.2/
2 ; S

.3/
2 . After adding the asymptotic formulas

of S .1/2 ; S
.2/
2 ; S

.3/
2 , we will find that all M -dependent terms cancel, as they must. For

this reason, below we will not replace M by n1=10 until the last step of the proof. The
reason why we choose M D n1=10 is technical. In the various asymptotic formulas
below, there will be different types of error terms, such as O.M

4
p
n
/, O.

p
n

M11 /, etc., and
in the last step of the proof we will find that M D n1=10 is the choice that produces
the best control over the total error.

Lemma 2.5. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S
.3/
2 D .b�

2bn � j� � bM�
2b
p
nC bM 2�2b � ˛ C � .n;M/

� � bM 3�2bn�
1
2 / ln�

CO.M 4n�1/;

as n!C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/.

Proof. Recall that aj ; �j ; �j;k; �j ; �j;k are defined in (2.6). By (2.10), we have

S
.3/
2 D

X
j W�j2I3

ln
�
1C

mX
`D1

!`
.aj ; aj�j;`/

.aj ; aj�j /

�
:

If �j 2 I3, then �j > 1C Mp
n

and �j;` D �j
�
1 � t`

n

�
> 1C Mp

n
CO.n�1/. So, there

exists a constant c > 0 such that

�j � c
M
p
n
; ��j

r
aj

2
� �cM; �j;` � c

M
p
n
; ��j;`

r
aj

2
� �cM;
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for all sufficiently large n, ` 2 ¹1; : : : ; mº and j 2 ¹j W�j 2 I3º. By Lemma A.4 (i),

S
.3/
2 D

X
j W�j2I3

ln
�
1C

mX
`D1

!`
1CO.e�

aj �
2
j;`
2 /

1CO.e�
aj �

2
j
2 /

�
D

g��1X
jDj�

ln�CO.e�c
2M2

/

D .g� � j�/ ln�CO.e�c
2M2

/

as n!C1. Since

g� � j� D
� bn�2b
1C Mp

n

� ˛
�
C � .n;M/
� � j�

D b�2bn � j� � bM�
2b
p
nC bM 2�2b � ˛ C � .n;M/

� � bM 3�2bn�
1
2

CO.M 4n�1/

as n!C1, the desired conclusion follows.

Lemma 2.6. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S
.1/
2 DD

."/
1 nCD

.M/
2

p
nCD3 lnnCD.n;";M/

4 C
D
.n;M/
5
p
n

CO
�M 4

n
C

1
p
nM
C

1

M 6
C

p
n

M 11

�
;

as n!C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/, where

D
."/
1 D

b�2b

1�"Z
b�2b

f1.x/ dx;

D
.M/
2 D � b�2bf1.b�

2b/M;

D3 D �
b�2bT1.b�2b/
2.1C T0.b�2b//

;

D
.n;";M/
4 D � b�2bM 2

�
f1.b�

2b/C
b�2b

2
f 01.b�

2b/
�

�
b�2bT1.b�2b/
1C T0.b�2b/

ln
� "

M.1 � "/

�

C

b�2b

1�"Z
b�2b

°
f .x/C

b�2bT1.b�2b/
.1C T0.b�2b//.x � b�2b/

±
dx

C

�
˛ �

1

2
C �

.n;M/
C

�
f1.b�

2b/
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C

�1
2
� ˛ � �

.n;"/
C

�
f1

� b�2b
1 � "

�
C

bT1.b�2b/
M 2.1C T0.b�2b//

C
�5bT1.b�2b/

2�2bM 4.1C T0.b�2b//
;

D
.n;M/
5 D �M 3b�2b

�
f1.b�

2b/C b�2bf 01.b�
2b/C

.b�2b/2

6
f 001 .b�

2b/
�

CMb�2bf 01.b�
2b/
�
˛ �

1

2
C �

.n;M/
C

�
CM

� .b C ˛/�2bT1.b�2b/
1C T0.b�2b/

�
b�4bT2.b�2b/
2.1C T0.b�2b//

C
b�4bT1.b�2b/2

.1C T0.b�2b//2

�
;

where f1 and f are as in the statement of Lemma 2.4.

Proof. We have

S
.1/
2 D

jCX
jDgCC1

ln.1CXj /; where Xj WD
Pm
`D1 !`.aj ; aj�j;`/

.aj ; aj�j /
: (2.12)

Since �j 2
�
1� "; 1� Mp

n

�
for gCC 1� j � jC and �j;` D �j .1�

t`
n
/, we can apply

Lemma A.4 (ii) to find, for each N � 0,

Xj D

Pm
`D1 !`

e
�
aj
2
�2
j;`

p
2�

®PN�1
kD0

S.'k.�j;`//

a
kC1=2

j

CO
�

1

a
NC1=2

j

�
CO

�
1

.aj �
2
j;`
/NC1=2

�¯
e
�
aj
2
�2
j

p
2�

®PN�1
kD0

S.'k.�j //

a
kC1=2

j

CO
�

1

a
NC1=2

j

�
CO

�
1

.aj �
2
j
/NC1=2

�¯ :

(2.13)

Let x WD j=n. For all sufficiently large n we have �j � �j � 1,2 �j;` � �j;` � 1 �
�j � 1, and

x 2
h b�2b

1 � Mp
n

CO.n�1/;
b�2b

1 � "
CO.n�1/

i
; aj D

xn

b
CO.1/;

uniformly for gC C 1 � j � jC. Thus, multiplying both the numerator and denom-
inator on the right-hand side of (2.13) by �a1=2j .�j � 1/ and using that S.'0.�// D
�

1
��1

, we find

Xj D

mX
`D1

!`e
�
aj
2 .�

2
j;`
��2
j
/
Yj;`; (2.14)

2More precisely, this means that �j and �j � 1 are of the same order in the sense that there
exist constants c1; c2 > 0 such that c1 � �j =.�j � 1/ � c2 for all sufficiently large n and all
gC C 1 � j � jC.
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Yj;` WD

�j�1

�j;`�1
� .�j � 1/

PN�1
kD1

S.'k.�j;`//

ak
j

CO
�

1
.n.�j�1/

2/N

�
1 � .�j � 1/

PN�1
kD1

S.'k.�j //

ak
j

CO
�

1
.n.�j�1/

2/N

� :

Using that aj D xnC˛
b

, we can expand the exponential as n!C1:

e
�
aj
2 .�

2
j;`
��2
j
/
D eaj ln.1�

t`
n /Caj

b�2bt`
nxC˛

D e�
t`
b
.x�b�2b/

�
1 �

t2
`
x C 2t`˛

2bn
CO

� 1
n2

��
(2.15)

uniformly for gC C 1 � j � jC. On the other hand, as n!C1,

�j;` D
b�2b

x

�
1 �

˛ C xt`

xn
C
˛.˛ C xt`/

x2n2
CO

� 1
n3

��
;

�j D
b�2b

x

�
1 �

˛

xn
C

˛2

x2n2
CO

� 1
n3

��
;

uniformly for gC C 1 � j � jC. Substituting these expansions into the expression
for Yj;` in (2.14) with N D 6, a calculation gives

Yj;` D1 �
b�2bt`

n.x � b�2b/
C

2b3�4bt`

n2.x � b�2b/3
CO

� 1

n2.x � b�2b/2

�
�

10b5�6bt`

n3.x � b�2b/5

CO
� 1

n3.x � b�2b/4

�
CO

� 1

n4.x � b�2b/7

�
CO

� 1

.n.x � b�2b/2/6

�
(2.16)

uniformly for gC C 1 � j � jC. The asymptotic formulas (2.15) and (2.16) imply
that

Xj DT0.x/ �
bT1.x/�2b

n.x � b�2b/
�
xT2.x/
2bn

�
˛T1.x/
bn

C
2b3T1.x/�4b

n2.x � b�2b/3
�
10b5T1.x/�6b

n3.x � b�2b/5

CO
� 1

n2.x � b�2b/2
C

1

n3.x � b�2b/4
C

1

n4.x � b�2b/7
C

1

n6.x � b�2b/12

�
:

(2.17)

If A;B > 1, then

jCX
jDgCC1

O
� 1

nA.x � b�2b/B

�
D O

� jCZ
gC

1

nA.j=n � b�2b/B
dj

�

D O

� jC=nZ
gC=n

1

nA�1.x � b�2b/B
dx

�
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D O
� 1

nA�1.M=
p
n/B�1

�
D O

� 1

nA�.BC1/=2MB�1

�
;

so substitution of (2.17) into (2.12) yields

S
.1/
2 D

jCX
jDgCC1

�
f1.x/C

1

n
f .x/C

1

n2
2b3�4bT1.x/

.1C T0.x//.x � b�2b/3

C
1

n3
�10b5�6bT1.x/

.1C T0.x//.x � b�2b/5

�
CO

� 1

M
p
n
C

1

M 3
p
n
C

1

M 6
C

p
n

M 11

�
:

(2.18)

Employing Lemma 2.3 with

A D
b�2b

1 � Mp
n

; a0 D 1 � ˛ � �
.n;M/
C ; B D

b�2b

1 � "
; b0 D �˛ � �

.n;"/
C ;

and using that f .k/.A/ D O.n.kC1/=2M�.kC1// for k � 0, we get

jCX
jDgCC1

f1.x/ D n

b�2b

1�"Z
b�2b

1� Mp
n

f1.x/ dx C
�
˛ �

1

2
C �

.n;M/
C

�
f1

� b�2b

1 � Mp
n

�

C

�1
2
� ˛ � �

.n;"/
C

�
f1

� b�2b
1 � "

�
CO.n�1/;

1

n

jCX
jDgCC1

f .x/ D

b�2b

1�"Z
b�2b

1� Mp
n

f .x/ dx CO
� 1

M
p
n

�
;

1

n2

jCX
jDgCC1

2b3�4bT1.x/
.1C T0.x//.x � b�2b/3

D
1

n

b�2b

1�"Z
b�2b

1� Mp
n

2b3�4bT1.x/
.1C T0.x//.x � b�2b/3

dx CO
� 1

M 3
p
n

�
;
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1

n3

jCX
jDgCC1

�10b5�6bT1.x/
.1C T0.x//.x � b�2b/5

D
1

n2

b�2b

1�"Z
b�2b

1� Mp
n

�10b5�6bT1.x/
.1C T0.x//.x � b�2b/5

dx CO
� 1

M 5
p
n

�
: (2.19)

The large n behavior of the integrals in (2.19) can be determined as follows. Let us
write

n

b�2b

1�"Z
b�2b

1� Mp
n

f1.x/ dx D n

b�2b

1�"Z
b�2b

f1.x/ dx � n

b�2b

1� Mp
nZ

b�2b

f1.x/ dx: (2.20)

Using the integration by parts formula

BZ
A

f1.x/ dx D
�
.x � A/f1.x/ �

.x � A/2

2Š
f 01.x/C

.x � A/3

3Š
f 001 .x/

�ˇ̌̌B
A

�

BZ
A

.x � A/3

3Š
f 0001 .x/ dx

with

A D b�2b and B D
b�2b

1 � Mp
n

in the second integral in (2.20), and then expanding as n!C1, we obtain

n

b�2b

1�"Z
b�2b

1� Mp
n

f1.x/ dx D n

b�2b

1�"Z
b�2b

f1.x/dx � b�
2bf1.b�

2b/M
p
n

�M 2b�2b
�
f1.b�

2b/C
b�2b

2
f 01.b�

2b/
�

�
M 3

p
n
b�2b

�
f1.b�

2b/C b�2bf 01.b�
2b/C

.b�2b/2

6
f 001 .b�

2b/
�

CO
�M 4

n

�
;
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where we have used that

n

BZ
A

.x � A/3

3Š
f 0001 .x/dx D O.n.B � A/4/ D O.M 4=n/:

Similar calculations using that

T.k/j .x/ D
�
�
1

b

�k
TjCk.x/

for j; k � 0 give

b�2b

1�"Z
b�2b

1� Mp
n

f .x/ dx D

b�2b

1�"Z
b�2b

°
f .x/C

b�2bT1.b�2b/
.1C T0.b�2b//.x � b�2b/

±
dx

�
b�2bT1.b�2b/
2.1C T0.b�2b//

lnn �
b�2bT1.b�2b/
1C T0.b�2b/

ln
"

M.1 � "/

C
M
p
n

° .b C ˛/�2bT1.b�2b/
1C T0.b�2b/

�
b�4bT2.b�2b/
2.1C T0.b�2b//

C
b�4bT1.b�2b/2

.1C T0.b�2b//2

±
CO

�M 2

n

�
:

Furthermore,

1

n

b�2b

1�"Z
b�2b

1� Mp
n

2b3�4bT1.x/
.1C T0.x//.x � b�2b/3

dx

D
1

n

b�2b

1�"Z
b�2b

1� Mp
n

� 2b3�4bT1.b�2b/
.1C T0.b�2b//.x � b�2b/3

CO
� 1

.x � b�2b/2

��
dx

D
bT1.b�2b/

M 2.1C T0.b�2b//
CO

� 1

M
p
n

�
;

and a similar calculation yields

1

n2

b�2b

1�"Z
b�2b

1� Mp
n

�10b5�6bT1.x/
.1C T0.x//.x � b�2b/5

dx D
�5bT1.b�2b/

2�2bM 4.1C T0.b�2b//
CO

� 1

M 3
p
n

�
:

Substituting the above expansions into (2.19), the claim follows from (2.18).
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For k 2 ¹1; : : : ; mº and j 2 ¹j W �j 2 I2º D ¹g�; : : : ; gCº, we define Mj;k WD
p
n.�j;k � 1/ and Mj WD

p
n.�j � 1/. For the large n asymptotics of S .2/2 we will

need the following lemma.

Lemma 2.7 (Taken from [29, Lemma 3.11]). Let h 2 C 3.R/. As n!C1, we have

gCX
jDg�

h.Mj / D b�
2b

MZ
�M

h.t/dt
p
n � 2b�2b

MZ
�M

th.t/ dt C
�1
2
� � .n;M/
�

�
h.M/

C

�1
2
� �

.n;M/
C

�
h.�M/

C
1
p
n

�
3b�2b

MZ
�M

t2h.t/dt

C

� 1
12
C
� .n;M/
� .� .n;M/

� � 1/

2

�h0.M/

b�2b

�

� 1
12
C
�
.n;M/
C .�

.n;M/
C � 1/

2

�h0.�M/

b�2b

�
CO

� 1

n3=2

gCX
jDg�C1

�
.1C jMj j

3/ Qmj;n.h/C .1CM
2
j / Qmj;n.h

0/

C .1C jMj j/ Qmj;n.h
00/C Qmj;n.h

000/
��
;

where, for Qh 2 C.R/ and j 2 ¹g� C 1; : : : ; gCº, we define

Qmj;n. Qh/ WD max
x2ŒMj ;Mj�1�

j Qh.x/j:

Lemma 2.8. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S
.2/
2 DE

.M/
2

p
nCE

.M/
4 C

E
.M/
5
p
n
CO

�M 4

n
C
M 14

n2

�
;

E
.M/
2 D 2b�2bM ln.1C T0.b�2b//;

E
.M/
4 D ln.1C T0.b�2b//.1 � � .n;M/

� � �
.n;M/
C /C b�2b

MZ
�M

h1.t/ dt;

E
.M/
5 D 2b�2bM 3 ln.1C T0.b�2b//C

�1
2
� � .n;M/
�

�
h1.M/

C

�1
2
� �

.n;M/
C

�
h1.�M/C b�2b

MZ
�M

.h2.t/ � 2th1.t// dt;



Disk counting statistics at the hard edge of random normal matrices 879

as n! C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/, where h1, h2 are given
by

h1.x/ D �
2�bT1.b�2b/
1C T0.b�2b/

e�
1
2x
2�2b

p
2� erfc

�
�
x�b
p
2

� ; (2.21)

h2.x/ D �
h1.x/

2

2
C

1

1C T0.b�2b/
e�

1
2x
2�2b

p
2� erfc

�
�
x�b
p
2

�°��bx � 5
3
�3bx3

�
T1.b�2b/

� �3bxT2.b�2b/C
4 � 10�2bx2

3
T1.b�2b/

e�
1
2x
2�2b

p
2� erfc

�
�
x�b
p
2

�±:
Proof. Using (2.10) and Lemma A.2, we obtain

S
.2/
2 D

X
j W�j2I2

ln
�
1C

mX
`D1

!`

1
2

erfc
�
��j;`

q
aj
2

�
�Raj .�j;`/

1
2

erfc
�
��j

q
aj
2

�
�Raj .�j /

�
: (2.22)

For j 2 ¹j W�j 2 I2º, we have

1 �
M
p
n
� �j D

bn�2b

j C ˛
� 1C

M
p
n
;

�M �Mj �M , and

Mj;k DMj �
tk
p
n
�
tkMj

n
; k D 1; : : : ; m:

Furthermore, as n!C1 we have

�j;` D
Mj
p
n
�
M 2
j C 3t`

3n
C
7M 3

j � 12t`Mj

36n3=2

�
73M 4

j � 45M
2
j t` C 180t

2
`

540n2

C
1331M 5

j � 552M
3
j t` � 1080Mj t

2
`

12960n5=2
CO

�1CM 6
j

n3

�
��j;`

q
aj =2 D �

Mj�
b

p
2
C
.5M 2

j C 6t`/�
b

6
p
2
p
n

�
�bMj .53M

2
j C 12t`/

72
p
2n

C
�b.270M 2

j t` C 1447M
4
j C 720t

2
`
/

2160
p
2n3=2

�
Mj�

b.5352M 2
j t` C 32183M

4
j C 4320t

2
`
/

51840
p
2n2

CO
�1CM 6

j

n5=2

�
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uniformly for j 2 ¹j W�j 2 I2º. Hence, by (A.1), as n!C1 we have

Raj .�j;`/ D
e�

M2
j
�2b

2

p
2�

M4 (2.23)

where

M4 WD
�1

3�b
p
n
�
Mj .3C 10M

2
j �

2b C 12t`�
2b/

36�bn

C
1

1080�3bn3=2
.45�4b.6M 2

j t` C 7M
4
j C 4t

2
` /C 2�

2b.22M 2
j � 45t`/

� 5�6b.5M 3
j C 6Mj t`/

2
� 2/

C
Mj�

�3b

38880n2
.�6�4b.1806M 2

j t` C 1967M
4
j C 1350t

2
` /

C 45�6b.5M 2
j C 6t`/.42M

2
j t` C 47M

4
j C 24t

2
` /

� 36�2b.29M 2
j C 45t`/ � 10M

2
j �

8b.5M 2
j C 6t`/

3
� 243/

CO..1CM 12
j /n�

5
2 /

and

1

2
erfc

�
��j;`

r
aj

2

�
D
1

2
erfc

�
�
�bMj
p
2

�
�
e�

M2
j
�2b

2 �b.5M 2
j � 6t`/

6
p
2�
p
n

C
e�

M2
j
�2b

2 Mj�
b

72
p
2�n

.53M 2
j C 12t` � 25M

4
j �

2b
� 60M 2

j t`�
2b
� 36t2` �

2b/

C
e�

M2
j
�2b

2 P8.Mj ; t`/

n3=2
C
e�

M2
j
�2b

2 P11.Mj ; t`/

n2
CO

�
e�

M2
j
�2b

2

1CM 14
j

n5=2

�
;

(2.24)

uniformly for j 2 ¹j W �j 2 I2º, where P8.Mj ; t`/ and P11.Mj ; t`/ are polynomials
in Mj of order 8 and 11, respectively. If t` D 0, then �j;` D �j and �j;` D �j ; hence
analogous expansions of Raj .�j / and 1

2
erfc.��j

p
aj =2/ can be obtained by setting

t` D 0 in (2.23) and (2.24). Substituting the above asymptotics into (2.22), we obtain

1C

mX
`D1

!`

1
2

erfc
�
��j;`

q
aj
2

�
�Raj .�j;`/

1
2

erfc
�
��j

q
aj
2

�
�Raj .�j /

D g1.Mj /C
g2.Mj /
p
n
C
g3.Mj /

n
C
g4.Mj /

n3=2
C
g5.Mj /

n2
CO

�1C jMj j13
n5=2

�
;

(2.25)
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as n!C1, where

g1.x/ D 1C T0.b�2b/;

g2.x/ D �
e�

1
2x
2�2b2�bT1.b�2b/

p
2� erfc

�
�
x�b
p
2

� ;

g3.x/ D
e�

1
2x
2�2b

3
p
2� erfc

�
�
x�b
p
2

�°e� 12x2�2bT1.b�2b/p
2� erfc

�
�
x�b
p
2

� .4 � 10x2�2b/
C T1.b�2b/.3x�b � 5x3�3b/ � 3�3bxT2.b�2b/

±
:

The functions g4 and g5 can also be computed explicitly, but we do not write them
down. The functions gj .x/, j D 2; : : : ; 5, have exponential decay as x!C1. Also,
since

e�
1
2x
2�2b

p
2� erfc

�
�
x�b
p
2

� D ��bx
2
CO.x�1/; as x ! �1; (2.26)

g2.x/D O.x/ as x!�1. It appears at first sight that g3.x/D O.x4/ as x!�1.
However, a direct computation using (2.26) shows that some cancellations occur and
in fact g3.x/ D O.x2/ as x ! �1. Similarly, the exact expressions for g4 and g5
suggest at first sight that g4.x/ D O.x7/ and g5.x/ D O.x10/ as x ! �1, but here
too, cancellations occur and in fact we have g4.x/ D O.x3/ and g5.x/ D O.x4/ as
x ! �1. Thus, after a computation using (2.25), we obtain

S
.2/
2 D

gCX
jDg�

°
ln.1C T0.b�2b//C

h1.Mj /
p
n
C
h2.Mj /

n

CO
�1C jMj j3

n3=2
C
1C jMj j

13

n5=2

�±
as n!C1, where h1 D g2=g1 and h2 D �h21=2C g3=g1. Note that

gCX
jDg�

O
�1C jMj j3

n3=2
C
1C jMj j

13

n5=2

�
D O

�M 4

n
C
M 14

n2

�
; as n!C1:

Using Lemma 2.7, we find the claim.

Let us define

	1 D

C1Z
�1

° e�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y C

y

2.1C y2/

i±
dy; (2.27)
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	2 D

C1Z
�1

° y3e�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y4 C

y2

2
�
1

2

i±
dy; (2.28)

	3 D

C1Z
�1

°� e�y
2

p
� erfc.y/

�2
� �.0;C1/.y/Œy

2
C 1�

±
dy; (2.29)

	4 D

C1Z
�1

°� ye�y
2

p
� erfc.y/

�2
� �.0;C1/.y/

h
y4 C y2 �

3

4

i±
dy; (2.30)

and recall that 	 is defined in (1.22).

Lemma 2.9. The constantM 0 can be chosen sufficiently large such that the following
holds. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S2 D � j� ln�C C ."/1 nC C2 lnnC C .n;"/3 C
yC4
p
n

CO
� pn
M 11

C
1

M 6
C

1
p
nM
C
M 4

n
C
M 14

n2

�
;

as n! C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/, where C2 is as in the
statement of Theorem 1.3 and

C
."/
1 D b�

2b ln�C

b�2b

1�"Z
b�2b

f1.x/ dx;

C
.n;"/
3 D

1

2
ln�C

b�2b

1�"Z
b�2b

°
f .x/C

b�2bT1.b�2b/
�.x � b�2b/

±
dx C

�1
2
� ˛ � �

.n;"/
C

�
f1

� b�2b
1 � "

�
�
2b�2b

�
T1.b�2b/	1 C

b�2b

2�
T1.b�2b/.ln 2 � 2b ln.�//

�
T1.b�2b/
�

b�2b ln
� "

1 � "

�
;

yC4 D
p
2b�b

�2bT2.b�2b/ � 5T1.b�2b/
�

	 C
10
p
2b�b

3

T1.b�2b/
�

	2

C
p
2b�2b

T1.b�2b/
�

� 2

3�b
� �b

T1.b�2b/
�

�
	3 �

10
p
2b�b

3

T1.b�2b/
�

	4;

and f1 and f are as in the statement of Lemma 2.4.
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Proof. By combining Lemmas 2.5, 2.6, and 2.8, we have

S2 D � j� ln�C C ."/1 nC zC2
p
nC C2 lnnC C .n;";M/

3 C
C
.M/
4
p
n

CO
� pn
M 11

C
1

M 6
C

1
p
nM
C
M 4

n
C
M 14

n2

�
;

as n! C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/, where C ."/1 is as in the
statement, and

zC2 D �bM�
2b ln�CD.M/

2 CE
.M/
2 ;

C
.n;";M/
3 D .bM 2�2b � ˛ C � .n;M/

� / ln�CD.n;";M/
4 CE

.M/
4 ;

C
.n;M/
4 D �bM 3�2b ln�CD.n;M/

5 CE
.M/
5 :

Using that
f1.b�

2b/ D ln.1C T0.b�2b// D ln�;

we readily verify that zC2 D 0. Furthermore, by rearranging the terms and using

f 01.b�
2b/ D

�1
b
T1.b�2b/

1C T0.b�2b/
;

we obtain

C
.n;";M/
3 D

1

2
ln�C zC .";M/

3

C

b�2b

1�"Z
b�2b

°
f .x/C

b�2bT1.b�2b/
.1C T0.b�2b//.x � b�2b/

±
dx

C

�1
2
� ˛ � �

.n;"/
C

�
f1

� b�2b
1 � "

�
;

where

zC
.";M/
3 WD b�2b

MZ
�M

h1.t/ dt

C
T1.b�2b/

1C T0.b�2b/

�
M 2 b�

4b

2
� b�2b ln

� "

M.1 � "/

�
C

b

M 2
C
�5b

2�2bM 4

�
:
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Using the definition (2.21) of h1 and a change of variables, we rewrite zC .";M/
3 as

zC
.";M/
3 D �2b�2b

T1.b�2b/
1C T0.b�2b/

M�bp
2Z

�
M�bp
2

° e�y
2

p
� erfc.y/

��.0;C1/.y/
h
yC

y

2.1C y2/
C

3y

4.1C y6/

i±
dy

C
T1.b�2b/

1C T0.b�2b/

²
�2b�2b

M�bp
2Z

0

�
y C

y

2.1C y2/
C

3y

4.1C y6/

�
dy

CM 2 b�
4b

2
C b�2b lnM C

b

M 2
C
�5b

2�2bM 4

³
�

T1.b�2b/
1C T0.b�2b/

b�2b ln
"

1 � "
:

The reason for the above rewriting stems from the following asymptotics:

e�y
2

p
� erfc.y/

�

h
y C

y

2.1C y2/
C

3y

4.1C y6/

i
D O.y�7/; as y !C1;

which implies

M�bp
2Z

�
M�bp
2

° e�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y C

y

2.1C y2/
C

3y

4.1C y6/

i±
dy

D

1Z
�1

° e�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y C

y

2.1C y2/
C

3y

4.1C y6/

i±
dy CO.M�6/

D

1Z
�1

° e�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y C

y

2.1C y2/

i±
dy �

�

4
p
3
CO.M�6/;

as n!C1. Furthermore, using a primitive and then expanding yields

� 2b�2b

M�bp
2Z

0

�
y C

y

2.1C y2/
C

3y

4.1C y6/

�
dy

CM 2 b�
4b

2
C b�2b lnM C

b

M 2
C
�5b

2�2bM 4

D �
b�2b

6
.
p
3� � 3 ln 2C 6b ln �/CO.M�6/ as n!C1:
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It follows from the above and some further simplifications that

C
.n;";M/
3 D C

.n;"/
3 CO.M�6/ as n!C1;

where C .n;"/3 is as in the statement. Similar (but longer) computation, using among
other things that

f 001 .b�
2b/ D �

� �1
b
T1.b�2b/
�

�2
C

�
�
1
b

�2T2.b�2b/
�

;

show that C .n;M/
4 can be rewritten as

C
.n;M/
4 D Q

.n;M/
1 CQ

.n;M/
2 CQ

.M/
3 CQ

.M/
4 CQ

.M/
5 CQ

.M/
6 ; (2.31)

where

Q
.n;M/
1 D �

2�bT1.b�2b/
�

�1
2
� � .n;M/
�

� e�
M2�2b

2

p
2� erfc

�
�
M�b
p
2

� ;
Q
.n;M/
2 D �

2�bT1.b�2b/
�

�1
2
� �

.n;M/
C

�� e�
M2�2b

2

p
2� erfc

�
M�b
p
2

� � M�b
2

�
;

Q
.M/
3 D

p
2b�b

�
.�5T1.b�2b/C �2bT2.b�2b//

�

M�bp
2Z

�
M�bp
2

° ye�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y2 C

1

2

i±
dy;

Q
.M/
4 D

10
p
2b�b

3�
T1.b�2b/

M�bp
2Z

�
M�bp
2

° y3e�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y4 C

y2

2
�
1

2

i±
dy;

Q
.M/
5 D

p
2b�b

T1.b�2b/
�

�2
3
� �2b

T1.b�2b/
�

�

�

M�bp
2Z

�
M�bp
2

°� e�y
2

p
� erfc.y/

�2
� �.0;C1/.y/

h
y2 C 1

i±
dy;

Q
.M/
6 D �

10
p
2b�b

3

T1.b�2b/
�

M�bp
2Z

�
M�bp
2

°� ye�y
2

p
� erfc.y/

�2
� �.0;C1/.y/

h
y4Cy2�

3

4

i±
dy:
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Furthermore, using the asymptotics of erfc.y/ as y !˙1, we infer that

Q
.n;M/
1 DO.e�

M2�2b

2 /;

Q
.n;M/
2 DO.M�1/;

Q
.M/
3 D

p
2b�b

�
.�2bT2.b�2b/ � 5T1.b�2b//

�

1Z
�1

° ye�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y2 C

1

2

i±
dy CO.M�1/;

Q
.M/
4 D

10
p
2b�b

3�
T1.b�2b/

1Z
�1

° y3e�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y4 C

y2

2
�
1

2

i±
dy

CO.M�1/;

Q
.M/
5 D

p
2b�b

T1.b�2b/
�

�2
3
� �2b

T1.b�2b/
�

�
�

1Z
�1

°� e�y
2

p
� erfc.y/

�2
� �.0;C1/.y/Œy

2
C 1�

±
dy CO.M�1/;

Q
.M/
6 D �

10
p
2b�b

3

T1.b�2b/
�

1Z
�1

°� ye�y
2

p
� erfc.y/

�2
� �.0;C1/.y/

h
y4Cy2�

3

4

i±
dy CO.M�1/;

as n!C1. Substituting the above asymptotics in (2.31) yields

C
.n;M/
4 D yC4 CO.M�1/;

and the claim follows.

Recall that 	1; 	2; 	3; 	4 are defined in (2.27)–(2.30), and that 	 is defined
in (1.22).

Lemma 2.10. The following relations hold:

	1 D
ln.2
p
�/

2
; 	3 D 	; 	4 D 	2 � 	: (2.32)

In particular, yC4 D C4, where C4 is as in the statement of Theorem 1.3.

Proof. The first identity in (2.32) follows from a direct calculation using the primitiveZ
e�y

2

p
� erfc.y/

dy D �
1

2
ln.erfc.y//C const:
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Integration by parts givesZ � e�y
2

p
� erfc.y/

�2
dy D

e�y
2

2
p
� erfc.y/

C

Z
ye�y

2

p
� erfc.y/

dy C const;Z � ye�y
2

p
� erfc.y/

�2
dy D

y2e�y
2

2
p
� erfc.y/

C

Z
.y3 � y/e�y

2

p
� erfc.y/

dy C const:

Hence, for any N > 0,

NZ
�N

°� e�y
2

p
� erfc.y/

�2
� �.0;C1/.y/Œy

2
C 1�

±
dy

D

� e�N
2

2
p
� erfc.N /

�
N

2

�
�

e�N
2

2
p
� erfc.�N/

C

NZ
�N

° ye�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y2 C

1

2

i±
dy;

and
NZ
�N

°� ye�y
2

p
� erfc.y/

�2
� �.0;C1/.y/

h
y4 C y2 �

3

4

i±
dy

D

� N 2e�N
2

2
p
� erfc.N /

�
N 3

2
�
N

4

�
�

N 2e�N
2

2
p
� erfc.�N/

C

NZ
�N

° y3e�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y4 C

y2

2
�
1

2

i±
dy

�

NZ
�N

° ye�y
2

p
� erfc.y/

� �.0;C1/.y/
h
y2 C

1

2

i±
dy:

The second and third identities in (2.32) are obtained by letting N ! C1 in the
above two formulas. We then find yC4 D C4 after a direct computation.

End of the proof of Theorem 1.3. Let M 0 > 0 be sufficiently large such that Lem-
mas 2.2 and 2.9 hold. Using (2.3) and Lemmas 2.1, 2.2, 2.4, and 2.9, we conclude
that for any x1; : : : ; xm 2 R, there exists ı > 0 such that

ln En D S0 C S1 C S2 C S3

DM 0 ln�C .j� �M 0 � 1/ ln� � j� ln�C C ."/1 n
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C n

1Z
b�2b

1�"

f1.x/ dx C C2 lnnC C .n;"/3 C
C4
p
n
C

1Z
b�2b

1�"

f .x/ dx

C

�
˛ C �

.n;"/
C �

1

2

�
f1

� b�2b
1 � "

�
C
1

2
f1.1/CO

� pn
M 11

C
1

M 6
C

1
p
nM
C
M 4

n
C
M 14

n2

�
;

as n! C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/. Since M D n1=10, the
above error term is O.n�3=5/. Furthermore, using Lemma 2.10, a computation shows
that

C
."/
1 C

1Z
b�2b

1�"

f1.x/ dx D C1;

and

� ln�C C .n;"/3 C

1Z
b�2b

1�"

f .x/ dx C
�
˛ C �

.n;"/
C �

1

2

�
f1

� b�2b
1 � "

�
C
1

2
f1.1/ D C3;

where C1 and C3 are as in the statement of Theorem 1.3. This concludes the proof of
Theorem 1.3.

3. Proof of Theorem 1.7

As in the proof of Theorem 1.3, our starting point is formula (2.3), where M 0 > 0

is an integer independent of n, j˙ are defined in (2.1), and " > 0 is such that (2.2)
holds. The variables aj ; �j ; �j;k; �j ; �j;k are given by (2.6), where rk is now defined
by (1.12) (in contrast to Section 2 where rk was given by (1.11)). The following two
lemmas are analogous to Lemmas 2.1 and 2.2 and are proved in the same way.

Lemma 3.1. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S0 DM
0 ln�CO.e�cn/; as n!C1;

uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/.

Lemma 3.2. The constantM 0 can be chosen sufficiently large such that the following
holds. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S1 D .j� �M
0
� 1/ ln�CO.e�cn/;

as n!C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/.
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Lemma 3.3. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S3 D O.e�c
p
n/;

as n!C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/.

Proof. For j � jC C 1 and k 2 ¹1; : : : ; mº, 1 � �j and 1 � �j;k are positive and
remain bounded away from 0. Hence, using Lemma A.4 (ii), we obtain

S3 D

nX
jDjCC1

ln
°
1C

mX
`D1

!`

e�
aj �

2
j;`
2

�
�1

�j;`�1
1
p
aj
CO.n�

3
2 /
�

e�
aj �

2
j
2

�
�1
�j�1

1
p
aj
CO.n�

3
2 /
� ±

D

nX
jDjCC1

ln
°
1C

mX
`D1

!`O.e
aj
2 .�

2
j
��2
j;`
/
/
±
;

where the O-terms are uniform for j 2 ¹jCC 1; : : : ;nº and independent of u1; : : : ;um.
Using that rk is given by (1.12), we find, as n!C1,

aj

2
.�2j � �

2
j;`/ D �

p
2s`

�
j
n
� b�2b

�p
n

b�b
CO.1/ (3.1)

and hence

S3 D

nX
jDjCC1

ln
�
1C

mX
`D1

!`O.e
�

p
2s`.j=n�b�

2b/
p
n

b�b /
�
;

where the O-terms are uniform for j 2 ¹jCC 1; : : : ;nº and independent of u1; : : : ;um.
Since s` > 0 for all ` 2 ¹1; : : : ;mº and since j=n� b�2b is positive and bounded away
from 0 as n!C1 with j 2 ¹jC C 1; : : : ; nº, the claim follows.

We now focus on S2. As in Section 2, we decompose S2 into three pieces, S2 D
S
.1/
2 C S

.2/
2 C S

.3/
2 , where the S .v/2 are given by (2.10). However, in contrast to Sec-

tion 2, we let the intervals Iv be given by (2.11) with M WD M 0 ln n. Using this M ,
we define g˙ and � .n;M/

� ; �
.n;M/
C 2 Œ0; 1/ as in Section 2. The following lemma is

analogous to Lemma 2.5 and is proved in the same way.

Lemma 3.4. The constantM 0 can be chosen sufficiently large such that the following
holds. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S
.3/
2 D .b�

2bn � j� � bM�
2b
p
nC bM 2�2b � ˛ C � .n;M/

� � bM 3�2bn�
1
2 / ln�

CO.M 4n�1/;

as n!C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/.
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In the case of the hard edge, we found that S .1/2 made important contributions
to the asymptotic formula for large n (see Lemma 2.6). However, in the semi-hard
regime, S .1/2 is small as the next lemma shows.

Lemma 3.5. M 0 can be chosen sufficiently large such that the following holds. For
any x1; : : : ; xm 2 R, there exists ı > 0 such that

S
.1/
2 D O.n�100/;

as n!C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/.

Proof. Since �j 2
�
1 � "; 1 � Mp

n

�
for gC C 1 � j � jC and �j;` D �j

�
1 �

p
2s`

�b
p
n

�
,

we have �j ; �j;` � �cM=
p
n for some c > 0, and so Lemma A.4 (ii) yields

S
.1/
2 D

jCX
jDgCC1

ln
�
1C

Pm
`D1 !`.aj ; aj�j;`/

.aj ; aj�j /

�

D

jCX
jDgCC1

ln
�
1C

mX
`D1

!`

e�
aj �

2
j;`
2

�
�1

�j;`�1
1
p
aj
CO

��
aj
M2

n

�� 32 ��
e�

aj �
2
j
2

�
�1
�j�1

1
p
aj
CO

��
aj
M2

n

�� 32 ��
�

D

jCX
jDgCC1

ln
�
1C

mX
`D1

!`O.e
aj
2 .�

2
j
��2
j;`
/
/
�

D

jCX
jDgCC1

ln
�
1C

mX
`D1

!`O.e
�

p
2s`.j=n�b�

2b/
p
n

b�b /
�
;

where we have used (3.1) in the last step. Since M D M 0 ln n and s` > 0, the claim
follows from the fact that

j

n
� b�2b � b�2b

M CO.1/
p
n

as n!C1

for j 2 ¹gC C 1; : : : ; jCº.

For k 2 ¹1; : : : ; mº and j 2 ¹j W�j 2 I2º D ¹g�; : : : ; gCº, we define

Mj;k WD
p
n.�j;k � 1/ and Mj WD

p
n.�j � 1/:

Lemma 3.6. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S
.2/
2 DE

.M/
2

p
nCE

.M/
3 C

E
.M/
4
p
n
CO

�M 4

n

�
;
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E
.M/
2 D

p
2b�b

M�bp
2Z

�
M�bp
2

h0.y/ dy;

E
.M/
3 D b

M�bp
2Z

�
M�bp
2

.4yh0.y/C
p
2h1.y// dy C

�1
2
� � .n;M/
�

�
h0

�
�
M�b
p
2

�

C

�1
2
� �

.n;M/
C

�
h0

�M�b
p
2

�
;

E
.M/
4 D b��b

M�bp
2Z

�
M�bp
2

.6
p
2y2h0.y/C 4yh1.y/C

p
2h2.y// dy

�

� 1
12
C
� .n;M/
� .� .n;M/

� � 1/

2

�h00��M�bp2 �
p
2b�b

C

� 1
12
C
�
.n;M/
C .�

.n;M/
C � 1/

2

�h00�M�bp2 �
p
2b�b

C

�1
2
� � .n;M/
�

�
��bh1

�
�
M�b
p
2

�
C

�1
2
� �

.n;M/
C

�
��bh1

�M�b
p
2

�
as n!C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/, where h0, h1, h2 are as
in the statement of Theorem 1.7.

Proof. Using (2.10) and Lemma A.2, we obtain

S
.2/
2 D

X
j W�j2I2

ln
�
1C

mX
`D1

!`

1
2

erfc
�
��j;`

q
aj
2

�
�Raj .�j;`/

1
2

erfc
�
��j

q
aj
2

�
�Raj .�j /

�
:

For j 2 ¹j W�j 2 I2º, we have

1 �
M
p
n
� �j D

bn�2b

j C ˛
� 1C

M
p
n
;

�M �Mj �M , and

Mj;k DMj �

p
2sk

�b
�

p
2skMj

�b
p
n
; k D 1; : : : ; m:
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Furthermore, as n!C1 we have

�j;` D
Mj �

p
2s`�

�b

p
n

�
M 2
j C
p
2Mjs`�

�b C 2s2
`
��2b

3n

C
7M 3

j C 3
p
2M 2

j s`�
�b � 6Mjs2

`
��2b � 14

p
2s3
`
��3b

36n3=2

CO
�1CM 4

j

n2

�
;

��j;`

q
aj =2 D �

Mj�
b

p
2
C s` C

5
p
2M 2

j �
b � 2Mjs` C 4

p
2s2
`
��b

12
p
n

�
53
p
2M 3

j �
b � 18M 2

j s` C 12
p
2Mjs2

`
��b � 56s3

`
��2b

144n

CO
�1CM 4

j

n3=2

�
uniformly for j 2 ¹j W�j 2 I2º. Hence, after a long computation using (A.1), we obtain

1C

mX
`D1

!`

1
2

erfc
�
��j;`

q
aj
2

�
�Raj .�j;`/

1
2

erfc
�
��j

q
aj
2

�
�Raj .�j /

D g0

�
�
�bMj
p
2

�
C

g1
�
�
�bMjp

2

�
�b
p
n
C

g2
�
�
�bMjp

2

�
�2bn

CO
�e�cjMj j
n3=2

�
;

as n! C1, where g0, g1 and g2 are as in the statement of Theorem 1.7. For the
above error term, we have used that s` > 0, ` 2 ¹1; : : : ; mº. Thus

S
.2/
2 D

gCX
jDg�

ln
�
1C

mX
`D1

!`

1
2

erfc
�
��j;`

q
aj
2

�
�Raj .�j;`/

1
2

erfc
�
��j

q
aj
2

�
�Raj .�j /

�

D

gCX
jDg�

°
h0

�
�
�bMj
p
2

�
C

h1
�
�
�bMjp

2

�
�b
p
n
C

h2
�
�
�bMjp

2

�
�2bn

CO
�e�cjMj j
n3=2

�±
as n!C1.After a computation using Lemma 2.7, a change of variables and the fact
that g1.y/; g2.y/ D O.e�cjyj/ as y !˙1, we find the claim.

Lemma 3.7. The constantM 0 can be chosen sufficiently large such that the following
holds. For any x1; : : : ; xm 2 R, there exists ı > 0 such that

S2 D �j� ln�C C1nC C2
p
nC C3 C ln�C

C4
p
n
CO

�M 4

n

�
;

as n!C1 uniformly for u1 2Dı.x1/; : : : ; um 2Dı.xm/, where C1; : : : ; C4 are as
in the statement of Theorem 1.7.
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Proof. By combining Lemmas 3.4, 3.5, and 3.6, we obtain

S2 D �j� ln�C C1nC C
.M/
2

p
nC C

.M/
3 C

C
.M/
4
p
n
CO

�M 4

n

�
;

as n! C1 uniformly for u1 2 Dı.x1/; : : : ; um 2 Dı.xm/, where C1 is as in the
statement, and

C
.M/
2 D �bM�2b ln�CE.M/

2 ;

C
.M/
3 D .bM 2�2b � ˛ C � .n;M/

� / ln�CE.M/
3 ;

C
.M/
4 D �bM 3�2b ln�CE.M/

4 :

A direct analysis shows that M 0 can be chosen sufficiently large such that

C
.M/
2 D C2 CO.n�100/;

C
.M/
3 D C3 C ln�CO.n�100/;

C
.M/
4 D C4 CO.n�100/;

and the claim follows.

End of the proof of Theorem 1.7. Let M 0 > 0 be sufficiently large such that Lem-
mas 3.2 and 3.7 hold. Using (2.3) and Lemmas 3.1, 3.2, 3.3, and 3.7, we conclude
that for any x1; : : : ; xm 2 R, there exists ı > 0 such that

ln En D S0 C S1 C S2 C S3

DM 0 ln�C .j� �M 0 � 1/ ln� � j� ln�C C1nC C2
p
nC C3 C ln�

C
C4
p
n
CO.M 4n�1/

D C1nC C2
p
nC C3 C

C4
p
n
CO.M 4n�1/;

as n!C1 uniformly for u1 2Dı.x1/; : : : ; um 2Dı.xm/. This concludes the proof
of Theorem 1.7.

A. Uniform asymptotics of the incomplete gamma function

Lemma A.1 (From [19, formula 8.11.2]). Let a > 0 be fixed. As z !C1,

.a; z/ D �.a/CO.e�
z
2 /:
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Lemma A.2 (From [74, Section 11.2.4]). We have

.a; z/

�.a/
D
1

2
erfc

�
��

r
a

2

�
�Ra.�/; Ra.�/ D

e�
1
2a�

2

2�i

1Z
�1

e�
1
2au

2

g.u/ du;

where erfc is defined in (1.19),

� D
z

a
; � D .� � 1/

s
2.� � 1 � ln�/
.� � 1/2

; g.u/ WD
dt

du

1

� � t
C

1

uC i�
;

with t and u being related by the bijection t 7! u from L WD
®
�

sin � e
i� W �� < � < �

¯
to R given by

u D �i.t � 1/

s
2.t � 1 � ln t /
.t � 1/2

; t 2 L;

and the principal branch is used for the roots. Furthermore, as a! C1, uniformly
for z 2 Œ0;1/,

Ra.�/ �
e�

1
2a�

2

p
2�a

1X
jD0

cj .�/

aj
; (A.1)

where all coefficients cj .�/ are bounded functions of � 2 R (i.e. bounded for � 2 .0;
C1/). The first two coefficients are given by (see [74, p. 312])

c0.�/ D
1

� � 1
�
1

�
; c1.�/ D

1

�3
�

1

.� � 1/3
�

1

.� � 1/2
�

1

12.� � 1/
:

More generally, we have

cj .�/ D
1

�

d

d�
cj�1.�/C

j

� � 1
; j � 1; (A.2)

where the j are the Stirling coefficients

j D
.�1/j

2j j Š

h d2j
dx2j

�1
2

x2

x � ln.1C x/

�jC 12 i
xD0

: (A.3)

In particular, the following hold.

(i) Let z D �a and let ı > 0 be fixed. As a!C1, uniformly for � � 1C ı,

.a; z/ D �.a/.1CO.e�
a�2

2 //:

(ii) Let z D �a. As a!C1, uniformly for � in compact subsets of .0; 1/,

.a; z/ D �.a/O.e�
a�2

2 /:
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The following lemma establishes a non-recursive formula for the coefficients cj ,
which is new to our knowledge.

Lemma A.3. For j � 0, the coefficients cj .�/ in (A.1) can be expressed as

cj .�/ D 'j .�/ � S.'j .�//; where 'j .�/ WD
.�1/jC1.2j � 1/ŠŠ

�2jC1
(A.4)

and where S.'j .�// denotes the singular part of 'j .�/ at � D 1, i.e., S.'j .�// is the
sum of the singular terms in the Laurent expansion of 'j .�/ at � D 1.

Proof. The formula (A.4) holds for j D 0. Suppose it holds for j D k � 1 � 0. Then
(A.2) yields

ck.�/ D
1

�

d

d�
'k�1.�/ �

1

�

d

d�
S.'k�1.�//C

k

� � 1
:

We have @�'k�1.�/ D �'k.�/. Hence, using also that @� commutes with S ,

ck.�/ D 'k.�/ �
1

�
S.�'k.�//C

k

� � 1
:

On the other hand, 'k has a pole of order 2k C 1 at � D 1, so in light of the identity
.2k/Š D .2k � 1/ŠŠ2kkŠ and (A.3), we obtain

Res
�D1

'k.�/ D
1

.2k/Š
lim
�!1

d2k

d�2k
..� � 1/2kC1'k.�//

D
.�1/kC1

2kkŠ
lim
�!1

d2k

d�2k

� .� � 1/2

2.� � 1 � ln�/

�kC 12
D �k :

It follows that (A.4) holds also for j D k, completing the proof.

Note that S.'j .�// is a polynomial of order 2j C 1 in .�� 1/�1 without constant
term. The first S.'j .�// are given by

S.'0.�// D �
1

� � 1
;

S.'1.�// D
1

.� � 1/3
C

1

.� � 1/2
C

1

12.� � 1/
;

S.'2.�// D �
3

.� � 1/5
�

5

.� � 1/4
�

25

12.� � 1/3
�

1

12.� � 1/2
�

1

288.� � 1/
:

The following lemma follows from a result of Tricomi [75], see also [7]. However,
in contrast to [7, 75], the coefficients appearing in Lemma A.4 below are written in a
non-recursive way. Here we give a short proof relying on Lemmas A.2 and A.3.
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Lemma A.4. Let N � 0 be an integer and let � and S.'j .�// be as in (A.4).

(i) As a!C1, uniformly for � � 1C 1p
a

,

.a; �a/

�.a/
D 1C

e�
a
2 �
2

p
2�

°N�1X
jD0

S.'j .�//

ajC
1
2

CO
� 1

aNC
1
2

�
CO

� 1

.a�2/NC
1
2

�±
:

(ii) As a!C1, uniformly for � 2
�
"; 1 � 1p

a

�
for any fixed " > 0,

.a; �a/

�.a/
D
e�

a
2 �
2

p
2�

°N�1X
jD0

S.'j .�//

ajC
1
2

CO
� 1

aNC
1
2

�
CO

� 1

.a�2/NC
1
2

�±
:

Proof. (i) The assumption � � 1C 1p
a

implies that ��
p
a � �c for some c > 0. In

view of the identity erfc.�x/ D 2 � erfc.x/ and the expansion

erfc.x/ �
e�x

2

p
�

1X
jD0

.�1/j
�
1
2

�
j

x2jC1
; x !C1; (A.5)

where
�
1
2

�
j
D
Qj�1

kD0
.1
2
C k/ is the rising factorial, Lemma A.2 implies that, for any

N � 0,

.a; �a/

�.a/
D 1 �

e�
a
2 �
2

2
p
�

N�1X
jD0

.�1/j
�
1
2

�
j�

�
q
a
2

�2jC1 CO
� 1

.�
p
a/2NC1

�

�
e�

1
2a�

2

p
2�a

N�1X
jD0

cj .�/

aj
CO

� 1

aNC
1
2

�
D 1 �

e�
a
2 �
2

p
2�

N�1X
jD0

1

.
p
a/2jC1

� .�1/j �1
2

�
j
2j

�2jC1
C cj .�/

�
CO

� 1

.a�2/NC
1
2

�
CO

� 1

aNC
1
2

�
:

Since
�
1
2

�
j
2j D 1

2
�
3
2
�
5
2
� � �

2j�1
2
2j D .2j � 1/ŠŠ, the desired conclusion follows from

(A.4).
(ii) The assumption � � 1 � 1p

a
implies that ��

p
a � c for some c > 0. Using

(A.5) and Lemma A.2, the desired conclusion now follows as in the proof of (i).
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[7] Y. Ameur and J. Cronvall, Szegő type asymptotics for the reproducing kernel in spaces of
full-plane weighted polynomials. Comm. Math. Phys. 398 (2023), no. 3, 1291–1348
Zbl 1515.30020 MR 4561803

[8] Y. Ameur, H. Hedenmalm, and N. Makarov, Fluctuations of eigenvalues of random normal
matrices. Duke Math. J. 159 (2011), no. 1, 31–81 Zbl 1225.15030 MR 2817648

[9] Y. Ameur, H. Hedenmalm, and N. Makarov, Random normal matrices and Ward identities.
Ann. Probab. 43 (2015), no. 3, 1157–1201 Zbl 1388.60020 MR 3342661

[10] Y. Ameur and N.-G. Kang, On a problem for Ward’s equation with a Mittag-Leffler poten-
tial. Bull. Sci. Math. 137 (2013), no. 7, 968–975 Zbl 1279.30048 MR 3116221

[11] Y. Ameur, N.-G. Kang, and N. Makarov, Rescaling Ward identities in the random normal
matrix model. Constr. Approx. 50 (2019), no. 1, 63–127 Zbl 1451.60012 MR 3975882

[12] Y. Ameur, N.-G. Kang, N. Makarov, and A. Wennman, Scaling limits of random normal
matrix processes at singular boundary points. J. Funct. Anal. 278 (2020), no. 3, article no.
108340 Zbl 1469.60023 MR 4030288

[13] Y. Ameur, N.-G. Kang, and S.-M. Seo, The random normal matrix model: insertion of a
point charge. Potential Anal. 58 (2023), no. 2, 331–372 Zbl 1508.82046 MR 4543814

[14] F. Balogh, M. Bertola, S.-Y. Lee, and K. D. T.-R. McLaughlin, Strong asymptotics of the
orthogonal polynomials with respect to a measure supported on the plane. Comm. Pure
Appl. Math. 68 (2015), no. 1, 112–172 Zbl 1308.42025 MR 3280250

https://doi.org/10.1093/imrn/rnw207
https://zbmath.org/?q=an:1405.60066
https://mathscinet.ams.org/mathscinet-getitem?mr=3719476
https://doi.org/10.1007/s10955-022-03005-2
https://doi.org/10.1007/s10955-022-03005-2
https://zbmath.org/?q=an:07615078
https://mathscinet.ams.org/mathscinet-getitem?mr=4504713
https://doi.org/10.1142/S2010326314500142
https://doi.org/10.1142/S2010326314500142
https://zbmath.org/?q=an:1304.15025
https://mathscinet.ams.org/mathscinet-getitem?mr=3279619
https://doi.org/10.1063/1.3133108
https://doi.org/10.1063/1.3133108
https://zbmath.org/?q=an:1216.60007
https://mathscinet.ams.org/mathscinet-getitem?mr=2536111
https://doi.org/10.1007/s10955-013-0750-8
https://doi.org/10.1007/s10955-013-0750-8
https://zbmath.org/?q=an:1314.15026
https://mathscinet.ams.org/mathscinet-getitem?mr=3063493
https://doi.org/10.1214/21-ejp613
https://zbmath.org/?q=an:1480.60282
https://mathscinet.ams.org/mathscinet-getitem?mr=4244340
https://doi.org/10.1007/s00220-022-04539-y
https://doi.org/10.1007/s00220-022-04539-y
https://zbmath.org/?q=an:1515.30020
https://mathscinet.ams.org/mathscinet-getitem?mr=4561803
https://doi.org/10.1215/00127094-1384782
https://doi.org/10.1215/00127094-1384782
https://zbmath.org/?q=an:1225.15030
https://mathscinet.ams.org/mathscinet-getitem?mr=2817648
https://doi.org/10.1214/13-AOP885
https://zbmath.org/?q=an:1388.60020
https://mathscinet.ams.org/mathscinet-getitem?mr=3342661
https://doi.org/10.1016/j.bulsci.2013.09.003
https://doi.org/10.1016/j.bulsci.2013.09.003
https://zbmath.org/?q=an:1279.30048
https://mathscinet.ams.org/mathscinet-getitem?mr=3116221
https://doi.org/10.1007/s00365-018-9423-9
https://doi.org/10.1007/s00365-018-9423-9
https://zbmath.org/?q=an:1451.60012
https://mathscinet.ams.org/mathscinet-getitem?mr=3975882
https://doi.org/10.1016/j.jfa.2019.108340
https://doi.org/10.1016/j.jfa.2019.108340
https://zbmath.org/?q=an:1469.60023
https://mathscinet.ams.org/mathscinet-getitem?mr=4030288
https://doi.org/10.1007/s11118-021-09942-z
https://doi.org/10.1007/s11118-021-09942-z
https://zbmath.org/?q=an:1508.82046
https://mathscinet.ams.org/mathscinet-getitem?mr=4543814
https://doi.org/10.1002/cpa.21541
https://doi.org/10.1002/cpa.21541
https://zbmath.org/?q=an:1308.42025
https://mathscinet.ams.org/mathscinet-getitem?mr=3280250


Y. Ameur, C. Charlier, J. Cronvall, and J. Lenells 898

[15] F. Balogh, T. Grava, and D. Merzi, Orthogonal polynomials for a class of measures with
discrete rotational symmetries in the complex plane. Constr. Approx. 46 (2017), no. 1,
109–169 Zbl 1375.31003 MR 3668632

[16] E. L. Basor and K. E. Morrison, The Fisher-Hartwig conjecture and Toeplitz eigenvalues.
Linear Algebra Appl. 202 (1994), 129–142 Zbl 0805.15004 MR 1288485

[17] M. Bertola, J. G. Elias Rebelo, and T. Grava, Painlevé IV critical asymptotics for orthog-
onal polynomials in the complex plane. SIGMA Symmetry Integrability Geom. Methods
Appl. 14 (2018), article no. 091 Zbl 1400.33008 MR 3849128

[18] P. M. Bleher and A. B. J. Kuijlaars, Orthogonal polynomials in the normal matrix model
with a cubic potential. Adv. Math. 230 (2012), no. 3, 1272–1321 Zbl 1250.42079
MR 2921180

[19] R. F. Boisvert, C. W. Clark, H. S. Cohl, D. W. Lozier, M. A. McClain, B. R. Miller,
A. B. Olde Daalhuis, F, W. J. Olver, B. V. Saunders, B. I. Schneider (eds.), NIST digi-
tal library of mathematical functions. Release 1.0.22 of 2019-03-15 httpsW//dlmf.nist.gov/
visited on 19 November 2023

[20] P. Bourgade, G. Dubach, and L. Hartung, Fisher–Hartwig asymptotics for non-Hermitian
random matrices. In preparation

[21] S.-S. Byun and C. Charlier, On the characteristic polynomial of the eigenvalue moduli of
random normal matrices. 2022, arXiv:2205.04298

[22] S.-S. Byun, N.-G. Kang, and S.-M. Seo, Partition functions of determinantal and Pfaffian
Coulomb gases with radially symmetric potentials. Comm. Math. Phys. 401 (2023), no. 2,
1627–1663 Zbl 07707358 MR 4610282

[23] S.-S. Byun and S.-M. Seo, Random normal matrices in the almost-circular regime.
Bernoulli 29 (2023), no. 2, 1615–1637 Zbl 07666833 MR 4550238

[24] D. Chafaï, N. Gozlan, and P.-A. Zitt, First-order global asymptotics for confined particles
with singular pair repulsion. Ann. Appl. Probab. 24 (2014), no. 6, 2371–2413
Zbl 1304.82050 MR 3262506

[25] L. Charles and B. Estienne, Entanglement entropy and Berezin-Toeplitz operators. Comm.
Math. Phys. 376 (2020), no. 1, 521–554 Zbl 1508.81102 MR 4093864

[26] C. Charlier, Asymptotics of Hankel determinants with a one-cut regular potential and
Fisher-Hartwig singularities. Int. Math. Res. Not. IMRN (2019), no. 24, 7515–7576
Zbl 1479.15035 MR 4043828

[27] C. Charlier, Exponential moments and piecewise thinning for the Bessel point process. Int.
Math. Res. Not. IMRN (2021), no. 21, 16009–16073 Zbl 1490.60119 MR 4338214

[28] C. Charlier, Asymptotics of determinants with a rotation-invariant weight and discontinu-
ities along circles. Adv. Math. 408 (2022), no. part A, article no. 108600, 36
Zbl 07585358 MR 4458157

[29] C. Charlier, Large gap asymptotics on annuli in the random normal matrix model. Math.
Ann. (2023), to appear DOI 10.1007/s00208-023-02603-z

[30] C. Charlier and A. Doeraene, The generating function for the Bessel point process and a
system of coupled Painlevé V equations. Random Matrices Theory Appl. 8 (2019), no. 3,
article no. 1950008 Zbl 1422.60013 MR 3985249

https://doi.org/10.1007/s00365-016-9356-0
https://doi.org/10.1007/s00365-016-9356-0
https://zbmath.org/?q=an:1375.31003
https://mathscinet.ams.org/mathscinet-getitem?mr=3668632
https://doi.org/10.1016/0024-3795(94)90187-2
https://zbmath.org/?q=an:0805.15004
https://mathscinet.ams.org/mathscinet-getitem?mr=1288485
https://doi.org/10.3842/SIGMA.2018.091
https://doi.org/10.3842/SIGMA.2018.091
https://zbmath.org/?q=an:1400.33008
https://mathscinet.ams.org/mathscinet-getitem?mr=3849128
https://doi.org/10.1016/j.aim.2012.03.021
https://doi.org/10.1016/j.aim.2012.03.021
https://zbmath.org/?q=an:1250.42079
https://mathscinet.ams.org/mathscinet-getitem?mr=2921180
https://dlmf.nist.gov/
https://arxiv.org/abs/2205.04298
https://doi.org/10.1007/s00220-023-04673-1
https://doi.org/10.1007/s00220-023-04673-1
https://zbmath.org/?q=an:07707358
https://mathscinet.ams.org/mathscinet-getitem?mr=4610282
https://doi.org/10.3150/22-bej1514
https://zbmath.org/?q=an:07666833
https://mathscinet.ams.org/mathscinet-getitem?mr=4550238
https://doi.org/10.1214/13-AAP980
https://doi.org/10.1214/13-AAP980
https://zbmath.org/?q=an:1304.82050
https://mathscinet.ams.org/mathscinet-getitem?mr=3262506
https://doi.org/10.1007/s00220-019-03625-y
https://zbmath.org/?q=an:1508.81102
https://mathscinet.ams.org/mathscinet-getitem?mr=4093864
https://doi.org/10.1093/imrn/rny009
https://doi.org/10.1093/imrn/rny009
https://zbmath.org/?q=an:1479.15035
https://mathscinet.ams.org/mathscinet-getitem?mr=4043828
https://doi.org/10.1093/imrn/rnaa054
https://zbmath.org/?q=an:1490.60119
https://mathscinet.ams.org/mathscinet-getitem?mr=4338214
https://doi.org/10.1016/j.aim.2022.108600
https://doi.org/10.1016/j.aim.2022.108600
https://zbmath.org/?q=an:07585358
https://mathscinet.ams.org/mathscinet-getitem?mr=4458157
https://doi.org/10.1007/s00208-023-02603-z
https://doi.org/10.1007/s00208-023-02603-z
https://doi.org/10.1142/S2010326319500084
https://doi.org/10.1142/S2010326319500084
https://zbmath.org/?q=an:1422.60013
https://mathscinet.ams.org/mathscinet-getitem?mr=3985249


Disk counting statistics at the hard edge of random normal matrices 899

[31] C. Charlier and J. Lenells, Exponential moments for disk counting statistics of random
normal matrices in the critical regime. Nonlinearity 36 (2023), no. 3, 1593–1616
Zbl 07650619 MR 4547551

[32] L.-L. Chau and O. Zaboronsky, On the structure of correlation functions in the normal
matrix model. Comm. Math. Phys. 196 (1998), no. 1, 203–247 Zbl 0907.35123
MR 1643533

[33] T. Claeys and I. Krasovsky, Toeplitz determinants with merging singularities. Duke Math.
J. 164 (2015), no. 15, 2897–2987 Zbl 1333.15018 MR 3430454

[34] T. Claeys and A. B. J. Kuijlaars, Universality in unitary random matrix ensembles
when the soft edge meets the hard edge. In Integrable systems and random matrices,
pp. 265–279, Contemp. Math. 458, American Mathematical Society, Providence, RI,
2008 Zbl 1147.15303 MR 2411911

[35] F. D. Cunden, P. Facchi, M. Ligabò, and P. Vivo, Universality of the third-order phase
transition in the constrained Coulomb gas. J. Stat. Mech. Theory Exp. (2017), no. 5, article
no. 053303 Zbl 1457.82297 MR 3664397

[36] D. Dai, S.-X. Xu, and L. Zhang, Gap probability for the hard edge Pearcey process. Ann.
Henri Poincaré 24 (2023), no. 6, 2067–2136 Zbl 1516.60030 MR 4586858

[37] D. Dai and Y. Zhai, Asymptotics of the deformed Fredholm determinant of the confluent
hypergeometric kernel. Stud. Appl. Math. 149 (2022), no. 4, 1032–1085 MR 4520093

[38] A. Deaño and N. Simm, Characteristic polynomials of complex random matrices and
Painlevé transcendents. Int. Math. Res. Not. IMRN (2022), no. 1, 210–264
Zbl 1514.15050 MR 4366016

[39] P. Deift, A. Its, and I. Krasovsky, Toeplitz matrices and Toeplitz determinants under the
impetus of the Ising model: some history and some recent results. Comm. Pure Appl. Math.
66 (2013), no. 9, 1360–1438 Zbl 1292.47016 MR 3078693

[40] P. Deift, I. Krasovsky, and J. Vasilevska, Asymptotics for a determinant with a confluent
hypergeometric kernel. Int. Math. Res. Not. IMRN (2011), no. 9, 2117–2160
Zbl 1216.33013 MR 2806560

[41] P. A. Deift, Orthogonal polynomials and random matrices. A Riemann–Hilbert approach.
Courant Lect. Notes Math. 3, New York University, Courant Institute of Mathematical
Sciences, New York; American Mathematical Society, Providence, RI, 1999
Zbl 0997.47033 MR 1677884

[42] P. Elbau and G. Felder, Density of eigenvalues of random normal matrices. Comm. Math.
Phys. 259 (2005), no. 2, 433–450 Zbl 1129.82017 MR 2172690

[43] B. Estienne and J.-M. Stéphan, Entanglement spectroscopy of chiral edge modes in the
quantum Hall effect. Phys. Rev. B 101 (2020), no. 11, article no. 115136

[44] B. Fahs, Uniform asymptotics of Toeplitz determinants with Fisher-Hartwig singularities.
Comm. Math. Phys. 383 (2021), no. 2, 685–730 Zbl 1469.60029 MR 4239829

[45] M. Fenzl and G. Lambert, Precise deviations for disk counting statistics of invariant deter-
minantal processes. Int. Math. Res. Not. IMRN (2022), no. 10, 7420–7494
Zbl 1494.60051 MR 4418712

[46] P. J. Forrester, Some statistical properties of the eigenvalues of complex random matrices.
Phys. Lett. A 169 (1992), no. 1-2, 21–24 MR 1181356

https://doi.org/10.1088/1361-6544/acb47c
https://doi.org/10.1088/1361-6544/acb47c
https://zbmath.org/?q=an:07650619
https://mathscinet.ams.org/mathscinet-getitem?mr=4547551
https://doi.org/10.1007/s002200050420
https://doi.org/10.1007/s002200050420
https://zbmath.org/?q=an:0907.35123
https://mathscinet.ams.org/mathscinet-getitem?mr=1643533
https://doi.org/10.1215/00127094-3164897
https://zbmath.org/?q=an:1333.15018
https://mathscinet.ams.org/mathscinet-getitem?mr=3430454
https://doi.org/10.1090/conm/458/08940
https://doi.org/10.1090/conm/458/08940
https://zbmath.org/?q=an:1147.15303
https://mathscinet.ams.org/mathscinet-getitem?mr=2411911
https://doi.org/10.1088/1742-5468/aa690c
https://doi.org/10.1088/1742-5468/aa690c
https://zbmath.org/?q=an:1457.82297
https://mathscinet.ams.org/mathscinet-getitem?mr=3664397
https://doi.org/10.1007/s00023-023-01266-5
https://zbmath.org/?q=an:1516.60030
https://mathscinet.ams.org/mathscinet-getitem?mr=4586858
https://doi.org/10.1111/sapm.12528
https://doi.org/10.1111/sapm.12528
https://mathscinet.ams.org/mathscinet-getitem?mr=4520093
https://doi.org/10.1093/imrn/rnaa111
https://doi.org/10.1093/imrn/rnaa111
https://zbmath.org/?q=an:1514.15050
https://mathscinet.ams.org/mathscinet-getitem?mr=4366016
https://doi.org/10.1002/cpa.21467
https://doi.org/10.1002/cpa.21467
https://zbmath.org/?q=an:1292.47016
https://mathscinet.ams.org/mathscinet-getitem?mr=3078693
https://doi.org/10.1093/imrn/rnq150
https://doi.org/10.1093/imrn/rnq150
https://zbmath.org/?q=an:1216.33013
https://mathscinet.ams.org/mathscinet-getitem?mr=2806560
https://doi.org/10.1090/cln/003
https://zbmath.org/?q=an:0997.47033
https://mathscinet.ams.org/mathscinet-getitem?mr=1677884
https://doi.org/10.1007/s00220-005-1372-z
https://zbmath.org/?q=an:1129.82017
https://mathscinet.ams.org/mathscinet-getitem?mr=2172690
https://doi.org/10.1007/s00220-021-03943-0
https://zbmath.org/?q=an:1469.60029
https://mathscinet.ams.org/mathscinet-getitem?mr=4239829
https://doi.org/10.1093/imrn/rnaa341
https://doi.org/10.1093/imrn/rnaa341
https://zbmath.org/?q=an:1494.60051
https://mathscinet.ams.org/mathscinet-getitem?mr=4418712
https://doi.org/10.1016/0375-9601(92)90798-Q
https://mathscinet.ams.org/mathscinet-getitem?mr=1181356


Y. Ameur, C. Charlier, J. Cronvall, and J. Lenells 900

[47] P. J. Forrester, Log-gases and random matrices. London Math. Soc. Monogr. Ser. 34,
Princeton University Press, Princeton, NJ, 2010 Zbl 1217.82003 MR 2641363

[48] S. Ghosh and A. Nishry, Point processes, hole events, and large deviations: random com-
plex zeros and Coulomb gases. Constr. Approx. 48 (2018), no. 1, 101–136
Zbl 1409.60079 MR 3825948

[49] S. Ghosh and A. Nishry, Gaussian complex zeros on the hole event: the emergence of a
forbidden region. Comm. Pure Appl. Math. 72 (2019), no. 1, 3–62 Zbl 1417.30002
MR 3882221

[50] R. Grobe, F. Haake, and H.-J. Sommers, Quantum distinction of regular and chaotic dissi-
pative motion. Phys. Rev. Lett. 61 (1988), no. 17, 1899–1902 MR 963421

[51] H. Hedenmalm and N. Makarov, Coulomb gas ensembles and Laplacian growth. Proc.
Lond. Math. Soc. (3) 106 (2013), no. 4, 859–907 Zbl 1336.82010 MR 3056295

[52] A. Its and L. Takhtajan, Normal matrix models, N@-problem, and orthogonal polynomials
in the complex plane. 2007, arXiv:0708.3867

[53] B. Jancovici, J. L. Lebowitz, and G. Manificat, Large charge fluctuations in classical
Coulomb systems. J. Statist. Phys. 72 (1993), no. 3-4, 773–787 Zbl 1101.82307
MR 1239571

[54] K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices. Duke Math.
J. 91 (1998), no. 1, 151–204 Zbl 1039.82504 MR 1487983

[55] M. K.-H. Kiessling and H. Spohn, A note on the eigenvalue density of random matrices.
Comm. Math. Phys. 199 (1999), no. 3, 683–695 Zbl 0928.15015 MR 1669669

[56] B. Lacroix-A-Chez-Toine, A. Grabsch, S. N. Majumdar, and G. Schehr, Extremes of 2d
Coulomb gas: universal intermediate deviation regime. J. Stat. Mech. Theory Exp. (2018),
no. 1, artile no. 013203 Zbl 1459.82298 MR 3761607

[57] B. Lacroix-A-Chez-Toine, J. A. M. Garzón, C. S. H. Calva, I. P. Castillo, A. Kundu,
S. N. Majumdar, and G. Schehr, Intermediate deviation regime for the full eigenvalue
statistics in the complex Ginibre ensemble. Phys. Rev. E 100 (2019), article no. 012137

[58] B. Lacroix-A-Chez-Toine, S. N. Majumdar, and G. Schehr, Rotating trapped fermions in
two dimensions and the complex Ginibre ensemble: exact results for the entanglement
entropy and number variance. Phys. Rev. A 99 (2019), article no. 021602

[59] S.-Y. Lee and N. G. Makarov, Topology of quadrature domains. J. Amer. Math. Soc. 29
(2016), no. 2, 333–369 Zbl 1355.30022 MR 3454377

[60] S.-Y. Lee and R. Riser, Fine asymptotic behavior for eigenvalues of random normal matri-
ces: ellipse case. J. Math. Phys. 57 (2016), no. 2, article no. 023302 Zbl 1342.82056
MR 3450566

[61] S.-Y. Lee and M. Yang, Strong asymptotics of planar orthogonal polynomials: Gaussian
weight perturbed by finite number of point charges. Comm. Pure Appl. Math. 76 (2023),
no. 10, 2888–2956 MR 4630603

[62] S. Lyu, Y. Chen, and S.-X. Xu, Laguerre unitary ensembles with jump discontinuities,
PDEs and the coupled Painlevé V system. Phys. D 449 (2023), article no. 133755
Zbl 07695171 MR 4582165

[63] M. L. Mehta, Random matrices. Third edn., Pure Appl. Math. (Amst.) 142, Else-
vier/Academic Press, Amsterdam, 2004 Zbl 1107.15019 MR 2129906

https://doi.org/10.1515/9781400835416
https://zbmath.org/?q=an:1217.82003
https://mathscinet.ams.org/mathscinet-getitem?mr=2641363
https://doi.org/10.1007/s00365-018-9418-6
https://doi.org/10.1007/s00365-018-9418-6
https://zbmath.org/?q=an:1409.60079
https://mathscinet.ams.org/mathscinet-getitem?mr=3825948
https://doi.org/10.1002/cpa.21800
https://doi.org/10.1002/cpa.21800
https://zbmath.org/?q=an:1417.30002
https://mathscinet.ams.org/mathscinet-getitem?mr=3882221
https://doi.org/10.1103/PhysRevLett.61.1899
https://doi.org/10.1103/PhysRevLett.61.1899
https://mathscinet.ams.org/mathscinet-getitem?mr=963421
https://doi.org/10.1112/plms/pds032
https://zbmath.org/?q=an:1336.82010
https://mathscinet.ams.org/mathscinet-getitem?mr=3056295
https://arxiv.org/abs/0708.3867
https://doi.org/10.1007/BF01048032
https://doi.org/10.1007/BF01048032
https://zbmath.org/?q=an:1101.82307
https://mathscinet.ams.org/mathscinet-getitem?mr=1239571
https://doi.org/10.1215/S0012-7094-98-09108-6
https://zbmath.org/?q=an:1039.82504
https://mathscinet.ams.org/mathscinet-getitem?mr=1487983
https://doi.org/10.1007/s002200050516
https://zbmath.org/?q=an:0928.15015
https://mathscinet.ams.org/mathscinet-getitem?mr=1669669
https://doi.org/10.1088/1742-5468/aa9bb2
https://doi.org/10.1088/1742-5468/aa9bb2
https://zbmath.org/?q=an:1459.82298
https://mathscinet.ams.org/mathscinet-getitem?mr=3761607
https://doi.org/10.1103/physreve.100.012137
https://doi.org/10.1103/physreve.100.012137
https://doi.org/10.1103/physreva.99.021602
https://doi.org/10.1103/physreva.99.021602
https://doi.org/10.1103/physreva.99.021602
https://doi.org/10.1090/jams828
https://zbmath.org/?q=an:1355.30022
https://mathscinet.ams.org/mathscinet-getitem?mr=3454377
https://doi.org/10.1063/1.4939973
https://doi.org/10.1063/1.4939973
https://zbmath.org/?q=an:1342.82056
https://mathscinet.ams.org/mathscinet-getitem?mr=3450566
https://doi.org/10.1002/cpa.22122
https://doi.org/10.1002/cpa.22122
https://mathscinet.ams.org/mathscinet-getitem?mr=4630603
https://doi.org/10.1016/j.physd.2023.133755
https://doi.org/10.1016/j.physd.2023.133755
https://zbmath.org/?q=an:07695171
https://mathscinet.ams.org/mathscinet-getitem?mr=4582165
https://zbmath.org/?q=an:1107.15019
https://mathscinet.ams.org/mathscinet-getitem?mr=2129906


Disk counting statistics at the hard edge of random normal matrices 901

[64] T. Nagao, G. Akemann, M. Kieburg, and I. Parra, Families of two-dimensional Coulomb
gases on an ellipse: correlation functions and universality. J. Phys. A 53 (2020), no. 7,
article no. 075201 Zbl 1514.82195 MR 4071093

[65] A. Nishry and A. Wennman, The forbidden region for random zeros: appearance of
quadrature domains. 2020, arXiv:2009.08774; to appear in Comm. Pure Appl. Math

[66] D. Petz and F. Hiai, Logarithmic energy as an entropy functional. In Advances in differ-
ential equations and mathematical physics (Atlanta, GA, 1997), pp. 205–221, Contemp.
Math. 217, American Mathematical Society, Providence, RI, 1998 Zbl 0893.15011
MR 1606719

[67] B. Rider and B. Virág, The noise in the circular law and the Gaussian free field. Int. Math.
Res. Not. IMRN (2007), no. 2, article no. rnm006 Zbl 1130.60030 MR 2361453

[68] E. B. Saff and V. Totik, Logarithmic potentials with external fields. Grundlehren Math.
Wiss. 316, Springer, Berlin, 1997 Zbl 0881.31001 MR 1485778

[69] S.-M. Seo, Edge scaling limit of the spectral radius for random normal matrix ensembles
at hard edge. J. Stat. Phys. 181 (2020), no. 5, 1473–1489 Zbl 1460.60007 MR 4179777

[70] S.-M. Seo, Edge behavior of two-dimensional Coulomb gases near a hard wall. Ann. Henri
Poincaré 23 (2022), no. 6, 2247–2275 Zbl 07541500 MR 4420573

[71] T. Shirai, Ginibre-type point processes and their asymptotic behavior. J. Math. Soc. Japan
67 (2015), no. 2, 763–787 Zbl 1319.60102 MR 3340195

[72] N. R. Smith, P. Le Doussal, S. N. Majumdar, and G. Schehr, Counting statistics for non-
interacting fermions in a d -dimensional potential. Phys. Rev. E 103 (2021), no. 3, article
no. L030105 MR 4250431

[73] N. R. Smith, P. Le Doussal, S. N. Majumdar, and G. Schehr, Counting statistics for nonin-
teracting fermions in a rotating trap. Phys. Rev. A 105 (2022), no. 4, article no. 043315
MR 4421563

[74] N. M. Temme, Special functions. John Wiley & Sons, New York, 1996 Zbl 0856.33001
MR 1376370

[75] F. G. Tricomi, Asymptotische Eigenschaften der unvollständigen Gammafunktion. Math.
Z. 53 (1950), 136–148 Zbl 0038.22105 MR 45253

[76] C. Webb and M. D. Wong, On the moments of the characteristic polynomial of a Ginibre
random matrix. Proc. Lond. Math. Soc. (3) 118 (2019), no. 5, 1017–1056
Zbl 1447.60031 MR 3946715
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