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Abstract. We establish a general result on the existence and uniqueness of a quasi-stationary distri-
bution �D of a strongly Feller Markov process .Xt ; t � 0/ killed when it exits a domain D , under
some Lyapunov function condition. Our result covers the case of hypoelliptic damped Hamiltonian
systems. Our method is based on a characterization of the essential spectral radius by means of
Lyapunov functions and measures of noncompactness.
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1. Introduction

1.1. Setting and literature

The notion of quasi-stationary distribution is a central object in the study of popula-
tion processes or more generally of models derived from biological systems; see for
instance [14, 17, 22, 24, 25, 60] and references therein. More recently, the notion of quasi-
stationary distribution has attracted a lot of attention in the mathematical justification of
very efficient accelerated dynamics algorithms [64,71,80,81] (see also [65,66]) which are
widely used in practice and aim at simulating the atomistic evolution of statistical systems
over long time scales (by accelerating the sampling of the exit event from a metastable
macroscopic state D). Let us be more precise on this. A typical process used in simulation
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in statistical physics to model the evolution of the positions of the particles of a system is
a (stochastic) hypoelliptic damped Hamiltonian system ..xt ; vt /; t � 0/ on Rd �Rd (see
(6.1)), where xt 2 Rd gathers the positions of the particles of the system and vt 2 Rd

their velocities at time t � 0 (d D 3N, N being the number of particles). In most appli-
cations of the algorithms mentioned above, the macroscopic state is associated with a
subdomain D of R2d of the form D D O � Rd , where O is a subdomain of Rd . The
set O is defined in practice as a neighborhood (bounded or not) of some local minimum
of the potential energy function V W Rd ! R (the interatomic potential function), where
the process .xt ; t � 0/ can spend a huge amount of time before leaving it1 (in this case,
D is called a metastable region). For such domains D , it is thus expected that the condi-
tional distribution of .xt ; vt / before leaving D is close to a local equilibrium inside D .
This local equilibrium inside D is described by a quasi-stationary distribution (see (2.3)).
The exit event from D can thus be studied starting from this quasi-stationary distribu-
tion [3, 29, 51, 56], which is at the heart of the mathematical analysis of the accelerated
dynamics algorithms mentioned above (see [3, 29–31, 52, 53] when the process under
study is the overdamped Langevin process, an elliptic diffusion).

The existence of a quasi-stationary distribution (as well as its uniqueness) for hypoel-
liptic processes is therefore of importance in molecular dynamics. This question is an open
problem (as mentioned e.g. in [51, 56]) that we answer in our main result, Theorem 6.9.
More precisely, Theorem 6.9 provides existence and uniqueness of a quasi-stationary dis-
tribution for hypoelliptic damped Hamiltonian systems (6.1) on domains D of the form
O � Rd . It also provides the exponential convergence of the law at time t of the condi-
tioned process towards this quasi-stationary distribution.

The method we develop in this work allows us to deal with hypoelliptic damped
Hamiltonian systems with coefficients which are only continuous. In addition, the damp-
ing coefficient can be unbounded and the position state space O is not necessarily
bounded. The latter is of practical interest for the following reason. In many applications
of the accelerated algorithms mentioned above, O is defined as the basin of attraction of
a local minimum of the potential function V for the dynamics Px D �rV.x/. In many
situations, these basins of attraction are unbounded.

Quasi-stationary distributions for hypoelliptic diffusions have also been studied in [55,
68] for the Langevin dynamics with C1 coefficients, constant damping coefficient, and
bounded position state space O. Hypoelliptic diffusions killed at the boundary of a sub-
domain D of Rm have also been studied in [7] when D is bounded and satisfies a
noncharacteristic boundary condition, and the coefficients of the diffusions are smooth
and satisfy some Hörmander conditions. None of these conditions are satisfied when
D D O � Rd and for the processes considered in Theorem 6.9. Let us also mention that
nonconservative force fields are also considered in [55], and the approach developed in
[7] allows dealling with some non-strongly-Feller processes.

Many different criteria have been given to ensure the existence and uniqueness of a
quasi-stationary distribution for different Markov processes; see [18–21,37,42,44,49,67,

1Because of the presence of energetic barriers.
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72, 74, 86] and [4, 76] (based on the R-theory for Markov chains [77, 78]). We also men-
tion [43] for the study of existence of quasi-stationary distributions through the notion of
quasi-compact operators in the case of discrete time Markov chains; see also [39, 46].
In particular, for elliptic diffusions killed when exiting a bounded subdomain of Rd ,
the existence and uniqueness of a quasi-stationary distribution are well known; see for
instance [18, 21, 42, 45, 51, 67]. When considering unbounded domains, it is known that
there might exist many quasi-stationary distributions [57]. We also refer to [32,33] for the
study of quasi-stationary distributions on a finite state space (see also [23] for a discrete
state space) and to [11, 26, 38, 60, 79], and references therein, for the approximation of
a quasi-stationary distribution using interacting particle systems in different settings (see
also [8, 9]).

We finally refer to [62] for a spectral study of the kinetic Fokker–Planck operator
on L2.O � Rd / when O is bounded with several boundary conditions on @O � Rd (see
also [1, 47] and references therein).

1.2. Purpose of this work

We recall that the main result of this work is Theorem 6.9. It provides existence and
uniqueness of a quasi-stationary distribution for hypoelliptic damped Hamiltonian sys-
tems (6.1) on domains D D O�Rd , as well as the exponential convergence of the law at
time t of the conditioned process towards this quasi-stationary distribution.

Theorem 6.9 is based on the general result of Theorem 2.2 which gives a general
framework (see more precisely (C1)–(C5) in the next section) in which we can establish
the following for general strongly Feller Markov processes .Xt ; t � 0/ valued in a Polish
space � :

(1) the existence of a quasi-stationary distribution �D of the process .Xt ; t � 0/ inside D

(see (2.3) for definition);

(2) the uniqueness of a quasi-stationary distribution �D satisfying �D.W1=p/ < C1,
where W is the Lyapunov functional appearing in (C3);

(3) the exponential convergence of the conditional distribution P�.Xt 2 � j t < �D/

towards �D , for any given initial distribution � such that �.W1=p/ < C1.

In particular, when the Lyapunov functional W is bounded (which is the case for instance
when � is compact), the quasi-stationary distribution is unique (see more precisely The-
orem 2.2 (b) and the discussion after Theorem 2.2). Our conditions on the semigroup of
the killed Markov processes are quite general for strongly Feller Markov processes. We
build our argument upon the literature on nonkilled Markov processes, where Lyapunov
type conditions have already been widely investigated these past few years, with various
aims:

� To study the stability of differential equations with random right hand side (since the
pioneer works of Khasminskii, see the reference textbook [48]); we also refer to [2]
where Lyapunov type conditions are used to characterize the stability of controlled
diffusions or to obtain asymptotic flatness of controlled diffusions.
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� To derive regularity estimates and upper bounds on the invariant measure, as in [12,
Chapter 7].

� To obtain the existence of a spectral gap for the associated Markov semigroup (see for
example [34] in weighted spaces and [5] in L2).

Note that Lyapunov type conditions are alsoe used to study quasi-stationarity in the recent
works [18, 21, 45].

Theorem 2.2 is then applied to a wide range of hypoelliptic damped Hamiltonian
systems; this is the purpose of Theorem 6.9, for which the checking of assumptions (C1)–
(C5) of Theorem 2.2 requires some extra fine analysis.

Finally, we point out that Theorem 2.2 can also be used to prove existence and
uniqueness of a quasi-stationary distribution for elliptic diffusion processes, for which
the assumptions of Theorem 2.2 are much easier to check.

1.3. Organization

In the next section we present the general framework and the main theoretical result, The-
orem 2.2, for the quasi-stationary distribution. To prove the main result, a first key point
is the existence of the spectral gap for the semigroup of the killed Markov process. To
obtain it we will use the measures of non-weak-compactness of a positive kernel intro-
duced in [84] to establish the formula for the essential spectral radius by means of the
Lyapunov function for nonkilled Markov processes, which generalizes [84] from discrete
time to continuous time case. The use of measures of noncompactness allows us to obtain
the existence of a spectral gap for the semigroup of the killed Markov process. That is the
content of Theorem 3.5.

The second key ingredient for the main result is a Perron–Frobenius type theorem (see
Theorem 4.1) for a general Feller kernel. This is the purpose of Section 4.

With those preparations which should have independent interest, we prove the main
result in Section 5. Finally, the applications to hypoelliptic damped Hamiltonian systems
are developed in Section 6.

2. Main result

2.1. Framework: Notations and conditions

Let .Xt ; t � 0/ be a time homogeneous Markov process valued in a metric complete sep-
arable (say Polish) space � , with càdlàg paths and satisfying the strong Markov property,
defined on the filtered probability space .�;F ; .Ft /t�0; .Px/x2� / where Px.X0 D x/D 1
for all x 2 � (and where the filtration satisfies the usual conditions). Its transition proba-
bility semigroup is denoted by .Pt ; t � 0/. Given an initial distribution � on � , we write
P�.�/ D

R
�

Px.�/ �.dx/. Under P� , the distribution of X0 is �.
Let B.�/ be the Borel � -algebra of � , and bB.�/ the space of all bounded and Borel

measurable functions f on � (its norm will be denoted by bB.�/ 3 f 7! kf kbB.�/ D
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supx2� jf .x/j). The space D.Œ0; T �; �/ of �-valued càdlàg paths defined on Œ0; T � is
equipped with the Skorokhod topology.

We suppose that the following conditions hold:

(C1) (Strong Feller property) There exists t0 > 0 such that for each t � t0, Pt is strong
Feller, i.e. Ptf is continuous on � for any f 2 bB.�/.

(C2) (Trajectory Feller property) For every T > 0, x 7! Px.XŒ0;T � 2 �/ (the law ofXŒ0;T �
WD .Xt /t2Œ0;T �) is continuous from � to the space M1.D.Œ0; T �; �// of probability
measures on D.Œ0; T �; �/, equipped with the weak convergence topology.

Now let D be a nonempty open domain in � , different from � . Consider the first exit
time from D ,

�D WD inf ¹t � 0I Xt 2 Dc
º; (2.1)

where Dc D � n D is the complement of D . The transition semigroup of the killed
process .Xt ; 0 � t < �D/ is defined for t � 0 and x 2 D by

PD
t f .x/ D ExŒ1t<�D

f .Xt /� (2.2)

for f 2 bB.D/. Let us now recall the definition of a quasi-stationary distribution.

Definition 2.1. A quasi-stationary distribution (QSD for short) of the Markov process
.Xt ; t � 0/ in the domain D is a probability measure on D such that

�D.A/ D P�D
.Xt 2 A j t < �D/ D

P�D
.Xt 2 A; t < �D/

P�D
.t < �D/

; 8t > 0; A 2 B.D/;

(2.3)
where B.D/ WD ¹A \D I A 2 B.�/º.

2.2. Main general result

For a continuous time Markov process, what is given is often its generator L, not its
transition semigroup .Pt ; t � 0/, which is unknown in general. We say that a continuous
function f belongs to the extended domain De.L/ of L if there is some measurable
function g on � such that

R t
0
jgj.Xs/ ds < C1;Px-a.e. for all x 2 � , and

Mt .f / WD f .Xt / � f .X0/ �

Z t

0

g.Xs/ ds (2.4)

is a Px-local martingale for all x. Such a function g, denoted by Lf , is not unique in
general. But it is unique up to equality quasi-everywhere (q.e.): two functions g1; g2 are
said to be equal q.e. if g1 D g2 almost everywhere with respect to the (resolvent) measure
R1.x; �/ D

R C1
0

e�tPt .x; �/ dt for every x 2 � .

Let us introduce the Lyapunov function condition:

(C3) (Lyapunov condition) There exist a continuous function W W � ! Œ1;C1Œ, belong-
ing to the extended domain De.L/, two sequences of positive constants, .rn/
and .bn/, where rn ! C1, and an increasing sequence .Kn/ of compact subsets
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of � , such that
�LW.x/ � rnW.x/ � bn1Kn

.x/; q.e.;

where 1Kn
is the indicator function of Kn.

We say that a class A of bounded continuous functions on D is measure-separable if for
any bounded (signed) measure � on D , �.f / D 0 for all f 2 A implies � D 0.

Theorem 2.2. Assume that (C1)–(C3) hold. Suppose that the killed process .Xt ;

0 � t < �D/ satisfies:

(C4) (Weak Feller property) For t � 0, PD
t is weakly Feller, i.e. for a measure-separable

class A of continuous bounded functions f with support contained in D , PD
t f is

continuous on D .

(C5) (Topological irreducibility and almost sure extinction) There exists t0 > 0 such that
for all t � t0, all x 2 D and all nonempty open subsets O of D ,

PD
t .x; O/ > 0

.we can assume t0 is the same as in (C1)/, and there is some x0 2 D such that
Px0
.�D < C1/ > 0.

Then, for any p 2 �1;C1Œ fixed:

(a) There is only one QSD �
.p/

D
of the process .Xt ; t � 0/ in D satisfying

�
.p/

D
.W1=p/ WD

Z
D

W.x/1=p �.p/
D
.dx/ < C1: (2.5)

(b) In particular, if W is bounded over D , the QSD inside D is unique.

(c) There exists �.p/
D
> 0 .often called the least Dirichlet eigenvalue of the killed Markov

process/ such that the spectral radius of PD
t on bW1=p B.D/ equals e��

.p/

D
t for all

t � 0. Furthermore, �.p/
D
PD
t D e

��
.p/

D
t�
.p/

D
for all t � 0, and �.p/

D
.O/ > 0 for all

nonempty open subsetsO of D . In addition, there is a unique continuous function 'p

bounded by cW1=p such that �.p/
D
.'.p// D 1 and

PD
t '

.p/
D e��

.p/

D
t'.p/ on D ; 8t � 0: (2.6)

Moreover, '.p/ > 0 everywhere on D . Here bW1=p B.D/ is the Banach space of all
B.D/-measurable functions on D with norm

kf kb
W1=p B.D/ WD sup

x2D

jf .x/j

W.x/1=p
< C1:

(d) There are some constants ı > 0 and C � 1 such that for any initial distribution �
on D with �.W1=p/ < C1,ˇ̌
P�.Xt 2 A j t < �D/��

.p/

D
.A/

ˇ̌
� Ce�ıt

�.W1=p/

�.'.p//
; 8A 2B.D/; t > 0: (2.7)

(e) Px.�D < C1/ D 1 for every x 2 D , X�D
and �D are P�p

D
-independent, and

P�p

D
.t < �D/ D e

��
.p/

D
t :
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Notice that the set of initial distributions � on D with �.W1=p/ < C1 includes any
initial distribution � with compact support in D , and thus includes in particular the Dirac
measures ıx (x 2 D), which is for instance of interest to analyse the mathematical foun-
dations of the accelerated algorithms we mentioned in the Introduction.2 In addition,
choosing � D ıx in (2.7) (x 2 D) for each p > 1, one deduces that �.p/

D
is actually inde-

pendent of p > 1 (and then so is �.p/
D

), i.e. for any p;q > 1, �.p/
D
D �

.q/

D
and �.p/

D
D �

.q/

D
.

Theorem 2.2 is applied in Section 6 to hypoelliptic damped Hamiltonian systems;
see (6.1) and Theorem 6.9. Let us mention that under the assumptions of Theorem 2.2,
from Corollary 3.6 and (5.3), we find that for each t > 2t0 (see (C1))

PD
t W bW1=p B.D/! bW1=p B.D/ is compact.

Remark 2.3. From (2.3), �D is a QSD if and only if

�DP
D
t D �.t/�D ; �.t/ D P�D

.t < �D/;

in other words, �D must be a common positive left-eigenvector of PD
t . Item (c) above

says that �.t/ D e��D t is exactly the spectral radius of PD
t on bW1=p B.D/.

We now discuss assumptions (C1) and (C3), and the uniqueness of the QSD in the
whole space of measures on D .

On assumption (C1). As already explained, a key point in the proof of Theorem 2.2 is
the existence of the spectral gap for the semigroup of the killed Markov process. This
spectral gap is obtained using formula (3.3) valid for a bounded nonnegative kernel P on
� satisfying in particular the condition (see (3.1) and (A1))

9N � 1; ˇ� .1KP
N / D 0 for all compact subsets K of � . (2.8)

This is where (C1) is used in this work (see Remark 3.3). Condition (A1) is not restricted
to strongly Feller kernels but for them it is easier to check (A1). We have decided to work
with (C1) instead of (2.8) for ease of exposition and because most of the hypoelliptic
processes we consider in Section 6 satisfy (C1). We also mention that one advantage
of the method based on formula (3.3) is that it provides an explicit upper bound on the
spectral radius (see Theorem 3.5). This can be used to derive a spectral gap when one has
a sufficiently good lower bound on the spectral radius of the killed process, and we hope
to develop this method for non-strongly-Feller processes in future work.

On assumption (C3). If we replace, in (C3), the assumption that rn ! 1 as n ! 1
by rn ! r1 as n!1 with r1 > �D , then all the statements of Theorem 2.2 remain
valid. The latter condition is used in [21]. Such a criterion is in practice quite hard to
check since one does not know the Dirichlet eigenvalue �D . Note that (C3) is known
to imply various functional inequalities, depending on the growth of rn to infinity such

2This is based on the comparison of the exit event from D when X0 D x 2 D and when X0 is
distributed according to a quasi-stationary distribution of the process .Xt ; t � 0/ in D .
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as logarithmic Sobolev inequalities or various F -Sobolev type inequalities [6, 15, 16]. If
rn goes to infinity slowly one may show that the F -Sobolev inequality implied by (C3)
is weaker than ultracontractivity, a condition which was behind the “coming down from
infinity” property used in [14] for example.

Let us also comment on the other assumptions imposed in [21]. The authors introduce
condition (F) which includes in particular a variant of (C3), (F2) in their work, but also
a local Harnack inequality (F3) which seems quite hard to verify in nonelliptic cases. We
prefer to use our conditions (C4) and (C5), easily verified for muldimensional elliptic
diffusion processes and thus recovering the results of [21, Section 4], but which will also
be useful in hypoelliptic cases.

Let us also mention that Lyapunov type conditions to study quasi-stationary dis-
tributions have also been used before in [20]. The Lyapunov conditions in [20] imply
uniqueness of the QSD, which does not hold in general assuming only (C3) (see the dis-
cussion below). Note also that (C3) only involves the nonkilled process.

We finally mention that (C3) implies that LW � bnW, which ensures that the quasi-
stationary measure �D satisfies �D.W1=p/ < C1, p > 1.

Uniqueness of the QSD in certain cases. We give two situations for which there will be a
unique QSD of .Xt ; t � 0/ in D (i.e. in the whole space of probability measures over D).

� When in addition to (C1)–(C5) in Theorem 2.2, for some t > 0 and some p > 1 one
has Pt .bW1=p B.�// � bB.�/, then the process .Xt ; t � 0/ has a unique QSD in D .

� When (C1), (C2), (C4), and (C5) hold, and � is compact, all the results of Theorem 2.2
are valid with W D 1 (indeed (C3) is always satisfied with W D 1, Kn D � , and rn D
bn D n for instance). Thus, in this case, item (b) of Theorem 2.2 holds, and item (d) is
satisfied for any initial distribution � in D .

Without extra assumptions in Theorem 2.2, .Xt ; t � 0/ does not have a unique QSD in D .
Indeed, consider the Ornstein–Uhlenbeck process dXt D �Xtdt C dBt on � D R and
with D D R�� (for which it is known that there are infinitely many QSD [57]). One can
easily check with much easier arguments than those used in Section 6 (since this process
is elliptic) that Theorem 2.2 is valid with W.x/D e"x

2=2 (" 2 .0; 1/). Theorem 2.2 allows
us to catch its minimal QSD, namely �1 D 2xe�x

2
(see [57] and references therein).

Remark 2.4. The key, as in the current literature, consists in proving that PD
t has a spec-

tral gap at its spectral radius rsp.P
D
t / acting on some Banach lattice space B of functions.

We will work on B D bWB.�/;CbW.�/ (introduced in Section 3.3 below), which are well
adapted to our Lyapunov function condition (C3). The problem is: PD

t is not strongly
continuous on such Banach spaces, and the domain DB.L/ of the generatorL is not dense
in B. So we cannot use the spectral theory of strongly continuous semigroups in functional
analysis. Let us finally mention [58] for an analytical study (using the notions of mini-
mal positive solutions and weak generator) of some classes of non-strongly-continuous
or nonanalytical Markov semigroups induced by some degenerate second-order operators
on RN (the case of unbounded domains is also considered there for uniformly elliptic
second-order operators).
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3. Essential spectral radius of Pt

The purpose of this section is to prove Theorem 3.5 which aims at giving a lower bound
on the essential spectral radius of Pt , t > 0. To this end, we first recall a characterization
of the essential spectral radius of a semigroup of transition kernels (see Theorem 3.4)
obtained in [84].

3.1. Essential spectral radius

Let B be a real Banach lattice and P a nonnegative, bounded linear operator on B. A com-
plex number � 2 C is said to be in the resolvent set �.P / of P if the inverse .�I � P /�1

on the complexified Banach space BC of B exists and is bounded. The complementary
set �.P / WD C n �.P / is the spectrum of P on B. The spectral radius of P is given by
Gelfand’s formula

rsp.P jB/ WD sup ¹j�jI � 2 �.P /º D lim
n!1

.kP nkB!B/
1=n:

A complex number � does not belong to the (Wolf) essential spectrum �ess.P jB/ of P jB
iff �I � P is a Fredholm operator on BC . For a point �0 in the spectrum �.P jB/, �0 …
�ess.P jB/ iff �0 is isolated in �.P jB/ and the associated eigenprojection

E�0
WD

1

2�i

Z
�

.�I � P /�1d�

(Dunford integral in the counter-clockwise way) is finite-dimensional, where � is a cir-
cumference of sufficiently small radius: j� � �0j D ı such that the disk j� � �0j � ı
contains no other spectral point than �0. Let us recall that the algebraic multiplicity of
�0 … �ess.P jB/ is the dimension of the range of E�0

. Let us finally mention that since
P is bounded, �0 … �ess.P jB/ is a pole of the resolvent [85, Theorem 4 in Section 8 of
Chapter VIII].

Definition 3.1. The essential spectral radius of P on B is defined by

ress.P jB/ D sup ¹j�jI � 2 �ess.P jB/º:

3.2. Two parameters of non-weak-compactness and formulas for the essential spectral
radius

Our state space � is Polish with a compatible metric d (i.e., .� ; d/ is complete and sep-
arable), whose Borel � -field is denoted by B.�/. The notation K �� � means that K
is compact in � . Let Mb.�/ (resp. MC

b
.�/, M1.�/) be the space of all � -additive (resp.

� -additive and nonnegative; probability) measures of bounded variation on .� ;B.�//.
The pairing between � 2Mb.�/ and f 2 bB.�/ is

h�; f i WD �.f / WD

Z
�

f .x/ d�.x/:
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Using this pairing, Mb.�/ is a subspace of the dual Banach space .bB.�//�. For a non-
negative kernel P.x; dy/, bounded on bB.�/, its adjoint operator P � on .bB.�//� keeps
Mb.�/ stable, i.e., for each � 2Mb.�/,

P ��.�/ D .�P /.�/ WD

Z
�

�.dx/ P.x; �/ 2Mb.�/:

Besides the variation norm k�kTV topology, we shall also consider the following two weak
topologies on Mb.�/. The weak topology �.Mb.�/; bB.�// (i.e., the weakest topology
on Mb.�/ for which � 7! �.f / is continuous for all f 2 bB.�/), according to the usual
language, will be called the � -topology, denoted simply by � . And the weak topology
�.Mb.�/;Cb.�// (the most often used weak convergence topology) will be denoted by w.
The space Cb.�/ is the space of all functions f 2 bB.�/ such that f is continuous on �

(its norm is the one of bB.�/ but we will sometimes write k � kCb.�/ when we want to
emphasize that we work on Cb.�/).

The following measures of non-weak-compactness of a positive (i.e. nonnegative and
nonzero) kernel P.x; dy/ were introduced by the third author [84].

Definition 3.2. (a) For a bounded subfamily M of MC
b
.�/, define

ˇw.M/ WD inf
K���

sup
�2M

�.Kc/;

ˇ� .M/ WD sup
.An/

lim
n!1

sup
�2M

�.An/;
(3.1)

where sup.An/
is taken over all sequences .An/n � B.�/ decreasing to ;.

(b) Let P.x; dy/ be a nonnegative kernel on � such that supx2E P.x; �/ D kP 1kbB.�/

< C1 .i.e., the kernel is bounded/. We call

ˇw.P / WD ˇw.M/; ˇ� .P / WD ˇ� .M/; (3.2)

where M D ¹P.x; �/I x 2 �º, the measure of non-� -compactness and the measure of
non-w-compactness of P , respectively.

Here and in the following, 1 will denote the constant function equal to 1 on � . We
introduce the following assumption

(A1) ˇw.1KP / D 0 and 9N � 1 W ˇ� .1KPN / D 0; 8K �� � .

Remark 3.3. If P is Feller and P k is strongly Feller on � , i.e. P k.bB.�// � Cb.�/,
then (A1) is satisfied with N D k.

In fact, for any sequence An # ; in B.�/, fn.x/ D P k.x; An/ is continuous
and converges to zero for every x 2 � . In addition fnC1.x/ � fn.x/ for all n
and x 2 � . Then, by Dini’s monotone convergence theorem, for each K �� � ,
limn!1 supx2� 1K.x/P k.x; An/ D 0. That yields ˇ� .1KP k/ D 0.

When P is Feller, the fact that ˇw.1KP / D 0 for all K �� � is proved similarly
using Prokhorov’s theorem (see for instance [84, Lemma 3.1 (a.iii)]).
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Theorem 3.4 ([84, Theorem 3.5]). Let P be a bounded nonnegative kernel on � satisfy-
ing (A1). Then

ress.P jbB.�// D lim
n!1

Œˇw.P
n/�1=n: (3.3)

3.3. Lyapunov function criterion for the essential spectral radius of .Pt ; t � 0/

The main objective of this section is to apply Theorem 3.4 to Pt , where we recall that
.Pt ; t � 0/ is the semigroup of the (nonkilled) process .Xt ; t � 0/. Let us first introduce
some notation. Given a continuous function W W � ! Œ1;C1Œ (weight function), let

bWB.�/ WD

²
f W � ! R measurableI kf kbWB.�/ WD sup

x2�

jf .x/j

W.x/
< C1

³
;

and
CbW.�/ D ¹f 2 bWB.�/I f W � ! R is continuousº;

which are Banach spaces with norm k � kbWB.�/. Notice that if W D 1, then bWB.�/ D

bB.�/ and CbW.�/ D Cb.�/, where bB.�/ and Cb.�/ are introduced above. The space
of measures

MbW.�/ D ¹� 2Mb.�/I W.x/�.dx/ 2Mb.�/º

is a subspace of the dual Banach space .bWB.�//� by regarding each � 2 MbW.�/ as
a bounded linear form f 7! �.f / on bWB.�/. We now turn to the main result of this
section.

Theorem 3.5. Assume (C1) and (C2). Assume that there is some continuous Lyapunov
function W W � ! Œ1;C1Œ such that for some K �� � , r > 0, and b > 0,

�
LW

W
� r1Kc � b1K ; (3.4)

and for some p > 1,
LWp

� bWp: (3.5)

Then for every t > 0,

ˇw.Pt;W/ � e
�rt and in particular ress.Pt jbWB.�// � e

�rt ; (3.6)

where for x; y 2 � , we set

Pt;W.x; dy/ D
W.y/

W.x/
Pt .x; dy/: (3.7)

Proof. Consider the isomorphismMW W f 7!Wf from bB.�/ to bWB.�/. For t � 0 we
have Pt;W DM�1W PtMW. Then

ress.Pt jbWB.�// D ress.Pt;WjbB.�//:

Then, .Pt;W; t � 0/ is again a semigroup of transition kernels, but it is not Markov in
general.
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Step 1: Proof thatQDPt;W satisfies (A1) for t >0. First, from (3.5), .e�btWp.Xt /; t�0/

is a supermartingale, and so for any x 2 � and t � 0,

.PtW
p/.x/ D ebtExŒe

�btW.Xt /
p� � ebtW.x/p: (3.8)

Therefore, for any compactK �� � , letting qDp=.p� 1/ and using Hölder’s inequality,
we have

ˇw.1KQ/ D inf
K0���

sup
x2K

Q.x; � nK 0/ � inf
K0���

sup
x2K

..PtWp/.x//1=p

W.x/
Pt .x; � nK

0/1=q

� ebt=p
�

inf
K0���

sup
x2K

Pt .x; � nK
0/
�1=q
D 0

by the Feller property of Pt (guaranteed by (C2), see Remark 3.3).
Let us check the second condition in (A1) with some N such that Nt � t0 (see (C1)):

ˇ� .1KQ
N / D sup

.An/

lim
n!1

sup
x2K

QN .x; An/

� sup
.An/

lim
n!1

sup
x2K

..PNtWp/.x//1=p

W.x/
PNt .x; An/

1=q

� eNbt=p
�

sup
.An/

lim
n!1

sup
x2K

PNt .x; An/
�1=q

;

where the sup above is taken over all sequences .An/n in B.�/ decreasing to ;. The last
factor above, being ˇ� .1KPNt /, is equal to zero by the strong Feller property of PNt (see
(C1) and Remark 3.3).

Step 2: Proof that ˇw.Q/ � e�rt . This yields ˇw.Qn/ � ˇw.Q/
n [84, Proposition

3.2.(e)] for all n and then the desired result by Theorem 3.4 (we can use these results
since Q satisfies (A1)).

To prove that ˇw.Q/ � e�rt , we introduce the first hitting time �K WD inf ¹s � 0I
Xs 2 Kº of the compact K for the process .Xt ; t � 0/, where K is the compact set
appearing in the Lyapunov condition (3.4). We then have

ˇw.Q/ D inf
K0���

sup
x2�

Q.x; � nK 0/ D inf
K0���

sup
x2�

1

W.x/
ExŒW.Xt /1Xt…K0 �: (3.9)

Notice that for x 2 � , we have

1

W.x/
ExŒW.Xt /1Xt…K0 � �

1

W.x/
ExŒW.Xt /1Xt…K0; �K�t �C

1

W.x/
ExŒW.Xt /1�K>t �

� ebt=p
�

sup
y2K

Py.9s 2 Œ0; t �; Xs … K
0/
�1=q
C

1

W.x/
ExŒW.Xt /1�K>t �; (3.10)

where the second inequality follows by Hölder’s inequality and the strong Markov prop-
erty of the process .Xt ; t � 0/.
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Let us first deal with the first term on the r.h.s. of (3.10). By condition (C2), for any
" > 0, there is some compact subset A" in D.Œ0; t �; �/ such that

sup
y2K

Py.XŒ0;t� … A
c
"/ < ":

By the well known property of the Skorokhod topology [36], the set

B" WD
[
s2Œ0;t�

¹.s/I  2 A"º

is relatively compact in � . Thus

inf
K0���

sup
y2K

Py.9s 2 Œ0; t �; Xs … K
0/ � sup

y2K
Py.9s 2 Œ0; t �; Xs … B"/

� sup
y2K

Py.XŒ0;t� … A
c
"/ < ":

As " > 0 is arbitrary, infK0��� supy2K Py.9s 2 Œ0; t �; Xs … K
0/ D 0. Substituting it into

(3.10), we see from (3.9) that it remains to show that

1

W.x/
ExŒW.Xt /1�K>t � � e

�rt ; 8x 2 � : (3.11)

This is the purpose of the next step.

Step 3: Proof of (3.11). To this end, we introduce, for t � 0,

Mt WD
W.Xt /

W.X0/
exp

�
�

Z t

0

LW

W
.Xs/ ds

�
:

The key ingredient is the fact that .Mt ; t � 0/ is a local Px-martingale (for every x), by
Ito’s formula. Thus, .Mt ; t � 0/ is then a supermartingale by Fatou’s lemma. Then, by
the Lyapunov condition (3.4),

ert
1

W.x/
ExŒW.Xt /1�K>t � � ExŒMt � �M0 D 1:

This is (3.11). Therefore, the proof of Theorem 3.5 is complete.

Corollary 3.6. Assume that (C1)–(C3) are satisfied. If (3.5) holds, then, for each t > 2t0
.see (C1)/, PD

t W bWB.D/! bWB.D/ is compact.

Proof. From the first step of the proof of Theorem 3.5, Pt;W satisfies (A1) with N such
that Nt � t0. For t � 0, one has

PD
t;W D

W.y/

W.x/
PD
t .x; dy/ �

W.y/

W.x/
Pt .x; dy/ D Pt;W.x; dy/:

Let us show that for t � t0, Pt;W is strongly Feller like Pt , i.e. for any f 2 bB.�/,
Pt .Wf / is continuous. For any n � 1, let

fn WD
W ^ n

W
f:
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Since Wfn is bounded, Pt .Wfn/ is continuous by the strong Feller property of Pt
(by (C1)). Now for any compact K �� � ,

sup
x2K
jPt .Wf /.x/ � Pt .Wfn/.x/j � sup

x2K
Œ.PtW

p/.x/�1=p sup
x2K

Œ.Pt jfn � f j
q/.x/�1=q :

We have jfn � f j � kf kbB.�/ for all n, and jfn � f j # 0 pointwise on � . Since Pt is
strongly Feller (by (C1)), the sequence of functions hn.x/ WD .Pt jfn � f jq/.x/ is con-
tinuous over � . Moreover, hn # 0 pointwise on � . Consequently, by Dini’s monotone
convergence theorem, we have

sup
x2K

.Pt jfn � f j
q/.x/! 0:

Thus, for t � t0, Pt .Wf / is continuous, which implies that Pt;W is strongly Feller.
From Theorem 3.5 (with r D rn !1 by (C3)), we obtain

ˇw.P
D
t;W/ � ˇw.Pt;W/ D 0 for each t > 0: (3.12)

Because for each t � t0, Pt;W is strongly Feller on � , for all K �� D we have

ˇ� .1KP
D
t;W/ � ˇ� .1KPt;W/ D 0 for each t � t0: (3.13)

Therefore, by [84, Proposition 3.2 (f)], for each s > 0,

ˇ� .P
D
sCt0;W

/ � ˇw.P
D
s;W/ˇ� .P

D
t0;W

/ D 0:

Finally, applying [84, Proposition 3.2 (g)],PD
sC2t0;W

W bB.D/! bB.D/ is compact. This
concludes the proof of Corollary 3.6.

4. A Perron–Frobenius type theorem on bW B

In this section, we present a version of Perron–Frobenius’ theorem we will need for Feller
kernels Q on bWB.�/ or CbW.�/, which is of independent interest.

Theorem 4.1. LetQ DQ.x; dy/ be a positive bounded kernel on � and W � 1 a contin-
uous weight function on � . Assume that:

(1) There exists N1 � 1 such that Qk is Feller for all k � N1, i.e. Qkf 2 Cb.�/ if
f 2 Cb.�/.

(2) There exists N2 � 1 such that for any x 2 � and any nonempty open subset O of � ,

QN2.x; O/ > 0:

(3) For some p > 1 and constant C > 0,

QWp
� CWp:

Notice that this implies that Q is well defined and bounded on bWB.�/.
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(4) Q has a spectral gap in bWB.�/:

ress.QjbWB.�// < rsp.QjbWB.�//: (4.1)

Then there exist a unique couple .�; '/ where � is a probability measure on � with
�.W/ < C1 and ' 2 CbW.�/ is positive everywhere on � with �.'/ D 1, and constants
r 2 �0; 1Œ and C � 1, such that

�Q D rsp.QjbWB.�//�; Q' D rsp.QjbWB.�//' (4.2)

and 1

rsp.QjbWB.�//n
Qnf � '�.f /


bWB.�/

� Crnkf kbWB.�/; 8f 2 bWB.�/: (4.3)

In particular,

(a) If � 2 MbW.�/ satisfies �Q D �� for some � 2 R, and �.'/ ¤ 0, then � D

rsp.QjbWB.�// and � D c� for some constant c.

(b) If f 2 bWB.�/ satisfies Qf D �f for some � 2 R, and �.f / ¤ 0, then � D

rsp.QjbWB.�// and f D c' for some constant c.

Remark 4.2. Let us mention that the standard Krein–Rutman theorem [35, Theorem 1.2]
or its generalization [69, Theorem 7], with the natural choice of coneK D ¹� 2 BI � � 0º
(recall B D bWB.�/ or CbW.�/ with the norm sup� jf j=W), do not apply here in gen-
eral, for the following reason. Let � � Rd be a smooth bounded domain and Q.x; �/ D
Px.X1 2 � ; 1 < �� / where .Xt ; t � 0/ is a standard (d -dimensional) Brownian motion.
It is well-known that Q has a smooth (positive) density q.x; y/ in � � � with respect to
the Lebesgue measure on � , which moreover has a continuous extension to � � � which
vanishes on @.� � �/. Thus, if u 2 B is an eigenfunction for Q on B associated with
an eigenvalue r > 0, then u D r�1Qu has a continuous extension to � which vanishes
on @� . Thus, u … int.K/ D ¹� 2 BI 9c > 0; � � cº and therefore [69, Theorem 7 (2)]
(see also [69, Theorem 1 (2)]) as well as [35, Theorem 1.2] cannot hold. Notice that one
would naturally then want to work with K1 D ¹� 2 C.x�/I � � 0; � D 0 on @�º, but K1
has empty interior. Note also that Q satisfies (1)–(4).

We start the proof of Theorem 4.1 with the following lemma.

Lemma 4.3. Let Q be a bounded .resp. bounded and Feller/ kernel with rsp.QjbB.�//

D 1. Then:

(a) For any � in the resolvent set �.QjbB.�// with j�j > ress.QjbB.�//,

R.�/ WD .�I �Q/�1

is a bounded .resp. bounded and Feller/ kernel.

(b) If Q is Feller, then rsp.QjCb.�// D rsp.QjbB.�//, and ress.QjCb.�// D ress.QjbB.�//.
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Proof. (a) First, for � > rsp.QjbB.�//,

R.�/ D

1X
nD0

1

�nC1
Qn

is a bounded (resp. Feller) kernel.
Now for any � 2 �.QjbB.�// with j�j > ress.QjbB.�//, there is a C1-curve Œ0; 1� 3

t 7! .t/ 2 C such that � D .1/, .0/ > rsp.QjbB.�// and Ran./ � �.QjbB.�//. It is
enough to show that there is some (common) ı > 0 such that for any t0 2 Œ0; 1� such that
R..t0// is a bounded (resp. Feller) kernel, so is R..t// if jt � t0j < ı.

To this end, let M D supt2Œ0;1� kR..t//kbB.�/ which is finite (where k � kbB.�/ is
the operator norm on bB.�/). Let t 2 Œ0; 1� be such that jt � t0j � 1

2M.j 0jL1C1/
, so that

j.t0/ � .t/j �
1
2M

. Then, for such t , we have

R..t// D

1X
nD0

..t0/ � .t//
nR..t0//

nC1:

Thus R..t// is a bounded (resp. bounded and Feller) kernel.
(b) The first equality follows by Gelfand’s formula for the spectral radius and the fact

that kQnkbB.�/ D supx2� Q
n.x; �/ D kQnkCb.�/ (for all n � 0). The second equality is

proved in [84, Proposition 4.7].

Proof of Theorem 4.1. The proof is divided into several steps.

Step 1: Reduction to W D 1. For x 2 � , let

QW.x; dy/ WD
W.y/

W.x/
Q.x; dy/:

By Hölder’s inequality (see also Theorem 4.1 (3)) we have, for x 2 � ,

QW.x/ � ŒQ1.x/�1=qŒQWp.x/�1=p � kQ1k1=q
bB.�/

C 1=pW.x/

where q D p=.p � 1/. Hence QW1 � kQ1k1=q
bB.�/

C 1=p , i.e. QW is a bounded positive
kernel on � .

Let us prove thatQk
W is again Feller for k � N1, that is, for any f 2 Cb.�/,Qk.Wf /

is continuous (notice that Wf is continuous over � but not necessarily bounded on �). To
this end, set, for any n � 1 and f 2 Cb.�/,

fn WD
W ^ n

W
f:

The function Qk.Wfn/ is continuous by the Feller property ofQk . Now for any compact
K �� � , we have

sup
x2K
jQk.Wf /.x/ �Qk.Wfn/.x/j � sup

x2K
Œ.QkWp/.x/�1=p sup

x2K
Œ.Qk
jfn � f j

q/.x/�1=q :
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By assumption (3) in Theorem 4.1, supx2K Œ.Q
kWp/.x/�1=p � C k=p supx2K W.x/. Since

jfn � f j � kf kbB.�/ and fn ! f uniformly on compact sets in � , by the tightness of
¹Qk.x; dy/I x 2 Kº we have

sup
x2K

.Qk
jfn � f j

q/.x/! 0:

Thus Qk.Wf / is continuous.
Finally, letting MWf D Wf , which is an isomorphism from bB.�/ to bWB.�/, we

haveQW DM
�1
W QMW, i.e.QjbWB.�/ is similar toQWjbB.�/. Hence it is enough to prove

the theorem for QW on bB.�/ (note that QW also satisfies Condition (2)).
From now on, we assume without loss of generality that WD 1 and rsp.QjbB.�//D 1

(otherwise consider Q=rsp.QjbB.�//).

Step 2: Existence of a positive eigenfunction and an eigen probability measure. The fact
that rsp.QjbB.�// (D 1 by assumption) is in the spectrum of QjbB.�/ is well known
(see [70, Chapter V, Proposition 4.1]). In addition, by condition (4), rsp.QjbB.�// …

�ess.QjbB.�//. We recall (see Section 3.1) that this implies that rsp.QjbB.�// is isolated
in the spectrum of QjbB.�/, its associated eigenprojection Ersp.QjbB.�// has finite rank,
and is a pole of the resolvent of QjbB.�/. We can thus use [70, Chapter V, Theorem 5.5
and the subsequent note] (cyclic property of the peripheral spectrum) to deduce that there
exists m � max ¹N1; N2º such that

for any � 2 �.QjbB.�// with j�j D 1, we have �m D 1. (4.4)

For such an m, we have:

(1) ress.Q
mjbB.�// < rsp.Q

mjbB.�// D 1 (which follows from the fact that for all k � 1,
rsp.Q

kjbB.�//
1=k D rsp.QjbB.�// D 1 and ress.Q

kjbB.�//
1=k D ress.QjbB.�// < 1).

(2) 1 D rsp.Qj
m
bB.�/

/ 2 �.Qjm
bB.�/

/. In particular, 1 is an isolated eigenvalue of Qm and
is a pole of the resolvent of QmjbB.�/.

(3) the peripheral spectrum of QmjbB.�/ is reduced to ¹1º (by (4.4) and the fact that
�.Qm/ D �.Q/m), that is,

¹� 2 CI j�j D 1º \ �.Qm
jbB.�// D ¹1º:

Let � WD ¹� 2 CI j� � 1j D ıº where ı > 0 is such that

¹� 2 CI 0 < j� � 1j � ıº � �.Qm
jbB.�// \ ¹�I j�j > ress.Q

m
jbB.�//º: (4.5)

Denote
… D

1

2�i

Z
�

.�I �Qm
jbB.�//

�1 d�: (4.6)

By the Riesz decomposition theorem, QmjbB.�/ D QmjbB.�/… C Q
mjbB.�/.I � …/

where I � … is the Riesz projector associated with the spectrum of QmjbB.�/ in
¹� 2 CI j�j < 1º, ….I �…/ D .I �…/… D 0, QmjbB.�/ commutes with both … and
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I �…, and rsp.Q
mjbB.�/.I �…// < 1, i.e.

rsp.Q
m
jbB.�/ �Q

m
jbB.�/…jbB.�// < 1: (4.7)

Notice that condition (2) still holds for all k > N2. Indeed, (2) impliesQ.x; �/ is a positive
measure for every x 2 � (otherwise, if Q.x1; �/ D 0 for some x1, then QN2.x1; �/ D 0,
which contradicts assumption (2) in Theorem 4.1). Consequently, for any nonempty open
subset O of � and any x 2 � ,

Qk.x; O/ D

Z
�

QN2.y; O/Qk�N2.x; dy/ > 0:

By applying [61, Theorem 4.1.4 and the subsequent note]3 to QmjCb.�/ there are some
nonnegative ' 2 Cb.�/ (with ' ¤ 0) and some nonnegative  2 .Cb.�//� (with  ¤ 0)
such that

Qm' D ' and .Qm/� D  :

By [84, Proposition 4.3],  is a positive bounded measure � on � . We may assume that
� is a probability measure. We claim that � charges all nonempty open subsets O of � .
Indeed, as �Qm D .Qm/�� D �, one has

�.O/ D

Z
�

Qm.x; O/�.dx/ > 0

since Qm.x; O/ > 0 everywhere on � , proved before.
In the same way, for any x 2 � , since ' ¤ 0 is continuous,

'.x/ D Qm'.x/ D

Z
�

'.y/Qm.x; dy/ > 0;

i.e. ' is everywhere positive on � .
By considering '=�.'/ if necessary, we may assume without loss of generality that

�.'/ D 1.

Step 3: Proof that Ker.I �Qm/ \ Cb.�/ is one-dimensional, i.e., generated by '. Let
f 2 Ker.I �Qm/ \ Cb.�/, i.e. f 2 Cb.�/ and Qmf D f . Then Qmjf j � jf j. Since

�.Qm
jf j/ D �.jf j/;

and since the functionQmjf j � jf j is nonnegative and continuous over � , and � charges
all nonempty open subsets of � , one deduces thatQmjf j D jf j everywhere on � . In other
words, jf j 2 Ker.I �Qm/ \ Cb.�/, that is, Ker.I �Qm/ \ Cb.�/ is a lattice.

3Because 1D rsp.Q
mjCb.�/

/ is a pole of the resolvent ofQmjCb.�/
. Indeed, by Lemma 4.3 (b),

1D rsp.Q
mjbB.�//D rsp.Q

mjCb.�/
/. In addition, rsp.Q

mjCb.�/
/ 2 �.QmjCb.�/

/ (see [70, Chap-
ter V, Proposition 4.1]). Finally, 1 is a pole of the resolvent ofQmjCb.�/

because ress.Q
mjCb.�/

/D

ress.Q
mjbB.�// < rsp.Q

mjbB.�// D rsp.Q
mjCb.�/

/ D 1:
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If 0 ¤ f 2 Ker.I � Qm/ \ Cb.�/ were linearly independent of ', as f=' is not
constant, we could find c 2 R such that the open sets

OC D ¹f > c'º and O� WD ¹f < c'º

are both nonempty. Since .f � c'/C 2 Ker.I �Qm/, we obtain, for x 2 O�,

0 D .f � c'/C.x/ D

Z
�

.f � c'/C.y/Qm.x; dy/ > 0:

This contradiction shows that Ker.I �Qm/ \ Cb.�/ is generated by '.

Step 4: Proof that the algebraic multiplicity and the geometric multiplicity of 1 of the
eigenvalue QmjbB.�/ coincide. Let us prove that .QmjbB.�/ � I /… D 0. To this end,
consider the Laurent series of .�I �QmjbB.�//

�1 in a neighborhood of 1 in C,

.�I �Qm
jbB.�//

�1
D A�l .� � 1/

�l
C � � � C A�1.� � 1/

�1
C

1X
kD0

Ak.� � 1/
k ;

where (see (4.6))
A�1 D …

and A�k�1 D .QmjbB.�/ � I /
k… [85, Chapter VIII, Section 8]. Notice that … is a

bounded Feller kernel by Lemma 4.3 and its definition, and thus so are A�2; : : : ; A�l .
We must prove that l D 1. For any bounded measurable function f over � such that

jf j � c' for some c > 0, we have, for any � > 1,

j.� � 1/.�I �Qm
jbB.�//

�1f j D

ˇ̌̌̌
.� � 1/

1X
nD0

1

�nC1
Qmnf

ˇ̌̌̌
� .� � 1/

1X
nD0

1

�nC1
Qmn
jf j

� c.� � 1/

1X
nD0

1

�nC1
Qmn' D c';

i.e. ¹.� � 1/.�I �QmjbB.�//
�1f I � > 1º is uniformly bounded. Letting �! 1C, we

obtain A�kf D 0 for any k � 2. Because A�k is a bounded kernel and A�kf .x/ D 0 for
all x 2 � and such f , it follows that A�k D 0 for all k � 2.

Step 5: Proof of (4.3). By Lemma 4.3 (b) and (4.7),

rsp..Q
m
�Qm…/jCb.�// < 1:

Since Qm…jCb.�/ D …jCb.�/ by Step 4 (because A�2 D 0 implies that Qm…jbB.�/ D

…jbB.�/), one has rsp..Q
m �…/jCb.�/// < 1 and for all n � 1, QmnjCb.�/ �…jCb.�/ D

.Qm �…/njCb.�/. Therefore, by Gelfand’s formula, there exist C � 1 and r 2 � 0; 1Œ such
that

kQmn
�…kCb.�/ D k.Q

m
�…/nkCb.�/ � Cr

n; 8n � 1:

Thus … is a nonnegative (Feller) kernel and �… D �.
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As …jCb.�/ is a one-dimensional projection to ¹c'I c 2 Rº by Steps 3 and 4, there is
some  2 .Cb.�//� such that for any f 2 Cb.�/,

…f D  .f /':

Integrating it with respect to � and since �.'/ D 1, we obtain �.f / D  .f / for all
f 2 Cb.�/, i.e. …f D �.f /' for all f 2 Cb.�/ (and thus also for all f 2 bB.�/). In
other words,

….x; dy/ D '.x/�.dy/:

In addition, we have
kQmn

�…kbB.�/ � Cr
n; 8n � 1: (4.8)

because for a Feller kernel, such as Qmn � …, its norm on bB.�/ coincides with its
norm on Cb.�/. This implies in particular that Ker.I �QmjbB.�// D ¹c'I c 2 Rº and
Ker.I � .Qm/�jMb.�// D ¹c�I c 2 Rº.

Now for any eigenfunction f of Q in bB.�/ associated with 1, we have Qmf D f ,
so f D c'. Thus Q' D '. Thus Q… D … on bB.�/.

Finally, the desired geometric convergence (4.3) follows from (4.8), because for 0 �
k � m � 1,

kQmnCk
�…kbB.�/DkQ

k.Qmn
�…/kbB.�/ � max

k�m�1
kQk
kbB.�/ � kQ

mn
�…kbB.�/:

Step 6: Proofs of (a) and (b). By (4.3), if � 2 MbW.�/ is such that �Q D ��, and
�.'/ ¤ 0, we have

k�Qn
� �.'/�kTV D k�

n� � �.'/�kTV ! 0

as n!1. As �.'/ ¤ 0, � D 1 and � D �.'/ � �. That is part (a). In the same way we
get (b). This concludes the proof of Theorem 4.1.

5. Proof of Theorem 2.2

5.1. Preliminary results

Let us start with the following proposition.

Proposition 5.1. If a < f 2 De.L/ where a 2 Œ�1;C1Œ, then for any C2 concave
function ' W �a;C1Œ! R, we have ' ı f 2 De.L/ and

L' ı f � '0.f /Lf: (5.1)

Proof. For t � 0, let

Mt D f .Xt / � f .X0/ �

Z t

0

Lf .Xs/ ds;
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which is a local martingale. By Ito’s formula (Dellacherie–Meyer [28, p. 350, Théo-
rème 27]), ' ı f 2 De.L/ and

d' ı f .Xt / D '
0.f /.Xt�/ŒLf .Xt�/dt C dMt �C

1
2
'00.Xt�/d ŒMc ;Mc �t C dSt ;

where Mc is the continuous martingale part of M , and

St D
X
0<s�t

�
' ı f .Xs/ � ' ı f .Xs�/ � '

0.f /.Xs�/Œf .Xs/ � f .Xs�/�
�
:

As ' is concave, d' ı f .Xt / � '0.f /.Xt�/ŒLf .Xt /dt C dMt �. Thus (5.1) holds.

The following lemma establishes the strong Feller property of PD
t on D for t � t0.

Lemma 5.2. Under (C1) and (C4), PD
t is strongly Feller on D for all t � t0.

Proof. Let .xn/n�0 be a sequence of points in D converging to x 2 D . Let us prove that
PD
t f .xn/! PD

t f .x/ for any f 2 bB.D/ and t � t0 fixed. LetK D ¹x; xnI n � 0º. One
has

ˇ� .1KP
D
t / � ˇ� .1KPt / D 0

by the strong Feller property of .Pt ; t � 0/ on � (see (C1)). In other words, the family
¹PD

t .xn; �/I n � 0º is relatively compact in the � -topology. That is equivalent to saying
that ²

hn WD
dPD

t .xn; �/

dm
I n � 0

³
is relatively compact in the weak topology �.L1.m/; L1.m//, where m is the reference
measure given by

m.�/ D PD
t .x; �/C

1X
nD0

1

2n
PD
t .xn; �/:

By the well known equivalence of the relative compactness and the sequential compact-
ness in �.L1; L1/ (by the Dunford–Pettis theorem [27, Théorème 25, p. 43]), we have
only to prove that the limit point in the � -topology of PD

t .xn; �/ is unique and coincides
with PD

t .x; �/, i.e. if PD
t .xnk

; �/ ! � in the � -topology for a subsequence .nk/, then
� D PD

t .x; �/. By (C4), for any f 2 A we have

�.f / D lim
k!1

PD
t f .xnk

/ D PD
t f .x/:

By the measure-separability of A, � D PD
t .x; �/.

5.2. Proof of the main result

We will formulate a weaker version of Theorem 2.2.
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Theorem 5.3. Assume that (C1)–(C5) hold. Suppose moreover that for some p > 1 and
M > 0,

LWp
�MWp: (5.2)

Then all claims in Theorem 2.2 hold with W1=p replaced by W.

Admitting this result, we give the proof of Theorem 2.2.

Proof of Theorem 2.2. For any p > 1 fixed, by Proposition 5.1 and (C3) one has

LW1=p
�
1

p
W1=p�1LW � �

rn

p
W1=p

C
bn

p
1Kn

:

In other words, QW D W1=p satisfies (C3). Furthermore, for each n,

L QWp
D LW � bn1Kn

� bnW D bn QW
p: (5.3)

Thus applying Theorem 5.3 to QW, we obtain Theorem 2.2.

Let us now prove Theorem 5.3.

Proof of Theorem 5.3. The proof is divided into several steps.

Step 1: Proof that for any t > 0 fixed, PD
t satisfies assumptions (1)–(4) in Theorem 4.1

with � D D . First, reasoning as in (3.8) one deduces, using (5.2) together with the fact
that PD

t � Pt , that .PD
t Wp/.x/ � eMtW.x/p for all x 2 D . Thus PD

t satisfies assump-
tion (3) in Theorem 4.1. In addition (C5) implies that PD

t satisfies assumption (2). Recall
that

PD
t;W D

W.y/

W.x/
PD
t .x; dy/ �

W.y/

W.x/
Pt .x; dy/ D Pt;W.x; dy/

and PD
t;W also satisfies (A1) (by (3.12) and (3.13)). Then, by Theorem 3.4 and (3.12),

ress.P
D
t jbWB.D// D lim

n!1
Œˇw.P

D
nt;W/�

1=n
D 0:

Furthermore, by Lemma 5.2, PD
t is strongly Feller on D for all t � t0 (and thus in

particular PD
t satisfies assumption (1) in Theorem 4.1). This together with the topolog-

ical transitivity in (C5) implies that for any t > 0, PD
t is m1-irreducible, where m1 DR C1

t0
e�sPD

s .x1; �/ ds for some x1 2 D . Indeed, let A 2 B.D/ be such that m1.A/ > 0.

The function g1.x/ WD
R C1
t0

e�sPD
s .x; A/ ds is continuous (since PD

t is strongly Feller
on D for all t � t0) and positive at x1 (by choice of A). Then, by (C5), if Nt � t0 we
have

PD
Ntg1.x/ > 0; 8x 2 D :

By Nummelin [63, Theorem 3.2],

rsp.P
D
t jbWB.D// D lim

n!1

�
sup
x2D

ExŒW.Xnt /1nt<�D
�

W.x/

�1=n
> 0:

Thus, we have proved that PD
t satisfies assumption (4) in Theorem 4.1.



QSD for strongly Feller Markov processes by Lyapunov functions 23

Step 2. Let �D WD � log rsp.P
D
1 jbWB.D//. Applying Theorem 4.1 to Q D PD

1 on
bWB.D/, there is a unique couple .�D ; '/ where �D is a probability measure on D

with �D.W/ < C1, ' 2 CbW.�/ is positive everywhere on D , �D.'/ D 1 and

�DP
D
1 D e

��D�D ; PD
1 ' D e

��D';

and for all f 2 bWB.D/ and n � 1,

ken�DPD
n f � �D.f /'kbWB.D/ � Ce

�ın
kf kbWB.D/; (5.4)

where C � 1 and ı > 0 are independent of f and n. In addition, for any t > 0, since
.�DP

D
t /P

D
1 D .�DP

D
1 /P

D
t D e

��D�DP
D
t and Ker.e��D I � .PD

1 /
�/ in MbW.D/

is one-dimensional and �DP
D
t 2MbW.D/, one deduces that �DP

D
t D �.t/�D . By the

semigroup property, �.t C s/ D �.t/ � �.s/. As �.1/ D e��D , one obtains

�.t/ D e��D t ; t � 0:

By Theorem 4.1 (a),
rsp.P

D
t jbWB.D// D �.t/ D e

��D t :

Since
P�D

.t < �D/ D �DP
D
t 1 D e��D t�D.1/ D e

��D t ;

we have �D � 0 and

P�D
.Xt 2 � j t < �D/ D e

�D t�DP
D
t .�/ D �D ;

i.e. �D is a QSD.
Let us now prove the uniqueness of the QSD of .Xt ; t � 0/ in D in the set of measures

� such that �.W/ <C1. To this end, let us consider a QSD �D satisfying �D.W/ <C1.
Then for all t � 0,

�DP
D
t D �.t/�D ; �.t/ D P�D

.t < �D/:

By Theorem 4.1 (a), this implies that

�.t/ D rsp.P
D
t jbWB.D// D e

��D t and �D D �D ;

which concludes the proof of uniqueness.
Finally, for any t D nC s with s 2 Œ0; 1Œ, by (5.4) we have, for all f 2 bWB.D/,

ke.nCs/�DPD
nCsf � e

s�D�D.P
D
s f /'kbWB.D/ � Cr

nes�DkPD
s f kbWB.D/:

As es�D�D.P
D
s f / D �D.f / and sups2Œ0;1� kP

D
s kbWB.D/ � sups2Œ0;1� kPsWkbWB.D/

� eb1 (by the proof in Step 1 of Theorem 3.5 and (C3)), we obtain, for all f 2 bWB.D/,

ket�DPD
t f � �D.f /'kbWB.D/

� C 0e�ıtkf kbWB.D/; ı WD � log r; C 0 D Ceb1e�D : (5.5)
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Thus, for all f 2 bWB.D/ and all measures � 2MbW.D/,ˇ̌
E� Œf .Xt / j t < �D � � �D.f /

ˇ̌
D

ˇ̌̌̌
e�D t�.PD

t f /

e�D t�.PD
t 1/

� �D.f /

ˇ̌̌̌
D

ˇ̌̌̌
�D.f /�.'/CO1.e

�ıt /�.W/kf kbWB.D/

�.'/CO2.e�ıt /�.W/kf kbWB.D/

��D.f /

ˇ̌̌̌
D

ˇ̌̌̌
�D.f /CO1.e

�ıt / �.W/
�.'/
kf kbWB.D/

1CO2.e�ıt /
�.W/
�.'/
kf kbWB.D/

� �D.f /

ˇ̌̌̌
� O3.t/

�.W/

�.'/
kf kbWB.D/;

where for all k D 1; 2; 3 and all t � 0, jOk.t/j � Ce�ıt for some constant C independent
of � and f . That yieldsˇ̌

E� Œf .Xt / j t < �D � � �D.f /
ˇ̌
� Ce�ıt

�.W/

�.'/
kf kbWB.D/; 8f 2 bWB.D/; t > 0:

Step 3: Conclusion of the proof. We have proved that �D 2 Œ0;C1/. Let us now prove
that �D > 0. If �D D 0, then for all t � 0, �D.P

D
t 1/ D �D.1/ D 1. This implies that

PD
t 1.x/ D 1 for all x 2 D and t > 0, due to the fact that the function 1 � PD

t 1 is non-
negative and continuous over D (by the Feller property of PD

t ) and that �D charges
all nonempty open subsets of D . That contradicts the second assumption in (C5). Thus
�D > 0.

Now for every x 2 D , by (5.5) with f D 1,

Px.�D D C1/ D lim
t!C1

e��D te�D tPx.t < �D/ D 0 � '.x/�D.1/ D 0:

Next P�D
.t < �D/D �D.P

D
t 1/D e��D t . It remains to prove the independence ofX�D

and �D , under P�D
. For any f 2 bB.@D/, letting

u.x/ D ExŒf .X�D
/� for x 2 D ,

by the strong Markov property we have

E�D
Œf .X�D

/1t<�D
� D �D.P

D
t u/ D e

��D t�D.u/ D e
��D tE�D

Œf .X�D
/�; t � 0;

which is the desired independence. This concludes the proof of Theorem 5.3.

Remark 5.4 (On Step 3 in the proof of Theorem 5.3). To prove that �D > 0, it is also
possible to use the standard result [60, Proposition 2]. In addition, it is also standard that
X�D

and �D are P�D
-independent as long as �D is a QSD [60, Proposition 2].

6. Application to hypoelliptic damped Hamiltonian systems

In this section, we apply Theorem 2.2 to hypoelliptic damped Hamiltonian systems on
R2d (see (6.1)) when D D O � Rd (O � Rd , see more precisely (6.25)). To this end,
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we first define the setting we consider, and then we check that the assumptions required
to apply Theorem 2.2 are satisfied for such processes (namely (C1)–(C5)): these are the
purposes of Sections 6.1 and 6.2 respectively. Finally, in Section 6.3, we state the main
result of this section, which is Theorem 6.9.

6.1. Framework and assumptions

Let d � 1. Let .�;F ; .Ft /t�0; P / be a filtered probability space. Let .Xt D .xt ; vt /;

t � 0/ be the solution of the following hypoelliptic stochastic differential equation on R2d :´
dxt D vtdt;

dvt D �rV.xt /dt � c.xt ; vt /vtdt C†.xt ; vt /dBt ;
(6.1)

where .Bt ; t � 0/ is a standard d -dimensional Brownian motion on .�;F ; .Ft /t�0;P /.
Here the state space is � D R2d . Equation (6.1) describes a system of N particles (in this
case d D 3N) moving under interaction forces which are subject to random collisions. The
function c is the damping (or friction) coefficient and V is the particle interaction potential
function. We refer for instance to [59, 75, 83], and to the review of the literature [56] for
the study of such processes in R2d . Let us define the following assumptions on V and c:

(Av1) V W Rd ! R is C1 and lower bounded on Rd .

(Ac1) c W R2d ! Rd�d is continuous. In addition, there exist � > 0 and L > 0 such that

8v 2 Rd ; jxj � L; 1
2
Œc.x; v/C cT .x; v/� � �IRd ;

and for all N > 0,
sup

jxj�N;v2Rd

kc.x; v/kHS < C1;

where k � kHS is the Hilbert–Schmidt norm of a matrix and cT is the transpose of c.

(A†) † W R2d ! R is a C1 function, uniformly Lipschitz over R2d , and such that for
some †0 > 0 and †1 > 0,

8x 2 R2d ; †0 � †.x/ � †1:

For some results below, (Ac1) can be replaced by a less stringent assumption:

(Ac0) c W R2d ! Rd�d is continuous and

9A � 0; 8x; v 2 Rd ; 1
2
Œc.x; v/C cT .x; v/� � �AIRd :

This will allow us to consider in particular hypoelliptic damped Hamiltonian systems with
unbounded v-dependent damping coefficient:

9`0 > 0; 8x; v 2 Rd ; c.x; v/ D jvj`0 ; (6.2)

and with fast growing potential, in the sense that there exist n0 > 2 and r0; r > 0 such that
for all jxj � r0,

V satisfies (Av1); r�1jxjn0 � V.x/ � r jxjn0 and r�1jxjn0 � x � rV.x/: (6.3)
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Notice that when (6.2) holds, assumption (Ac1) is not satisfied but (Ac0) is satisfied. The
condition that n0 > 2 is justified in Proposition 6.5 (2) below.

Remark 6.1. Condition (6.3) is satisfied for instance for a C1 function V over Rd which
equals a polynomial function with leading term ajxj2n, with n � 2 and a > 0, outside a
compact subset of Rd .

When V , c, and† satisfy respectively (Av1), (Ac0), and (A†), there is a unique weak
solution to (6.1) by [83, Lemma 1.1], which is thus a strong Markov process. We will thus
always assume at least (A†), (Av1) and (Ac0) in what follows.

For t � 0, we recall that .Pt ; t � 0/ denotes the semigroup of the process .Xt ; t � 0/,
that is,Pt .x;A/DPx.Xt 2A/, whereA2B.R2d / and xD .x;v/2R2d . In the following,
we denote by .X0t .x/; t � 0/ the process .Xt ; t � 0/ when X0 D x. Let us also denote by

L0 D
†.x; v/2

2
�v C v � rx � rV.x/:rv � c.x; v/v � rv (6.4)

the infinitesimal generator of the diffusion (6.1). Let us recall that De.L/ denotes the
extended domain of the generator of the semigroup .Pt ; t � 0/ of the process (6.1)
(see (2.4) for the definition).

Let us check that the assumptions required to apply Theorem 2.2 are satisfied for the
process (6.1) when D D O � Rd (O � Rd , see more precisely (6.25)), by prescribing
more assumptions on V , c, and `0 if necessary.

6.2. On assumptions (C1)–(C5)

6.2.1. On assumptions (C1) and (C2). One has the following result from [83].

Lemma 6.2. Assume that V , c, and † satisfy respectively (Av1), (Ac0), and (A†). Then
(C1) and (C2) are satisfied for the process (6.1).

Proof. Let us first prove that .Pt ; t � 0/ satisfies (C1). Introduce the process .X0t D
.x0t ; v

0
t /; t � 0/ solving (in the strong sense) the stochastic differential equation over R2d :´

dx0t D v
0
t dt;

dv0t D †.x
0
t ; v

0
t /dBt :

(6.5)

That is, .X0t ; t � 0/ is the process (6.1) when V D 0 and c D 0. Let .P 0t ; t � 0/
be the semigroup of process (6.5). Under (A†), for t > 0, P 0t has a smooth density
R2d 3 .x; y/ 7! p0t .x; y/ with respect to the Lebesgue measure dy by Hörmander’s the-
orem. Therefore, when .xn/n converges to x 2 R2d as n ! 1, p0t .xn; y/ ! p0t .x; y/.
Since for all n,

R
R2d p

0
t .xn; y/ dy D

R
R2d p

0
t .x; y/ dy D 1, it follows by Scheffé’s lemma

that p0t .xn; y/ ! p0t .x; y/ in L1.R2d ; dy/ as n ! 1. Hence for any f 2 bB.R2d /,
P 0t f .xn/ D

R
R2d f .y/p0t .x; y/ dy !

R
R2d f .y/p0t .x; y/ dy D P 0t f .x/. That is, P 0t is

strongly Feller for t > 0.
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When V and c satisfy (Av1) and (Ac0), using the same arguments as in the proof
of [83, Proposition 1.2] we deduce that, for t > 0, Pt is strongly Feller and thus satis-
fies (C1).

Moreover, for any T > 0, the mapping

R2d 3 x 7! Px.XŒ0;T � 2 �/ 2M1.C
0.Œ0; T �;R2d //

is continuous with respect to the weak convergence of measures on C0.Œ0; T �; R2d /
(equipped with the uniform convergence topology). Indeed, the weak solutions of (6.1)
with starting point xn converge to the solution of the martingale problem with starting
point x, as xn ! x 2 R2d , by the continuity of the coefficients in (6.1) and the unique-
ness of the weak solution of (6.1) (see [83, Lemma 1.1]). Thus (C2) is satisfied for the
process (6.1).

6.2.2. On assumption (C3). Let us define the following last assumptions on V and c.

(Av2) There exists a C1 function G W Rd ! Rd such that G and rG are bounded
over Rd , and

rV.x/ �G.x/!C1 as jxj ! C1:

(Ac2) There exists a C2 lower bounded function U W Rd ! R such that

sup
x;v2Rd

jcT .x; v/G.x/ � rU.x/j < C1:

Remark 6.3. Let us recall some examples of functions V and c satisfying (Av1), (Av2),
(Ac1), and (Ac2) (see [83, Remark 3.2]):

(1) If the damping coefficient c satisfies (Ac1) with

sup
x;v2Rd

kc.x; v/kHS < C1;

then (Ac2) is satisfied with U D 0.

(2) Assume that V satisfies (Av1).

(a) Assume that limjxj!C1
x�rV.x/
jxj

D C1. Then (Av2) is satisfied with

x 7! G.x/ D
x

jxj
.1 � �/;

where � W Rd ! R is C1, has compact support, and � D 1 in a neighborhood
of 0 in Rd . In particular, (Av2) and (Ac2) are satisfied when V W Rd ! R is a
C1 function such that rV.x/ � x � c0jxj2k (k 2 N�, c0 > 0) outside a compact
subset of Rd and c.x; v/D c1jxj2q (q 2N�, c1 > 0) on R2d (indeed, chooseG
as above and U.x/ D c1.1 � �/jxj2qC1=.2q C 1/).

(b) Assume that there exists r >0 such that ¹jxj>rº3x 7!eV .x/DrV.x/=jrV.x/j
is C1, bounded, and with bounded derivatives, and limjxj!C1 jrV.x/j D C1.
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Then (Av2) is satisfied with

x 7! G.x/ D eV .x/.1 � �/;

where � W Rd ! R is C1, has compact support, and � D 1 on B.0; r C 1/.

Notice that when d D 1, the three conditions limjxj!C1
x�rV.x/
jxj

D C1, (Ac2), and
limjxj!C1 jrV.x/j D C1 are equivalent (under (Av1)).

(3) When d D 1, the case when there exist c1; c2; w0 > 0 such that

8x; v 2 R; c.x; v/ D c1x
2
� c2 and V.x/ D 1

2
w20x

2; (6.6)

corresponds to the noisy Van Der Pol oscillator. Then (Av1), (Av2), (Ac1), and (Ac2)
are satisfied withG.x/D x.1��/=jxj, andU.x/D Œc1jxj3=3� c2jxj�.1��/, where
� W R! R is C1, has compact support, and � D 1 in a neighborhood of 0 (see [83,
Section 5.3]).

The Hamiltonian of the process (6.1) is, for x; v 2 Rd ,

H.x; v/ D V.x/C 1
2
jvj2:

Assume that (A†), (Av1), (Av2), (Ac1), and (Ac2) hold. Let us introduce, for .x;v/2R2d ,
the modified Hamiltonian [83, (3.3)]

F1.x; v/ D aH.x; v/C v � .b G.x/Crw.x//C b U.x/; (6.7)

whereG,U are as in (Av2) and (Ac2), a;b > 0, and w WRd !R is a compactly supported
C2 function. Define, for all x; v 2 Rd ,

W1.x; v/ D exp
h
F1.x; v/ � inf

R2d
F1
i
� 1: (6.8)

We now give a concrete upper bound on W1 which is useful to verify the integrability
condition in Theorem 2.2.

Lemma 6.4. Assume that V satisfies (Av1) and (Av2). Then limx!C1 V.x/DC1. Let
c be such that (Ac1) and (Ac2) hold with limjxj!C1 U.x/=V.x/ D 0. Then, for any
" > 0, there exists R > 0 such that if jxj C jvj � R, then W1.x; v/ � e

a.1C"/H.x;v/.

Proof. Let us prove that limx!C1 V.x/ D C1. Assume without loss of generality that
V � 0. Notice that (sinceG is bounded) there exists C > 0 such that 1=jGj � C over Rd .
In addition, in view of (Av2), there exists r0 > 0 such that jG.x/j > 0 for all jxj � r0. Let
R0 > r0 and C0 > 0 be such that rV.y/ �G.y/ � C0 for jyj � R0 (see (Av2)). Consider
for jxj > R0 the curve t .x/ solving Pt .x/D �G.t .x//=jG.t .x//j with 0.x/D x for
all t 2 Œ0; T0.x/�, where T0.x/ D inf ¹t � 0I t .x/ D R0º 2 R�C [ ¹C1º. Notice that
T0.x/ � jxj �R0. Consequently, if T0.x/ < C1 then

V.x/ �

Z T0.x/

0

rV.s.x// �G.s.x//

jG.s.x//j
ds � CC0.jxj �R0/:
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The case T0.x/DC1 is not possible since it would imply that V.x/�CC0t for all t � 0.
Thus limx!C1 V.x/ D C1. The proof of the upper bound on W1 is a consequence of
the fact that, for any a; b > 0 fixed, v � .b G.x/C rw.x//C b U.x/ D o.aH.x; v// as
jxj C jvj ! C1.

Let us mention that because W1 2 C1;2.Rd �Rd / (i.e. W1 is C1 in the variable x and
C2 in v), we have W1 2 De.L/ and LW1 D L0W1 quasi-everywhere (see (2.4)).

Let us now check that (C3) is satisfied for .Pt ; t � 0/ under the above assumptions
on V and c. This is the purpose of the next proposition.

Proposition 6.5. Assume that † satisfies (A†).

(1) Assume that the functions V and c satisfy (Av1), (Av2), (Ac1), and (Ac2). Then, for a
suitable function w 2 C 2c .R

d ;R/, and some constants a; b > 0 .see [83, (3.4)–(3.9)]
for explicit conditions/, assumption (C3) is satisfied for the process (6.1) with the
function W1 defined in (6.8).

(2) Assume that c and V satisfy respectively (6.2) and (6.3). Then assumption (C3) is
satisfied for the process (6.1) if

`0 < n0 � 2 (6.9)

with the continuous bounded Lyapunov function W2 W R2d ! R defined in (6.12)
below.

Let us mention that W1 (see (6.8)) and W2 (see (6.12)) in Proposition 6.5 are not
unique by construction (see indeed [83, (3.4)–(3.9)] and the proof of Proposition 6.5 (2)
below). Moreover, W1 is not bounded over R2d . Concerning Proposition 6.5 (1), we also
refer to [83, Section 5] for other Lyapunov functions in explicit examples like the noisy
Van Der Pol oscillator.

Proof of Proposition 6.5. Item (1) is proved in [83, Section 3] (see more precisely (3.9)
there). To prove (2), assume that c and V satisfy respectively (6.2) and (6.3). Recall that
the Hamiltonian of (6.1) is

R2d 3 .x; v/ 7! jvj2=2C V.x/:

The infinitesimal generator of the process (6.1) is in this case (see (6.2)–(6.4))

L0 D
†.x; v/2

2
�v C v � rx � ŒrV.x/C jvj

`0v� � rv:

Let us construct a Lyapunov function for such a process. To avoid any problem of regu-
larity at 0 in the upcoming computations, let us actually consider

R2d 3 .x; v/ 7! H2.x; v/ D jvj
2=2C V.x/C k0;

where k0 > 0 is such that V.x/C k0 � 1 for all x 2 Rd (see (6.3)). Let

a; ˛; b; ˇ > 0:
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Assume that (recall n0 > 2)

0 < ˇ � ˛ �
1

2
�
1

n0
; (6.10)

so that the function

R2d 3 .x; v/ 7! F2.x; v/ D �aH2.x; v/
�˛
C b x � v H2.x; v/

ˇ�˛�1

is bounded. Indeed, aH�˛2 is a bounded function over R2d . For the other term, set � D
ˇ � ˛, and use Young’s inequality with q D 2.1 � �/ > 1 (� < 1=2, see (6.10)) and
p D q=.q � 1/ D 2.1 � �/=.1 � 2�/ to get

jx � vj

H2.x; v/1��
�

xp

pH2.x; v/1��
C

vq

qH2.x; v/1��
: (6.11)

The function .x;v/ 7! jx � vjH2.x;v/��1 is thus bounded if p � n0.1� �/ (see (6.3)), that
is, 2.1� �/=.1� 2�/ � n0.1� �/, which reads 2 � n0 � 2�n0, which is precisely (6.10).
Then the function

R2d 3 .x; v/ 7! W2.x; v/ D exp
h
F2.x; v/ � inf

R2d
F2
i

(6.12)

belongs to C1;2.Rd �Rd / (thus W2 2 De.L/). For ease of notation, in the following, we
will simply denote F2 (resp. H2, W2) by F (resp. H, W). We have @xW

W DrxF, @xW
W DrxF,

and �vW
W D �vFC jrvFj2. Thus

L0W

W
D
1

2
†2�vFC

1

2
†2jrvFj2 C v � rxF � ŒrV C jvj`0v�rvF; (6.13)

where we recall that † W R2d ! R is smooth and bounded, by assumption. We have

rxF D a˛rV H�˛�1 C bvHˇ�˛�1 � b.˛ C 1 � ˇ/x � vrV Hˇ�˛�2;

rvF D a˛vH�˛�1 C bxHˇ�˛�1 � b.˛ C 1 � ˇ/x � v vHˇ�˛�2:

Therefore,

v � rxF � ŒrV C jvjlv�rvF D H�˛�1Œ�a˛jvj`0C2 C bjvj2Hˇ � bx � rV Hˇ

� bjvj`0x � vHˇ C b.˛ C 1 � ˇ/x � vjvj`0C2Hˇ�1�: (6.14)

Moreover,

�vF D a˛H�˛�1 � a˛jvj2.˛ C 1/H�˛�2 C b.ˇ � ˛ � 1/x � v Hˇ�˛�2

� .d C 1/b.˛ C 1 � ˇ/x � vHˇ�˛�2 � b.˛ C 1 � ˇ/.ˇ � ˛ � 2/x � vjvj2Hˇ�˛�3:

The functions .x; v/ 7! a˛H�˛�1 and .x; v/ 7! jvj2H�˛�2 are clearly bounded over R2d .
In addition, since H�1 is bounded over R2d , there exists C > 0 such that

jx � vjHˇ�˛�2 � C jx � vjHˇ�˛�1 D C jx � vjH��1;
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and from the analysis in (6.11) above (see (6.10) and recall that � D ˇ � ˛), .x; v/ 7!
jx � vjHˇ�˛�2 is bounded over R2d . Finally, .x; v/ 7! jx � vj jvj2jHˇ�˛�3 is also bounded
over R2d since (see also (6.11) and (6.10)) jx � vj jvj2Hˇ�˛�3 D jx � vjH��1 � jvj2H�2.
Consequently,

†2�vF is bounded over R2d :

Similarly, the functions jvjH�˛�1, jxjHˇ�˛�1 D jxjH��1 (recall that � < .n0 � 1/=n0
so that n0.1 � �/ > 1, see (6.10)), and jx � vj jvj jHˇ�˛�2 D jx � vjH��1 � jvjH�1 are
bounded, one then deduces that

†2jrvFj2 is bounded over R2d :

Consequently, from (6.13) and (6.14), for some C > 0 independent of x and v,

L0W

W
� C C H�˛�1Œ�a˛jvj`0C2 C bjvj2Hˇ � bx � rV Hˇ

� bjvj`0x � vHˇ C b.˛ C 1 � ˇ/x � vjvj`0C2Hˇ�1�: (6.15)

Let us now give a lower bound on the term inside the bracket in (6.15), which we
denote by M. Let us assume that

ˇ < 1:

Then 2ˇ�1.sˇ C tˇ / � .s C t /ˇ � sˇ C tˇ for all s; t � 0. There exists r1 > 0 such that
for all x; v 2 R,

2ˇ�1V0.x/
ˇ
C
v2ˇ

2
� H.x; v/ˇ � V0.x/

ˇ
C
v2ˇ

2ˇ
;

where for all x 2 Rd we set
V0.x/ D V.x/C k0;

which satisfies (see (6.3)), for some r; C > 0 and all jxj > r ,

C�1jxjn0 � V0.x/ � C jxj
n0 and C�1jxjn0 � x � rV0.x/: (6.16)

Therefore, since b.˛ C 1 � ˇ/ > 0,

M � �a˛jvj`0C2 C bjvj2V
ˇ
0 C

b

2ˇ
jvj2C2ˇ � 2ˇ�1bjx � rV0jV

ˇ
0 �

b

2
jx � rV0j jvj

2ˇ

C 1x�v�0bjxjV
ˇ
0 jvj

`0C1 C
1x�v�0
2ˇ

bjxj jvj`0C1C2ˇ

C 1x�v�0b.˛ C 1 � ˇ/
jxjV

ˇ
0 jvj

`0C3

V0 C jvj2=2
C

1x�v�0
2ˇ

b.˛ C 1 � ˇ/
jxj jvj3C`0C2ˇ

V0 C jvj2=2
:

(6.17)

Let us now find conditions such that �a˛jvj`0C2 and �2ˇ�1bx � rV0 V
ˇ
0 are dominant

on the right hand side of (6.17). From (6.16), for jxj � r ,

C�1jxjn0Cn0ˇ � jx � rV0.x/jV0.x/
ˇ
D V0.x/

ˇx � rV0.x/ (6.18)
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for some C > 0 independent of x. Assume that

ˇ < `0=2; (6.19)

so that jvj2C2ˇ D o.jvj`0C2/ as jvj ! C1. In addition, for 0 < " < �0, using Young’s
inequality with p" D .`0 C 2 � "/=2 > 1 and q" D p"=.p" � 1/ D 1C 2=.`0 � "/, we
obtain

jvj2V
ˇ
0 � p

�1
" jvj

`0C2�" C q�1" V
ˇ.1C2=.`0�"//
0 :

From (6.19), for " > 0 small enough, ˇ < .`0 � "/=2 and thus n0ˇ.1C 2=.`0 � "// <
n0ˇC n0. Thus, for such " > 0, jvj`0C2�"D o.jvj`0C2/ as jvj!C1 and V ˇ.1C2=.`0�"//

0

D o.jxjn0Cˇn0/ ! C1 as jxj ! C1 (see (6.16)). For " � 1, using again Young’s
inequality with p" D .`0 C 2 � "/=.`0 C 1/ D 1 C .1 � "/=.`0 C 1/ > 1 and q" D
p"=.p" � 1/ D .`0 C 2 � "/=.1 � "/ D 1C .`0 C 1/=.1 � "/ we get

jvj`0C1jxjV
ˇ
0 � p

�1
" jvj

`0C2�" C q�1" jxjV
ˇŒ1C.`0C1/=.1�"/�
0 :

Let us check that .1 C n0ˇ/Œ1 C .`0 C 1/=.1 � "/� < n0ˇ C n0. This is equivalent to
n0ˇ < .n0 � 1/.1� "/=.`0C 1/� 1. Notice that from (6.9) we have .n0 � 1/=.`0C 1/ > 1
and thus .n0 � 1/.1 � "/=.`0 C 1/ > 1 for " > 0 small enough. Then, assume that

n0ˇ < .n0 � 1/=.`0 C 1/ � 1; (6.20)

so that, for " > 0 small enough, jxjV ˇŒ1C.`0C1/=.1�"/�
0 D o.jxjn0Cn0ˇ /. Assume also that

ˇ < 1=2; (6.21)

so that, for " > 0 small enough, p" D .`0 C 2 � "/=.`0 C 1C 2ˇ/ > 1. Then

jxj jvj`0C1C2ˇ � p�1" jvj
`0C2�" C q�1" jxj

.`0C2�"/=.1�"�2ˇ/:

Assume that
`0 C 2 < .n0ˇ C n0/.1 � 2ˇ/;

which is satisfied if ˇ > 0 is small enough since `0 C 2 < n0 (see (6.9)). Then for
" > 0 small enough, .`0 C 2 � "/=.1 � " � 2ˇ/ < n0ˇ C n0 and jxj.`0C2�"/=.1�"�2ˇ/ D

o.jxjn0ˇCn0/.
Moreover, for ˇ > 0 small enough, we have n0=.1C n0ˇ/ > 1, and thus V0C v2=2�

C�1V
1=n0Cˇ
0 v3=2�2ˇ for some C > 0. Then, because jxjV �1=n0

0 is a bounded function
(see (6.16)), for some M > 0 independent of x and v we have

jxj1Cn0ˇ jvj`0C3

V0 C v2=2
�M jvj`0C3=2C2ˇ : (6.22)

If ˇ < 1=4, then the left hand side of (6.22) is o.jvj`0C2/ as jvj ! C1. Finally, since
V0 C jvj

2=2 � C�1V
1=n0

0 jvj2.n0�1/=n0 , for some M > 0 independent of x and v we have

jxj jvj`0C3C2ˇ

V0 C v2=2
�M jvj`0C1C2ˇC2=n0 :
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Taking ˇ > 0 such that 2ˇC 2=n0 < 1 (this is possible because 2=n0 < 1 by assumption),
the left hand side of the previous inequality is o.jvj`0C2/ as jvj ! C1. In conclusion,
all the previous estimates together with (6.18) imply that there exists � (depending on `0
and n0) such that if

0 < ˇ < �, (6.23)

then (recalling also that 0 < ˛ < ˇ and � � `0, see (6.10) and (6.19)), there exists C > 0

and a continuous function Rd 3 .x; v/ 7! K.x; v/ such that (see (6.15))

L0W

W
� C � K.x; v/; (6.24)

with K.x; v/!C1 if jxj C jvj ! C1. This ends the proof of Proposition 6.5.

Let now O be a nonempty subdomain of Rd (not necessarily bounded), that is, O is
a connected open subset of Rd . As explained in the introduction, we are interested, for
applications in statistical physics, in the existence of quasi-stationary distributions for the
processes (6.1) in

D D O �Rd : (6.25)

Of course, other domains might be considered with our techniques. Recall that �D
(see (2.1)) is the first exit time from D for the process (6.1):

�D.x/ D inf ¹t � 0I Xt .x/ … Dº

D inf ¹t � 0I xt .x/ … Oº; (6.26)

where we recall that .Xt .x/; t � 0/ stands for the process .Xt ; t � 0/whenX0D x2R2d .
Let us now check the other assumptions on .PD

t ; t � 0/ (the semigroup of the pro-
cess (6.1) killed when exiting D , see (2.2) and (6.26)) needed to apply Theorem 2.2.

6.2.3. The semigroup .PD
t ; t � 0/ is topologically irreducible.

Lemma 6.6. Assume that V , c and † satisfy (Av1), (Ac0), and (A†). Then .PD
t ; t � 0/

is topologically irreducible. If the open set Rd n xO is not empty, then for all x 2 D and
t > 0,

Px.�D < t/ > 0;

which implies in particular that Px.�D < C1/ > 0 .thus (C5) is satisfied for the pro-
cess (6.1) when D D O �Rd /.

Proof. We will apply the Stroock–Varadhan support theorem.

Step 1: The case when V D 0 and c D 0. Recall that the process .X0t D .x
0
t ; v

0
t /; t � 0/

is the solution (in the strong sense) to the stochastic differential equation (6.5). Denote
by .X0t .x/; t � 0/ the process .X0t ; t � 0/ when X00 D x. Let .PD;0

t ; t � 0/ denote the
semigroup of the process (6.5) killed when exiting D . Denote by �0

D
the first time the

process .X0t D .x
0
t ; v

0
t /; t � 0/ exits D (see (6.26)). The stochastic differential equation
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(6.5) in the Stratonovich form reads´
dx0t D v

0
t dt;

dv0t D �
1
2
†.x0t ; v

0
t /rv†.x

0
t ; v

0
t /C†.x

0
t ; v

0
t / ı dBt :

Let O1 be a nonempty open subset of O and O2 be a nonempty open subset of Rd .
Consider x0 D .x0; v0/ 2D and x1 D .x1; v1/ 2 O1 �O2. Let t > 0 and  W Œ0; t �! O be
a C1 and piecewise C2 curve such that .0/ D x0, P.0/ D v0, .t/ D x1, and P.t/ D v1.
The construction of such a  can be done by a local cubic interpolation in time as for
instance in [54, Lemma 4.2]. For s 2 Œ0; t �, set

Y.s/ D

�
Y1.s/
Y2.s/

�
where Y1.s/ D .s/ and Y2.s/ D P.s/:

Then, define the piecewise continuous function h W Œ0; t �! Rd by

h.s/ D
1

†..s/; P.s//

�
R.s/C 1

2
†..s/; P.s//rv†..s/; P.s//

�
; s 2 Œ0; t �:

Clearly, h 2 L2.Œ0; t �;Rd /, Y.0/ D x0, and for all s 2 Œ0; t �,´
PY1.s/ D Y2.s/;

PY2.s/ D �
1
2
†.Y1.s/;Y2.s//rv†.Y1.s/;Y2.s//C†.Y1.s/;Y2.s// h.s/:

By the Stroock–Varadhan support theorem [73] (see also [10, Theorem 4]), for all " > 0
and t > 0,

Px0

�
sup
s2Œ0;t�

jX0s � Y.s/j < "
�
> 0:

Since for all s 2 Œ0; t �, Y.s/ D .T .s/; PT .s//T 2 O �Rd D D and O is open, for " > 0
small enough, if sups2Œ0;t� jX

0
s � Y.s/j < ", then X0s D .xs; vs/ 2 D for all s 2 Œ0; t �

(in particular t < �0
D

by continuity of the trajectories), and xt 2 B.x1; 2"/ � O1 and
vt 2 B.v1; 2"/ � O2. Thus

P
D;0
t .x0;O1 �O2/ D Px0

.X0t 2 O1 �O2; t < �
0
D/ � Px0

�
sup
s2Œ0;t�

jX0s � Y.s/j < "
�
> 0;

which is precisely the topological irreducibility of .PD;0
t ; t � 0/. If the open set Rd n xO

is not empty, then choosing O1 such that O1 � Rd n xO, one deduces with the same argu-
ments as above4 that for all x0 2 D and t > 0,

Px0
.�0D < C1/ � Px0

.�0D < t/ � Px0
.X0t 2 O1 �Rd / > 0:

Step 2: The case when V ¤ 0 and c ¤ 0. Let us now turn to the case when V ¤ 0 and
c ¤ 0. Pick f 2 bB.D/. Since V and c satisfy (Av1) and (Ac0), from [83, Lemma 1.1

4In this case, let  W Œ0; t �! Rd be a smooth curve such that .0/D x0, P.0/D v0, .t/D x1,
and P.t/ D v1. Such a curve can be easily constructed by a (global) cubic interpolation in time.
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and remark on p. 7], for x 2 R2d and t > 0, the law of .Xs.x/; s 2 Œ0; t �/ is equivalent to
the law of .X0s .x/; s 2 Œ0; t �/. In particular, for all t > 0 and all x 2 D ,

Px.Xt 2 O1 �O2; t < �D/ > 0 if and only if Px.X
0
t 2 O1 �O2; t < �

0
D/ > 0;

and
Px.�D < t/ > 0 if and only if Px.�

0
D < t/ > 0:

This ends the proof of Lemma 6.6.

6.2.4. Weak Feller property of PD
t .

Proposition 6.7. Assume that V , c, and† satisfy respectively assumptions (Av1), (Ac0),
and (A†). Assume that O is a C2 subdomain of Rd such that Rd n xO is nonempty. Then,
for t > 0, PD

t is strongly Feller on D .and thus weakly Feller on D/. Thus, assumption
(C4) is satisfied for PD

t .

Proof. The proof is divided into several steps.

Step 1: Properties of the process .X0t ; t � 0/ .see (6.5)/.

Step 1a: Proof of (6.27). In this step, we prove that, for y D .xy; vy/ 2 @D , if

n.xy/ � vy � 0;

then almost surely, for all t > 0, there exists u 2 .0; t � such that

x0u.y/ 2 Rd n xO: (6.27)

This has been proved very recently in [54, Proposition 2.8 (i)] for the process (6.1) when
† is constant (that is, independent of x and v). The proof of (6.27) requires a further
analysis when † is not constant.

When vy � n.xy/ > 0, the proof of (6.27) is straightforward. Indeed, because @O is C2,
in a neighborhood U of xy 2 @O in Rd , O is given by ¹‰ < 0º for some C2 function
‰ W Rd ! R such that n.xy/ D r‰.xy/ and @O is given by ¹‰ D 0º. Then, for t � 0
(sufficiently small, say t � t�.y/, so that x0t .y/ 2 U for all t 2 Œ0; t�.y/�),

‰.x0t .y// D

Z t

0

r‰.x0s .y// � v
0
s .y/ ds:

In addition, since
r‰.x00.y// � v

0
0.y/ D vy � n.xy/ > 0

and because 0 � s 7! r‰.x0s .x// � v
0
s .x/ is continuous almost surely, one deduces that for

all t > 0 small enough,
‰.x0t .y// > 0;

which concludes the proof of (6.27) when vy � n.xy/ > 0.
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Let us now prove (6.27) when vy � n.xy/ D 0. One has, uniformly in x 2 U (recall that
r‰ is C1),

r‰.x/ D n.xy/CO.jx � xyj/;

so that, using in addition v0s .y/ � n.x
0
0.y// D vy � n.xy/ D 0, for t 2 Œ0; t�.y/� we have

‰.x0t .y// D

Z t

0

�
vy C

Z s

0

†..x0u.y/; v
0
u.y/// dBu

�
�
�
n.xy/CO.jx

0
s .y/ � xyj„ ƒ‚ …

Dj
R s

0 v
0
u.y/ duj

/
�
ds

D

Z t

0

Ms ds CO.t
2/ sup
s2Œ0;t�

jv0s .y/j
2; (6.28)

where we set

Ms D

Z s

0

†.x0u.y/; v
0
u.y// d!u for s � 0,

and where .!u; u� 0/ is a standard one-dimensional Brownian motion (!uDBu � n.xy/).
Thus, to prove (6.27), in view of the previous estimate we have to study the sign ofR t
0

Ms ds (for small t > 0). To this end, it is sufficient to show that

lim sup
t!0C

R t
0

Ms ds

L.T �1.t//
> 0 almost surely, (6.29)

where L.r/ D
p
2=3 r3=2

p
log log.1=r/ (for r > 0), and where for s � 0,

T .s/ D

Z s

0

†.x0u.y/; v
0
u.y//

2 du;

which is (almost surely) a strictly increasing and continuously differentiable function
RC ! RC with T .s/ � †20s ! C1 as s ! C1. Notice that because for all s � 0
we have †0s � T .s/ � †1s, it follows that for all u � 0,

†�11 u � T
�1.u/ � †�10 u:

Thus for some C > 0 we have, for t � 0 large enough,

C�1L.t/ � L.T �1.t// � CL.t/:

Consequently, t2=L.T �1.t//! 0 as t! 0 and so, in view of (6.28), (6.29) implies (6.27).
Thus, let us prove (6.29). By assumption on†, .Ms; s � 0/ is a continuous martingale

and ŒM�s D T .s/!C1 as s!C1. Then, using the Dambis–Dubins–Schwarz theorem,
there exists a standard one-dimensional Brownian motion .Vt ; t � 0/ such that for all
s � 0,

Ms D VŒM�s :

Since .T �1/0.u/ D 1=T 0.T �1.u// D †.x0
T�1.u/

; v0
T�1.u/

/�2, we haveZ t

0

Ms ds D

Z t

0

VT.s/ ds D
Z T�1.t/

0

Vu†.x0T�1.u/
.y/; v0

T�1.u/
.y//�2 du: (6.30)
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Then, setting � D T �1.t/ (t > 0), (6.29) is equivalent to

lim sup
�!0C

R �
0

Vu†.x0T�1.u/
.y/; v0

T�1.u/
.y//�2 du

L.�/
> 0 almost surely. (6.31)

Step 1b: Proof of (6.31). By assumption on † and since r†�2 D �2.r†/†�3, uni-
formly in x; z 2 R2d , one has

†.x/�2 D †.z/�2 CO.jx � zj/:

Thus, using also x0
T�1.u/

.y/ D xy C
R T�1.u/

0
v0s .y/ ds and T �1.u/ � T �1.t/ D � (for

0 � u � t ), one hasZ �

0

Vu†.X0T�1.u/
/�2 du D †.xy; vy/

�2

Z �

0

Vu du

CO

�Z �

0

jVujŒjx0T�1.u/
.y/ � xyj C jv

0
T�1.u/

� vyj� du

�
D †.xy; vy/

�2

Z �

0

Vu du

C sup
u2Œ0;��

jVujO
�Z �

0

jx0
T�1.u/

.y/ � xyj duC � sup
u2Œ0;��

jv0u.y/ � vyj

�
D †.xy; vy/

�2

Z �

0

Vu du

C sup
u2Œ0;��

jVujO
�Z �

0

u sup
u2Œ0;��

jv0u.y/j duC � sup
u2Œ0;��

jv0u.y/ � vyj

�
D †.xy; vy/

�2

Z �

0

Vu du

C sup
u2Œ0;��

jVuj
h

sup
u2Œ0;��

jv0u.y/jO.�
2/C sup

u2Œ0;��

jv0u.y/ � vyjO.�/
i
;

where we have used the fact that T �1.u/ � †�10 u. Using Watanabe’s law of the iterated
logarithm [82] for

R �
0

Vu du (see also [50, Theorem 1 (2)]), we see that

lim sup
�!0C

†.xy; vy/
�2
R �
0

Vu du
L.�/

D †.xy; vy/
�2 > 0 almost surely.

Khinchin’s law of the iterated logarithm for supu2Œ0;�� jVuj (see e.g. [41]) yields

lim sup
�!0C

supu2Œ0;�� jVuj

P.�/
D 1 almost surely,

where P.�/ D
p
2�
p

log log.1=�/. Thus, since P.�/=L.�/ �
p
3=�, one has, almost

surely as � ! 0C,

� sup
u2Œ0;��

jv0u.y/ � vyj
supu2Œ0;�� jVuj

L.�/
D

supu2Œ0;�� jVuj

P.�/

�P.�/

L.�/
sup
u2Œ0;��

jv0u.y/ � vyj ! 0;
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because almost surely, supu2Œ0;�� jv
0
u.y/ � vyj ! 0 as � ! 0C. This concludes the proof

of (6.31) (with more precisely lim sup�!0C
R �
0

Vu†.X0T�1.u/
/�2 du=L.�/D†.xy; vy/

�2

almost surely), and thus of (6.29) and of (6.27).

Step 1c: Proof of (6.32). Let xn D .xn; vn/n be a sequence of elements of D such that
xn ! x D .x; v/ 2 D as n!1. Let us prove that for t > 0,

1t<�0
D
.xn/
! 1t<�0

D
.x/ in P -probability as n!1: (6.32)

First of all, recall that under (A†), for t > 0, P 0t has a density p0t over R2d with
respect to the Lebesgue measure. Then

Px.�D D t / � Px.x
0
t 2 @O/ D

Z
@O�Rd

p0t .x; x; v/ dx dv D 0; (6.33)

since @O has Lebesgue measure 0. Indeed, because @O is C1, for any x 2 @O there exists
"x > 0 such that the open subset @O\B.x; "x/ of @O has Lebesgue measure 0. Moreover
these open subsets of @O clearly cover @O and because @O is Lindelöf (due to the fact that
Rd is Lindelöf and @OD xO\ .Rd nO/ is closed), @O �

S
i2N B.xi ; "xi

/\ @O. Thus @O
has Lebesgue measure 0. This proves (6.33).

Let us turn to the proof of (6.32). For n � 0, denote dn.t/ D max ¹jX0s .xn/�X
0
s .x/jI

s 2 Œ0; t �º. Using [40, Lemma 3.3] (assumption (A) there is satisfied for the process (6.5),
see indeed (A†)), we have

lim
n!1

P .dn.t/ > r/ D 0 for any r > 0: (6.34)

Let ¹n0º � N be a subsequence. By (6.34), dn0.t/! 0 in P -probability as n0 !1, and
thus there exists a subsequence ¹n00º � ¹n0º such that

dn00.t/! 0 a.s. as n00 !1: (6.35)

Let us prove that
1t<�0

D
.xn00 /

! 1t<�0
D
.x/ a.s. as n00 !1: (6.36)

In view of (6.33), we only have to prove (6.36) on the events ¹t < �0
D
.x/º and ¹t > �0

D
.x/º.

On the event ¹t < �0
D
.x/º, x0s .x/ 2 O for all s 2 Œ0; t �. By (6.35) and since O is open,

there exists n000 such that for all n00 � n000, x0s .xn00/ 2 O for all s 2 Œ0; t �. Therefore, t <
�0

D
.xn00/ for all n00�n000. We have thus proved that on the event ¹t < �0

D
.x/º, 1t<�0

D
.xn00 /
!

1 D 1t<�0
D
.x/ as n00 !1.

Let us now prove (6.36) on the event ¹t > �0
D
.x/º. In this case, since x 2 D , it fol-

lows that n.x0
�0

D
.x/
/ � v0

�0
D
.x/
� 0 almost surely. Set ˛ D .t � �0

D
/=2 2 .0; t � �0

D
/. Then,

from (6.27), and by the strong Markov property of the process (6.1), there exists u 2 .0;˛�
such that x0

�0
D
.x/Cu

.x/ 2 Rd n xO. By (6.35) and since Rd n xO is open, there exists n000 such

that x0
�0

D
.x/Cu

.xn00/ 2 Rd n xO for all n00 � n000. Thus, by continuity of the trajectories of

the process (6.5), �0
D
.xn00/ < �0D.x/C u < t for all n00 � n000. We have proved that on the
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event ¹t > �0
D
.x/º, 1t<�0

D
.xn00 /

! 0 D 1t<�0
D
.x/ as n00 !1. This concludes the proof

of (6.36).
We now conclude the proof of (6.32). If (6.32) does not hold, there exist r;  > 0 and

¹n0º � N such that for all n0, P .j1t<�0
D
.xn0 /
� 1t<�0

D
.x/j > r/ >  . However, there exists

¹n00º � ¹n0º such that (6.36) holds, a contradiction. The proof of (6.32) is complete.

Step 2: End of the proof of Proposition 6.7. Pick a measurable and bounded function
f WD!R (i.e. f 2 bB.D/). Extend f by 0 outside D , so that f 2 bB.R2d /. From [83,
Lemma 1.1], it follows that for x 2 D and t > 0,

ExŒf .Xt /1t<�D
� D EŒf .X0t .x// 1t<�0

D
.x/ Mt .x/�;

where

Mt D exp
�
�

Z t

0

†.x0s ; v
0
s /
�1
�
c.x0s ; v

0
s /v

0
s CrV.x

0
s /
�
dBs

�
1

2

Z t

0

ˇ̌
†.x0s ; v

0
s /
�1Œc.x0s ; v

0
s /v

0
s CrV.x

0
s /�
ˇ̌2
ds

�
:

Let .xn/n be a sequence of elements of D such that xn ! x 2 D as n ! 1. Then,
from the proof of [83, Proposition 1.2], f .X0t .xn// ! f .X0t .x// in P -probability and
Mt .xn/! Mt .x/ in L1.�;P / as n!1. Then, using (6.32), in P -probability,

f .X0t .xn//1t<�0
D
.xn/
! 1t<�0

D
.x/f .X

0
t .x// as n!1:

Thus, Exn
Œf .Xt /1t<�D

�! ExŒf .Xt /1t<�D
� as n!1, that is, PD

t is strongly Feller
for t > 0. This ends the proof of Proposition 6.7.

Remark 6.8. If D D O � V, where V is a smooth bounded subdomain of Rd , we refer
to [13] for the strong Feller property of PD

t .

6.3. Quasi-stationary distributions for hypoelliptic damped Hamiltonian systems (6.1)

With all the previous results (Lemma 6.2, Proposition 6.5, Lemma 6.6, and Proposi-
tion 6.7), one deduces from Theorem 2.2 the following theorem on the existence and
uniqueness of a quasi-stationary distribution of a process (6.1) in D D O �Rd .

Theorem 6.9. Assume that † satisfies (A†). Let O be a C2 subdomain of Rd such that
Rd n xO is nonempty.

(1) Assume that the functions V and c satisfy (Av1), (Av2), (Ac1), and (Ac2). Then
there exist parameters w 2 C2c .R

d ;R/ and a; b > 0 .see [83, (3.4)–(3.9)] for explicit
conditions on w, a, and b/ such that Theorem 2.2 is valid for the process (6.1)
with D D O � Rd and with the Lyapunov function W1 defined in (6.8). We refer to
Remark 6.3 for concrete examples of functions V and c satisfying these assumptions,
and to Lemma 6.4 for an upper bound on W1.
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(2) Assume that the functions c and V satisfy respectively (6.2) and (6.3), and (6.9)
holds. Then Theorem 2.2 is valid for the process (6.1) with D D O�Rd and with the
bounded Lyapunov function W2 defined in (6.12). Let us emphasize that since W2 is
bounded .see Proposition 6.5 .2//, item (b) in Theorem 2.2 holds, and item (d) there
is satisfied for any initial distribution � in D .

In other words, if (A†) holds, when D D O � Rd (where O is as in Theorem 6.9),
there exists a unique QSD in D for the process (6.1) in:

(1) the space Mp D ¹� 2M1.D/I �.W1=p
1 / < C1º for all p > 1 when (Av1), (Av2),

(Ac1), and (Ac2) hold; in addition, in this case, (2.7) holds for all � 2Mp;

(2) the whole space M1.D/ of probability measures on D when (6.2), (6.3), and (6.9)
hold; moreover, in this case, (2.7) holds for all � 2M1.D/.
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