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Abstract. We consider the problem of counting the number of varieties in a family over Q with
a rational point. We obtain lower bounds for this counting problem for some families over P1,
even if the Hasse principle fails. We also obtain sharp results for some multinorm equations and for
specialisations of certain Brauer group elements on higher-dimensional projective spaces, where
we answer some cases of a question of Serre. Our techniques come from arithmetic geometry and
additive combinatorics.
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1. Introduction

1.1. Rational points in fibrations

Let V be a smooth projective variety over Q equipped with a dominant morphism � W

V ! Pn. In this paper we are interested in the function

N.�;B/ D #¹x 2 Pn.Q/ W H.x/ � B; x 2 �.V.Q//º (1.1)
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which counts the number of varieties in the family which have a rational point. Here H
denotes the usual naive height on projective space, defined via

H.x0 W � � � W xn/ D max ¹jx0j; : : : ; jxnjº;

whenever .x0; : : : ; xn/ is a primitive integer vector. Such counting functions have been
studied by numerous authors in recent times [2, 3, 29, 31, 40, 46]. In [31], upper bounds
were obtained for the closely related function

Nloc.�; B/ D #¹x 2 Pn.Q/ W H.x/ � B; x 2 �.V.AQ//º (1.2)

which counts the number of varieties in the family which are everywhere locally soluble.
(Here AQ denotes the adeles of Q.) These upper bounds take the shape

Nloc.�; B/�
BnC1

.logB/�.�/
(1.3)

for a certain factor�.�/. This generalised work of Serre [40], which applied to the special
case where the generic fibre of � is a conic.

Both Serre [40] and the authors of [31] asked whether this upper bound is sharp,
under the necessary assumption that the set being counted is non-empty. In fact, since the
singular locus forms a Zariski closed subset of Pn, for the bound (1.3) to be sharp there
must be a smooth fibre which is everywhere locally soluble.

In this paper we prove numerous results answering this in the affirmative. To state
our most general results, we require various conditions on the singular fibres of � in
terms of the Galois action on the irreducible components. This terminology (split/non-
split/pseudo-split/non-pseudo-split fibre), as well as the definition of �.�/, is recalled in
Section 1.7. Our first result is the following.

Theorem 1.1. Let V be a smooth projective variety over Q with a morphism � W V ! P1

whose generic fibre is geometrically integral. Assume that each fibre of � contains an
irreducible component of multiplicity 1 and that each non-pseudo-split fibre of � lies
over a rational point. Assume that there is a fibre of � over some rational point which is
smooth and everywhere locally soluble. Then

Nloc.�; B/ �
B2

.logB/�.�/
:

Note that we make no geometric assumptions on the smooth members of the family.
In this generality it is the first result of its kind in the literature which gives sharp lower
bounds when�.�/ > 0. The case�.�/D 0 is proved in [31, Theorem 1.3], and all other
results in the literature with �.�/ > 0 concern special classes of varieties, e.g. conics or
norm forms.

Let us give some special cases highlighting our result. If the smooth fibres of � satisfy
the Hasse principle (i.e. have a rational point as long as they have an adelic point), then
we deduce results about the counting function (1.1). As conics satisfy the Hasse principle,
this gives the following. (Note that for conic bundles, a fibre is pseudo-split if and only if
it is split.)
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Corollary 1.2. Let � W V ! P1 be a non-singular conic bundle all of whose non-split
fibres lie over rational points. Assume that there is a smooth fibre with a rational point.
Then

N.�;B/ �
B2

.logB/�.�/
:

This answers many new cases of Serre’s question posed in [40]. This result was previ-
ously only known when there are at most three non-split fibres, as a special case of [46].
As an explicit example, we have the following.

Example 1.3. Let a 2 Q� n Q�2, let L1; : : : ; Lr 2 ZŒt � be linear polynomials whose
homogenisations are pairwise linearly independent and let

W W x2 � ay2 D L1.t/ � � �Lr .t/z
2
� P2 �A1; (1.4)

equipped with the projection � W W ! A1. Assume that there is some t 2 Q with
L1.t/ � � �Lr .t/ ¤ 0 such that the conic in (1.4) has a rational point. Applying Corol-
lary 1.2 to a smooth compactification of W yields

N.�;B/ �

8<: B2

.logB/.rC1/=2
if r is odd;

B2

.logB/r=2
if r is even:

1.2. Multiple fibres

Theorem 1.1 contains the technical geometric assumption that each fibre of � contains an
irreducible component of multiplicity 1. It turns out that this assumption is necessary for
the conclusion to hold.

It was shown in [11] that as long as there are many double fibres, only finitely many
fibres have a rational point. It seems to have not been noticed before that the following
stronger result in fact holds.

Theorem 1.4. Let V be a smooth projective variety over a number field k equipped with
a morphism � W V ! P1 whose generic fibre is geometrically integral. Assume that � has
at least six double fibres over Nk. Then the set

¹x 2 P1.k/ W x 2 �.V.kv// for all v … Sº

is finite for any finite set S of places of k.

This shows there are only finitely many fibres which are everywhere locally soluble,
and hence the conclusion of Theorem 1.1 does not hold in this case.

1.3. Controlling failures of the Hasse principle

Theorem 1.1 counts the number of varieties in a family which are everywhere locally
soluble. This gives results for rational points in families if the fibres satisfy the Hasse
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principle. However, in general the Hasse principle can fail and it is a great challenge
to control failures of the Hasse principle in families. We are able to obtain results here
providing that the Brauer–Manin obstruction controls such failures.

Theorem 1.5. Let V be a smooth projective variety over Q equipped with a morphism
� W V ! P1 whose generic fibre is geometrically integral and rationally connected.
Assume that each non-split fibre of � lies over a rational point and that the Brauer–
Manin obstruction is the only one to the Hasse principle for the fibres of � . If V.Q/ ¤ ;
then

N.�;B/�
B2

.logB/!.�/
for some !.�/ > 0:

We prove this result by combining our techniques with the fibration method of Harpaz
and Wittenberg [25]. Theorem 1.5 and its proof may be viewed as a quantitative version
of the results from [25]. Recall that the Brauer–Manin obstruction is the only one to
the Hasse principle for torsors under tori [38]. In particular, Theorem 1.5 applies to the
following multinorm equations.

Corollary 1.6. Let E D E1 � � � � �Es be a product of number fields, let a1; : : : ; ar 2 N,
and let L1; : : : ; Lr 2 ZŒx1; : : : ; xn� be linear polynomials whose homogenisations are
pairwise linearly independent. Let V be a smooth projective compactification of the vari-
ety

W W NE=Q.t/ D L1.x/a1 � � �Lr .x/ar � AŒE WQ� �A1;

equipped with the projection � W V ! P1 coming from the x-coordinate. Assume that
V.Q/ ¤ ;. Then

N.�;B/�
B2

.logB/!.�/
for some !.�/ > 0:

Let us compare the assumptions in Theorems 1.1 and 1.5. Theorem 1.5 has the con-
dition that the generic fibre is rationally connected. We actually prove a more general
version (Theorem 5.1) which only poses cohomological conditions on the generic fibre;
but in this more general result one obviously also needs to stipulate that there is an irre-
ducible component of multiplicity 1 in each fibre, which is automatic for families of
rationally connected varieties [18].

One subtle difference is that Theorem 1.1 assumes that all non-pseudo-split fibres lie
over rational points, whereas Theorem 1.5 requires all non-split fibres to lie over rational
points. The latter condition is stronger in general.

Example 1.7. A difficult case, currently out of reach of [25], is

.x21 � ax
2
2/.y

2
1 � by

2
2/.z

2
1 � abz

2
2/ D f .t/;

where f is an irreducible polynomial of large degree and none of a; b; ab is a square in
the residue field of f . Here every fibre is pseudo-split, so that �.�/ D 0, and moreover
every rational fibre is even everywhere locally soluble [8, Proposition 5.1]. Despite this,
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the fibres can still fail the Hasse principle, and it is not known whether the Brauer–Manin
obstruction is the only one for the total space. This example is covered by Theorem 1.1
but not by Theorem 1.5.

Remark 1.8. The proof of Theorem 1.5 gives an explicit value for !.�/ (cf. Remark
5.2), which we doubt is sharp in general. Improving this would require significant new
ideas on the version of the fibration method developed in [25].

1.4. Frobenian multiplicative functions

We prove Theorem 1.1 by finding sufficient conditions for a fibre to be everywhere locally
soluble. These conditions allow us to reduce to studying the average orders of certain mul-
tiplicative functions evaluated at linear forms. The multiplicative functions which arise
this way are built out of data coming from the splitting behaviour of primes in number
fields and are closely related to Serre’s notion of frobenian functions [42, Section 3.3].

In this paper we introduce a class of multiplicative functions, called frobenian multi-
plicative functions, which includes the above. The divisor function, the (normalised) sums
of two squares function and the indicator function for sums of two squares are frobenian
multiplicative functions. Other examples are indicator functions for numbers all of whose
prime factors are congruent to a modulo q, for some fixed a; q, and the reduction mod-
ulo q of the nth coefficient of a Hecke eigenform [42, Section 3.4.3] (suitably considered
as a complex number). Definitions and further details on this class, including the defini-
tion of the mean value m.�/, can be found in Section 2, see specifically Definitions 2.1,
2.6, and 2.7. Our main analytic result concerning these is the following.

Theorem 1.9. Let �1; : : : ; �r be real-valued non-negative frobenian multiplicative func-
tions with m.�j / ¤ 0, and extend each function �j to all of Z by setting �j .�m/ D 0 for
allm � 0. Let L1.x0; : : : ; xn/; : : : ;Lr .x0; : : : ; xn/ 2 ZŒx0; : : : ; xn� be linear polynomials
whose non-constant parts are pairwise linearly independent. Let K � Œ�1; 1�nC1 be a
convex subset of positive measure and a 2 RnC1. Then there exists CK;�;L � 0 such that

X
x2.BKCa/\ZnC1

�1.L1.x// � � � �r .Lr .x// D .CK;�;L C o.1//B
nC1

rY
jD1

.logB/m.�j /�1

as B ! 1. Moreover, we have CK;�;L > 0 if and only if there exists x 2 ZnC1 with
�1.L1.x// � � � �r .Lr .x// > 0 and y 2 K with Lj .y/ > Lj .0/ for all 1 � j � r .

Remark 1.10. The first of the two conditions for positivity of CK;�;L is clearly necessary.
The second condition ensures that the linear parts of the polynomials Lj are simultane-
ously positive at some point in K, which is necessary in order for the polynomials Lj to
be simultaneously positive on a positive proportion of lattice points in BK C a for all
sufficiently large B .

The condition m.�/ ¤ 0 on the means is clearly necessary; this rules out trivial cases
such as the multiplicative function � with �.n/ D 1 if and only if n D 1.
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Remark 1.11. An explicit expression for the leading constant in Theorem 1.9 can be
found in Remark 3.12. It is given as an alternating sum of Euler products, which is impor-
tant for the following reason:

There can naturally be local obstructions to the positivity of this constant. E.g. if � is
a frobenian multiplicative function with �.2n/ D 0 then we have �.x/�.y/�.x C y/ D 0
for all integers x; y. Here there is an obstruction at 2.

But there can also be global obstructions to positivity of the leading constant, which
are not explained by any local obstructions. This is reflected in the fact that the leading
constant is not an Euler product in general. An explicit example of this kind can be found
in Remark 4.7. (This comes from a Brauer–Manin obstruction to the Hasse principle on
some auxiliary variety.)

The fact that the leading constant is not an Euler product means that we can obtain
asymptotic results even in situations when weak approximation fails, which is unusual for
this type of result.

Theorem 1.9 is proved using tools from additive combinatorics. In particular, we build
on new results about multiplicative functions from Matthiesen [33, 35]. Crucially, the
correct order lower bound in Theorem 1.1 as well as the asymptotic result in Theorem 1.9
require the full strength of these new results on multiplicative functions from [33, 35].
In particular, our results presented here are out of reach from the additive combinatorics
methods established or used in [4, 5, 21, 24, 25, 34].

1.5. Higher-dimensional bases

There are two main difficulties in generalising Theorem 1.1 to families of varieties
over Pn with n > 1. Firstly, Theorem 1.9 takes care of codimension 1 behaviour, but
in general there could be higher-codimension behaviour to deal with. To overcome this
one would need to combine our techniques with some suitable version of the sieve of
Ekedahl (see e.g. [14], [1, Section 3], [3, Section 3]). The second problem is that frobe-
nian multiplication functions are built out of data concerning number fields, whereas over
higher-dimensional bases one would also need to deal with finitely generated extensions
of Q.

We can overcome these problems in two cases: for Serre’s problem [40] regarding
specialisations of Brauer group elements and for certain multinorm equations.

1.5.1. Specialisations of Brauer group elements. Let U be a smooth variety over Q
equipped with a height functionH and let B �BrU be a finite subgroup. Then Serre [40]
proposed to study the zero-locus

U.Q/B D ¹x 2 U.Q/ W b.x/ D 0 2 Br Q 8b 2 Bº

of B, as well as the associated counting function

N.U;B; B/ D #¹x 2 U.Q/B W H.x/ � Bº:
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This problem may be interpreted more geometrically via families of Brauer–Severi vari-
eties (e.g. families of conics as we have already met in Section 1.1), but one obtains a
cleaner framework by working with Brauer group elements directly. Serre achieved upper
bounds for the counting problem in the special case where U � PnQ and jBj D 2, and
asked whether his bounds were sharp. (Serre’s upper bounds were subsequently gener-
alised in [31, Section 5.3] to arbitrary finite B � BrU ).

Here the first issue mentioned above, regarding higher-codimension behaviour, does
not occur as Grothendieck’s purity theorem implies that only codimension 1 is relevant.
The second issue, regarding finitely generated extensions of Q, disappears if one only
considers algebraic Brauer group elements, i.e. those Brauer group elements which trivi-
alise after a finite extension of Q.

Our result for Brauer groups is the following. (We recall in Section 5.1 various facts
about Brauer groups, including the residue map @D appearing in Theorem 1.12.)

Theorem 1.12. Let U � Pn be a Zariski open subset which is the complement of finitely
many hyperplanes. Let B � Br1 U be a finite subset such that U.Q/B ¤ ;. Then as
B !1 we have

N.U;B; B/ �
BnC1

.logB/�.B/
; where �.B/ D

X
D2.Pn/.1/

�
1 �

1

jh@DBij

�
:

Using the relationship between quaternion algebras and conics, Theorem 1.12 gives
the following result.

Corollary 1.13. Let � W V ! Pn be a non-singular conic bundle over Q with a smooth
fibre which contains a rational point. Assume that � admits a rational section over a finite
extension of Q and that � is smooth outside the complement of finitely many hyperplanes
in Pn. Then

N.�;B/ �
BnC1

.logB/�.�/
:

1.5.2. Multinorm equations. We are also able to overcome the issues in higher dimension
for some explicit families of multinorm equations.

Theorem 1.14. Let E D E1 � � � � �Es be a product of number fields, let a1; : : : ; ar 2N,
and let L1; : : : ; Lr 2 ZŒx1; : : : ; xn� be linear polynomials whose homogenisations are
pairwise linearly independent. Let V be a smooth projective model of the variety

W W NE=Q.t/ D L1.x/a1 � � �Lr .x/ar � AŒE WQ� �An; (1.5)

equipped with the projection � W V ! Pn coming from the x-coordinate. Assume that V
has a smooth fibre which is everywhere locally soluble. Then

Nloc.�; B/ �
BnC1

.logB/�.�/
:
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If E=Q satisfies the Hasse norm principle, then we obtain a result for rational points.
This holds for example if s D 1 and E1=Q is cyclic (Hasse norm theorem), or s D 2 and
the Galois closures ofE1 andE2 are linearly disjoint [36]; see also [13] for related results
and references. Taking E=Q a quadratic field extension, n D 1 and aj D 1, we recover
Example 1.3.

1.6. Methodology and structure of the paper

In Section 2 we study the basic properties of frobenian multiplicative functions. In Sec-
tion 3 we prove our main analytic result (Theorem 1.9) using tools from additive combi-
natorics, from which all other counting results in this paper will be derived.

Theorem 1.1 is proved in Section 4. The key new idea is to construct frobenian mul-
tiplicative functions which can be used to detect whether a fibre is everywhere locally
soluble. Such detectors have previously only been constructed for special classes of vari-
eties, e.g. families of conics. Once we have these functions, the result follows from a
suitable application of Theorem 1.9.

In Section 5 we prove Theorem 1.5. The proof is based on the proof of Theorem 1.1,
but much more subtleties arise coming from having to control the Brauer–Manin obstruc-
tion. We do this using ideas of Harpaz and Wittenberg [25].

In Section 6 we generalise our detector functions to pencils which may have non-split
fibres over non-rational points. This construction is not required for our proofs, but is
included to assist with future generalisations of our work.

The results concerning higher-dimensional bases are proved in Sections 7 and 8. We
finish in Section 9 with the proof of Theorem 1.4.

1.7. Notation and terminology

For an abelian group A and a prime `, we denote its `-primary torsion subgroup by A¹`º.
A variety is an integral separated finite type scheme over a field. For a point x of a

scheme X , we denote by �.x/ its residue field. All cohomology is taken with respect to
the étale topology.

We denote by Val.k/ the set of all non-archimedean places of a number field k. For a
prime p we denote by vp the associated p-adic valuation.

The notations O;�;� have their standard meaning in analytic number theory (Lan-
dau and Vinogradov notation, respectively). We write f � g if f � g and g � f .

Definition 1.15. Let k be a perfect field with algebraic closure Nk and X a finite type
scheme over k. The absolute Galois group Gal. Nk=k/ acts on the geometric irreducible
components of X , i.e. the irreducible components of X ˝k Nk. We say that X is split [45,
Definition 0.1] (resp. pseudo-split [30, Definition 1.3]) if Gal. Nk=k/ (resp. every element
of Gal. Nk=k/) fixes some geometric irreducible component of multiplicity 1.

Definition 1.16. Let � W V ! X be a dominant proper morphism of smooth irreducible
varieties over a perfect field k. For each point x 2 X , we choose some finite group �x
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through which the absolute Galois group Gal.�.x/=�.x// acts on the irreducible compo-
nents of ��1.x/�.x/ WD �

�1.x/˝�.x/ �.x/. We define

ıx.�/ D

#
²
 2 �x W

 fixes an irreducible component
of ��1.x/�.x/ of multiplicity 1

³
#�x

:

Let X .1/ denote the set of codimension 1 points of X . Then we let

�.�/ D
X

D2X.1/

.1 � ıD.�//:

2. Frobenian multiplicative functions

2.1. Frobenian functions

We begin by recalling some of the theory of frobenian functions, following Serre’s treat-
ment [42, Section 3.3].

Definition 2.1. Let � W Val.Q/! C be a function. We say that � is frobenian if there
exist

(a) a finite Galois extension K=Q, with Galois group �;

(b) a finite set S of primes containing all the primes ramifying in K;

(c) a class function ' W � ! C,

such that for all p 62 S we have

�.p/ D '.Frobp/;

where Frobp 2 � is the Frobenius element of p. We define the mean of � to be

m.�/ D
1

j�j

X
2�

'./:

In the definition, recall that a class function on a group � is a function which is con-
stant on the conjugacy classes of � . In particular '.Frobp/ is well-defined, despite Frobp
only being well-defined up to conjugacy.

A subset of Val.Q/ is called frobenian if its indicator function is frobenian. A basic
example of a frobenian set is the set of all primes which are completely split in a finite
extension L=Q.

Example 2.2. Let � W Z ! C� be a Dirichlet character modulo n. We claim that the
function p 7! �.p/ is frobenian. In the notation of Definition 2.1 one takes K D Q.�n/
and S D ¹p j nº, where �n is a primitive nth root of unity. The map  W .Z=nZ/� ! �

given by m 7! .�n 7! �mn / is an isomorphism, and we have  .p mod n/ D Frobp . We
then take ' D � ı  �1 and note that �.p/ D '.Frobp/ is thus frobenian.
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There is an alternative way to view frobenian functions which makes it easier to relate
different frobenian functions. Namely, letG D Gal. NQ=Q/ and consider a frobenian func-
tion � with associated class function ' W � ! C. Then we can write � D G=N for some
normal open subgroup N and view ' as an N -invariant class function on G. With this
perspective, we equip G and N with their Haar probability measures, so that the quotient
measure on � is also the Haar probability measure. Then the mean of � is easily seen to
be given by the formula

m.�/ D

Z
G

'.g/ dg: (2.1)

Using this one obtains the following.

Lemma 2.3. Let �1 and �2 be frobenian functions. Then �1 � �2 is also frobenian.

Proof. Consider the associated finite sets Si of primes and Ni -invariant class functions
'i WG DGal. NQ=Q/!C for i 2 ¹1;2º. Then '1'2 is .N1 \N2/-invariant and .�1�2/.p/
D .'1'2/.Frobp/ for all p 2 S1 [ S2, where Frobp denotes the Frobenius element of p
in G=.N1 \N2/.

Lemma 2.4. Let � be a frobenian function with m.�/ ¤ 0. Then as x !1:

.1/
X
p�x

�.p/ D m.�/ � Li.x/CO.x exp.�c
p

log x// for some c > 0;

where Li.x/ D
R1
2

dt= log t denotes the logarithmic integral;

.2/
X
p�x

�.p/

p
D m.�/ log log x C C� CO

�
1

log x

�
for some constant C�I

.3/
X
p�x

�.p/ logp D m.�/ � x CO.x exp.�c
p

log x// for some c > 0I

.4/
Y
p�x
j�.p/j<p

�
1C

�.p/

p

�
� C 0�.log x/m.�/ for some C 0� ¤ 0I

where C 0� is real and positive when � is real-valued.

Proof. The first part is Serre’s version of the Chebotarev density theorem [42, Theo-
rem 3.6]. The second and third parts follow from partial summation. The fourth part
follows from the second part on taking logs. Observe that the product in the fourth part
runs over all but finitely many primes since � is bounded.

2.1.1. Twisting by a Dirichlet character

Lemma 2.5. Let � be a frobenian function.

(1) Only finitely many primitive Dirichlet characters � satisfy m.��/ ¤ 0:

Assume that � is real-valued and non-negative and let � be a Dirichlet character.

(2) We have jm.��/j � m.�/:
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(3) The following are equivalent:

(a) jm.��/j D m.�/;

(b) m.��/ D m.�/;

(c) ��.p/ D �.p/ for all but finitely many primes p.

Proof. First note that �� is frobenian by Lemma 2.3. Let ' W � ! C be a choice of
class function associated to �, which we view as an N -invariant class function on G D
Gal. NQ=Q/ for some normal open subgroup N . Next, recall from class field theory that
primitive Dirichlet characters are in one-to-one correspondence with continuous homo-
morphisms G ! S1; namely the Artin map induces an isomorphism bZ� Š Gab, and
primitive Dirichlet characters are exactly the characters of bZ�. Let � W G ! S1 be such a
homomorphism, which by abuse of notation we identity with the corresponding primitive
Dirichlet character. First assume that � is non-trivial on N . Then by (2.1) we have

m.��/ D

Z
G

'.g/�.g/ dg D
1

j�j

X
2�

Z
N

'.n/�.n/ dn

D
1

j�j

X
2�

'./�./

Z
N

�.n/ dn D 0

where the last line is by character orthogonality and the fact that � is non-trivial on N . It
follows that if m.��/ ¤ 0 then � is trivial on N . But then � is just a character of � , of
which there are only finitely many. This proves (1).

For (2), note that ' is also real and non-negative. We thus have

jm.��/j D
1

j�j

ˇ̌̌X
2�

'./�./
ˇ̌̌
�

1

j�j

X
2�

'./ D m.�/; (2.2)

as required, on using j�j D 1. To prove (3), we use the following fact:

if z1; : : : ; zn 2 C and jz1j C � � � C jznj D z1 C � � � C zn, then zi D jzi j 8i . (2.3)

Assume (a) holds. Then by (a), j�j D 1, (2.2) and (2.3) we havem.��/2R>0, whence (b).
Assume (b), so that X

2�

'./ D
X
2�

'./�./:

As j'./�./j D './ for all  2 � , we deduce that './�./ D './ for all  , which
proves (c) as our functions are frobenian. Finally, (c) easily implies (b), which obviously
implies (a), as required.

2.2. Frobenian multiplicative functions

We now introduce the class of multiplicative functions that appear in the statement of
Theorem 1.9. Such multiplicative functions will play a prominent rôle throughout the
paper.
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Definition 2.6. Let " 2 .0; 1/ and let � WN! C be a multiplicative function. We say that
� is "-weak frobenian if

(1) the restriction of � to the set of primes is a frobenian function in the sense of Definition
2.1;

(2) j�.n/j �" n
" for all n 2 N;

(3) there exists H 2 N such that j�.pk/j � H k for all primes p and all k � 1.

We define the mean of � to be the mean of the corresponding frobenian function.

Definition 2.7. Let � W N ! C be a multiplicative function. We say that � is frobenian if
it is "-weak frobenian for all " 2 .0; 1/.

If �1 and �2 are ("-weak) frobenian multiplicative functions, then, by Lemma 2.3 and
Definition 2.6, so is �1�2. In particular, �� is a frobenian multiplicative function for a
Dirichlet character � and frobenian multiplicative function �.

Lemma 2.8. Let " 2 .0; 1/ and � be an "-weak frobenian multiplicative function. ThenX
n�x

�.n/ D c�x.log x/m.�/�1 CO.x.log x/m.�/�2/;

where

c� D
Y

p prime

�
1C

�.p/

p
C
�.p2/

p2
C : : :

��
1 �

1

p

�m.�/
:

If � is real-valued and non-negative with m.�/ ¤ 0, then c� is real and positive.

Proof. In view of Lemma 2.4 (3), this result follows immediately from [12, Theorem 1.2],
where A may be taken arbitrarily large, the value of � in that statement is given by m.�/,
r D H and max ¹1=2; "º < � < 1. For completeness, we show that the second condition
in [12, (1.11)] is indeed satisfied, that is,X

p

²
j�.p/j2

p2�
C

X
��2

j�.p�/j

p��

³
<1: (2.4)

For any fixed � � 2, part (3) of Definition 2.6 impliesX
p

j�.p�/jp��� � H �
X
p

p�2� <1

since � > 1=2, and the same estimate holds with j�.p�/j replaced by j�.p/j� . This esti-
mate holds in particular for 2 � � � 2=� . If � > 2=� , then part (3) of Definition 2.6
implies X

p>.2H/2=�

jf .p�/jp��� �
X

p>.2H/2=�

2��p���=2

� 2��..2H/2=� /���=2C1 � .4H/��
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and
P
�>2=� .4H/

�� <1. For the remaining sum over small primes, part (2) implies thatX
p�H2=�

X
��2

j�.p�/jp��� �
X

p�H2=�

X
��2

p.��C"/� <1;

since � > ". The fact that c� converges as well as the final part of our lemma follow from
(2.4) and Lemma 2.4.

We observe that under the additional assumption that j�j � �H , where �H denotes the
multiplicative function with Dirichlet series �H .s/, the conclusion of the lemma would
follow from [19, Theorem 1]. This would be sufficient for all later applications to ¹0; 1º-
valued frobenian multiplicative functions.

3. Frobenian multiplicative functions evaluated at linear polynomials

In this section we prove Theorem 1.9. The main technical tool upon which our proof relies
is a special case of the main result from [35], namely [35, Theorem 2.1]. The first two sub-
sections below contain the preparation for applying this tool. In the first subsection, we
describe a general class of multiplicative functions and verify that frobenian multiplica-
tive functions belong to that class. In the second subsection, we deduce a version of the
relevant result from [35] that is adjusted to our situation. Finally, the third subsection
contains the proof of Theorem 1.9.

3.1. Set-up and verification

Given any arithmetic function h W N ! C, x � 1 and q;A 2 Z, q 6D 0, we define

Sh.x/ D
1

x

X
1�n�x

h.n/; Sh.xI q;A/ D
q

x

X
1�n�x

n�A.modq/

h.n/

to be the average value of h up to x and the average value of h in the progression A
.mod q/ up to x, respectively. Moreover, for x > 1 and q 2 N, let

Eh.xI q/ D
1

log x
q

�.q/

Y
p�x;p−q

�
1C
jh.p/j

p

�
: (3.1)

The results from [35] apply to a general class F � of multiplicative functions which
contains the following class F as a subset.

Definition 3.1. Let F denote the class of multiplicative functions h W N ! C with the
properties:

(i) there exists a constantH 2N, depending on h, such that jh.pk/j �H k for all primes
p and all integers k � 1;

(ii) jh.n/j �";h n
" for all n 2 N and all " > 0;
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(iii) there exists a positive constant ˛h such that

1

x

X
p�x

jh.p/j logp � ˛h for all sufficiently large x;

(iv) h has a stable mean value in arithmetic progressions, for every constant C > 0, there
exists a function  C with  C .x/! 0 as x !1 such that the estimate

Sh.x
0
I q;A/ D Sh.xI q;A/CO. C .x/Eh.xI q//

holds for all x � 2 and x0 2 .x.log x/�C ; x/, and for all progressions A .mod q/
with gcd.q;A/D 1, where 1 < q � .logx/C and p jq for every prime p < log logx.

We note as an aside that if h W N! C is multiplicative and satisfies conditions (i) and
(ii) from above, then a special case of [43, Theorem 1] implies that, as x !1, we have
jSh.x; q;A/j � Sjhj.x; q;A/� Eh.xI q/ uniformly for all q < x3=4 and 0 < A < q such
that gcd.A; q/ D 1.

It is often easier to work with bounded multiplicative functions than with functions
from the general class F . Similarly, working with completely multiplicative functions
will often be easier than working with general multiplicative functions. To handle the
general case in our setting, we will make use of the following two tools that allow us to
reduce our case to either of the two easier settings:

In the setting of Definition 3.1, ‘bounded’ corresponds to the case where we may take
H D 1. In order to invoke, even when H > 1, results that a priori only apply to bounded
multiplicative functions, we follow [33] and associate to any given h 2 F withH > 1 the
bounded multiplicative function gh W N ! C whose values at prime powers are given by

gh.p
k/ D

´
h.p/=H if k D 1;

0 if k > 1:
(3.2)

If H D 1, we set gh D h. The function gh is defined in such a way that h can be decom-
posed as the convolution h D g

.�H/

h
� g0

h
of H copies of the bounded function gh and

one copy of a function g0
h

that is (away from 1) supported on square-full numbers only.
Observe that if h is frobenian, then so is gh.

The second tool addresses the problem that sieving becomes difficult when the func-
tion at hand is not completely multiplicative. Recall the notion of an "-weak frobenian
function from Definition 2.6.

Lemma 3.2. Let � be a frobenian multiplicative function, let H 2 N be such that .3/ of
Definition 2.6 holds, let q be a positive integer and let " 2 .0; 1/. If Q� is the multiplicative
function defined via

Q�.pk/ D

8̂̂<̂
:̂
0 if p j q and p � H 1=";

�.p/k if p j q and p > H 1=";

�.pk/ if p − q;
(3.3)

then Q� is "-weak frobenian and m.�/ D m. Q�/.
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Proof. Let ' be a class function for which �.p/ D '.Frobp/ for all primes outside some
set S of places. Enlarging S if necessary to include all primes p �H 1=", part (1) of Defi-
nition 2.6 holds for Q� with the same class function '. Next, note that j Q�.pk/j �H k � p"k

holds for all p j q by construction. For p − q we have j Q�.pk/j � p"k since � is frobe-
nian. Hence Q� is "-weak frobenian. Sincem.�/ only depends on the class function ' from
Definition 2.1, we have m. Q�/ D m.�/.

The rest of this subsection is devoted to proving the following proposition.

Proposition 3.3. If � is a real-valued non-negative frobenian multiplicative function with
m.�/ > 0, then � 2 F .

Conditions (i) and (ii) of Definition 3.1 are immediate as they are part of the defin-
ing properties of frobenian multiplicative functions. Condition (iii) holds for any ˛� D
m.�/ � ı with 0 < ı < m.�/, as follows from Lemma 2.4 (3) and the assumption that
m.�/ > 0. The main difficulty, thus, lies in establishing condition (iv), and we begin by
analysing the relevant mean values of frobenian multiplicative functions in progressions.

Lemma 3.4. Let � W N ! R�0 be a frobenian multiplicative function, let E� denote the
. finite/ set of primitive Dirichlet characters � for which m.��/ D m.�/, and let E�.q/

denote the set of characters modulo q that are induced by the primitive characters � 2 E�.
Let C > 1 be fixed and x > e be a parameter. Thenˇ̌̌̌

S�.X I q;A/ �
q

�.q/

X
�2E�.q/

�.A/
1

X

X
n�X

�.n/ N�.n/

ˇ̌̌̌
D ox!1.1/E�.xI q/

uniformly for all x1=2 � X � x, all moduli q � .log x/C such that p j q for all primes
p � log log x, and all A 2 .Z=qZ/�.

Proof. Recall that that E� is a finite set by Lemma 2.5. We seek to apply [33, Corol-
lary 4.2] which is an easy corollary to a result of Granville and Soundararajan [20] but
requires some set-up. For this purpose, let g� denote the bounded multiplicative function
obtained via (3.2) for h D �, and let H 2 N be as in Definition 3.1 (i) for �. Suppose we
are given any x > e, let y 2 Œx1=.8H/; x� and enumerate for each fixed y the primitive
characters of conductor at most .log y/C as �1; �2; : : : in such a way that jSg� N�1.y/j �
jSg� N�2.y/j � � � � forms a non-increasing sequence. Note thatm.g��/D 1

H
m.��/ for any

character �. Since � is real-valued and non-negative, Lemmas 2.5 and 2.8 imply that for
all sufficiently large x and for each choice of y as above, the initial elements of the asso-
ciated sequences �1; �2; : : : are precisely given by those � 2 E� for which cg� N� 6D 0 in
Lemma 2.8. Let ˛� > 0 be as in Definition 3.1 (iii) for � and let k � max ¹2; ˛�2� ;#E�º be
an integer. For any y as before, define the set E�;k;y D ¹�1; : : : ; �kº to consist of the first
k elements of the sequence of characters defined for the given value of y. Moreover, let
E�;k D

S
1�j�z E

�;k;x1=2
j , where zD dlog2.4H/e, and let E�

�;k
.q/ denote the set of char-

acters �� modulo q that are induced from the characters �2E�;k . Then [33, Corollary 4.2]
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implies thatˇ̌̌̌
S�.X I q;A/ �

q

�.q/

X
��2E�

��.A/
1

X

X
n�X

�.n/ N��.n/

ˇ̌̌̌
D ox!1.1/E�.xI q/

uniformly for all x1=2 � X � x, all q � .log x/C as in the statement, all A 2 .Z=qZ/�,
and for all sets E� � E�

�;k
.q/ of Dirichlet characters modulo q. The lemma thus follows

provided we can show that

S� N��.X/ D ox!1

�
1

log x

Y
p�x;p−q

�
1C
j�.p/j

p

��
(3.4)

for every �� 2 E�
�;k
.q/ that is induced from some � 2 E�;k n E�, and where q � .logx/C

is such that p j q for all p � log log x.
To prove (3.4), let �q D Q� denote the function defined by (3.3) for the given value

of q and for " D 1=2, say. Then S� N��.X/ D S�q N��.X/, and Lemma 3.2 implies that
m.�/Dm.�q/ as well asm.�q�/Dm.��/DHm.g��/ for all characters �. To prove the
required bound, note that for each � 2 E�;k n E� there is some ı > 0 such that Rem.��/ <
m.�/� ı. By Lemma 2.5, we in fact havem.��/D 0 for all but finitely many primitive �.
Combining this information with Lemma 2.8, there thus exists ı0 > 0 such that

S�q N�.X/� .log x/m.�/�1�ı0 ;

uniformly for all x1=2.log x/�C � X � x and � as before. Since �q is completely multi-
plicative at primes dividing q, Möbius inversion and the above yield

S�q N��.X/ D
X
d jq

�.d/�.d/ N�.d/

d
S�q N�.X=d/�

X
d jq

j�.d/j

d
jS�q N�.X=d/j

� .log x/m.�/�1�ı0
Y
p jq

�
1C
j�.p/j

p

�
;

provided x1=2 �X � x and q � .logx/C . Invoking the final part of Lemma 2.4, the bound
q � .log x/C and j�.p/j � H , we deduce that

S�q N��.X/� .log x/�1�ı0
Y
p jq

�
1C
j�.p/j

p

� Y
p0�x

�
1C
j�.p0/j

p0

�
� .log x/�1�ı0

Y
p jq

�
1C
j�.p/j

p

�2 Y
p0�x;p0−q

�
1C
j�.p0/j

p0

�
� .log q/2H .log x/�1�ı0

Y
p0�x;p0−q

�
1C
j�.p0/j

p0

�
� .log x/�1�ı0=2

Y
p�x;p−q

�
1C
j�.p/j

p

�
:

Hence (3.4) holds as required.
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We will apply Lemma 3.4 together with the following refinement of Lemma 2.8.

Lemma 3.5. Let � be a frobenian multiplicative function, let H be as in Definition
2.6 .3/, let �0 D ¹p prime W p � H 8º, and let x > e be a parameter.

If �� denotes the completely multiplicative function whose values at primes are given
by ��.p/D �.p/1p 62�0 , and if c�� denotes the corresponding leading constant from Lem-
ma 2.8, then, as x !1,

1

x

X
n�x

gcd.n;q/D1

�.n/ D c��.log x/m.�/�1
Y

p jq;p 62�0

�
1 �

�.p/

p

�
C ox!1

�
�.q/E�.x; q/

q

�

uniformly for all integers q � exp..log logx/2/ such that p jq for all primes p < log logx.
Moreover, if � is real and non-negative with m.�/ > 0, then c�� > 0.

Proof. Let q � exp..log logx/2/ be such that p j q for all primes p < log logx, and note
that m.�/ D m.��/. To start with, we claim thatX

n�x
gcd.n;q/D1

j�.n/ � ��.n/j D ox!1

�
1

log x

Y
p�x;p−q

�
1C
j�.p/j

p

��
: (3.5)

Assuming (3.5) for the moment, it suffices to prove the lemma with � replaced by ��. In
this case, it follows from Lemma 2.8 and Möbius inversion thatX

n�x
gcd.n;q/D1

��.n/ D
X
d jq

�.d/��.d/
X
n�x=d

��.n/

D

X
d jq

�.d/��.d/

d

�
c�� CO

�
1

log.x=d/

��
x.log.x=d//m.�/�1

D
�
c�� COı..log x/�1Cı/

�
x.log x/m.�/�1

Y
p jq;p 62�0

�
1 �

�.p/

p

�
;

where we have used the bounds log.x=d/ D .1CO..log log x/2=log x// log x for d j q,
and log log x �ı .log x/ı for ı > 0, as well asX

d jq

j�.d/��.d/j

d
D

Y
p jq;p 62�0

�
1C
j�.p/j

p

�
�

Y
p jq

�
1C

H

p

�
� .log log x/2H :

Thus, it remains to prove (3.5). Note that j�.n/j; j��.n/j � n1=8 for all n 2 N, and
that �.n/ D ��.n/ for all square-free integers n that are coprime to q. Let us decompose
each integer n into a product m1m2 of a square-free integer m1 and a square m2 D m2.
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Then, assuming that gcd.n;q/D 1, the condition �.n/¤ ��.n/ implies thatm has a prime
factor p � log log x. We thus have

1

x

ˇ̌̌ X
n�x

gcd.n;q/D1

.�.n/ � ��.n//
ˇ̌̌
�

1

x

X
m1�x

1=2

j�.m1/jD1

j��.m1/j
X

1<m2�x=m1
gcd.m;q/D1

m1=4

C

X
1<m2�x1=2

gcd.m;q/D1

m1=4

m2
m2

x

X
m1�x=m

2

gcd.m1;q/D1

j��.m1/j: (3.6)

Using the bound j��.m1/j � H�.m1/, the first of the two terms is bounded by

�

X
m1�x

1=2

j�.m1/jD1

H!.m1/

m1

m1

x

X
m�.x=m1/

1=2

m1=4 �
X

m1�x
1=2

j�.m1/jD1

H!.m1/

m1
.x=m1/

�1=2C1=4

� x�1=8
Y

p�x1=2

.1CH=p/�" x
�1=8C";

which agrees with our claim. Concerning the second term in the bound (3.6), it follows
from Shiu [43, Theorem 1] (see [33, Lemma 3.1]) that the inner sum satisfies

m2

x

X
m1�x=m

2

gcd.m1;q/D1

j��.m1/j �
1

log x

Y
p�x;p−q

�
1C
j�.p/j

p

�
:

For the outer sum, we haveX
1<m2�x1=2

9p�log logxWp jm

m1=4

m2
�

X
.log logx/2<m2�x1=2

m�2C1=4 � .log log x/�1C1=4;

which shows that the second term, too, is o.�.q/E�.xI q/=q/, as required.

We are now in a position to verify condition (iv) of Definition 3.1 for real non-negative
frobenian multiplicative functions.

Lemma 3.6. Let � W N ! R�0 be a real non-negative frobenian multiplicative function.
Then, with all assumptions from Definition 3.1 (iv) in place, we have

S�.xI q;A/ D S�.x
0
I q;A/C ox!1.1/E�.xI q/:

Proof. Lemma 3.4 yields an approximation of S�.X I q; A/ by a finite character sum that
holds uniformly for all X 2 Œx1=2; x�. Using this approximation, the lemma follows pro-
vided

S���.x/ D S���.x
0/C ox!1

�
1

log x

Y
p�x

�
1C
j�.p/��.p/j

p

��
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for all �� 2 E�.q/. If � denotes the primitive character that induces ��, then the latter
assertion follows from Lemma 3.5 applied with � replaced by ��. Indeed, since log x0 D
log x C O.C log log x/, applying the lemma to both terms in the difference S���.x/ �
S���.x

0/, we obtain sufficient cancellation in main terms.

Proof of Proposition 3.3. Conditions (i) and (ii) are clear, condition (iii) follows with
˛� D m.�/=2 from Lemma 2.4 (3), while condition (iv) holds by Lemma 3.6.

3.2. Correlations of frobenian multiplicative functions

In this section, we deduce an asymptotic result for correlations of frobenian multiplicative
functions from [35, Theorem 2.1]. In view of Proposition 3.3, we could apply [35, The-
orem 2.1] directly. However, in the case of frobenian multiplicative functions a stronger
result can in fact be obtained.

Definition 3.7. For any real number x > e, define

W.x/ WD
Y

p<log logx

p:

Definition 3.8. Given any fixed collection �1; : : : ; �r of frobenian multiplicative func-
tions, we define the following function zW .x/ D zW .xI �1; : : : ; �r /. For each 1 � j � r ,
let E�j denote the set of primitive characters defined in Lemma 3.4. If q� denotes the
conductor of the character �, define

zW .x/ D W.x/

rY
jD1

Y
�2E�j

q� .x > e/:

Regarding r and �1; : : : ; �r as fixed, we have zW .x/� .log x/1Co.1/.

Definition 3.9 (Finite complexity system). Let '1; : : : ; 'r 2 ZŒu1; : : : ; us� be linear
polynomials. Then ' D .'1; : : : ; 'r / is called a finite complexity system of linear poly-
nomials if for any pair of indices i 6D j , the linear forms  i .u/ WD 'i .u/ � 'i .0/ and
 j .u/ WD 'j .u/ � 'j .0/ are linearly independent over Q.

Restricted to the class of frobenian multiplicative functions, [35, Theorem 2.1] yields
the following:

Theorem 3.10. Let N > 2 be an integer parameter, let �1; : : : ; �r W N ! R�0 be real
and non-negative frobenian multiplicative functions, each satisfying m.�j / > 0, and let
zW D zW .N/ be as in Definition 3.8. Further, let '1; : : : ; 'r 2 ZŒu1; : : : ; us� be a finite

complexity system of linear polynomials, let K � Œ�1; 1�s be a fixed convex set and let

KC D K \

r\
jD1

 �1j .RC/
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be the .convex/ subset of K that is mapped to RC by each of the linear forms  j .u/ WD
'j .u/ � 'j .0/. Finally, suppose that vol.KC/ > 0, extend each �j to all of Z by setting
�j .�m/ D 0 if m � 0, and fix a point a 2 Rs .

Then there exists a positive constant B2 such that the following asymptotic holds as
N !1:

1

vol.NKC/

X
n2Zs\.NKCa/

rY
jD1

�j .'j .n//

D

X
w1;:::;wr

p jwi)p j zW

wi�.logN/B2

X
A1;:::;Ar2.Z= zWZ/�

� rY
jD1

�j .wj /S�j .N I
zW ;Aj /

�
ˇ'.w1A1; : : : ; wrAr /

C o

�
1

.logN/r

rY
jD1

Y
p�N

�
1C

�j .p/

p

��
; (3.7)

where

ˇ'.w1A1; : : : ; wrAr / D
1

.w zW /s

X
v2.Z=w zWZ/s

rY
jD1

1'j .v/�wjAj .modwj zW /

with w D lcm.w1; : : : ; wr /.

Proof. Our first aim is to show that we can replace the set NK C a in the summation
condition on the left hand side byNKC. To this end, we start by showing that this change
only involves changing the summation domain on a set of volume O.N s�1/, if we ignore
points in the domain at which the summation argument is zero. Recall the notation A4B

D .A [B/ n .A \B/. Replacing NKC a by NK changes the summation domain by
the set .NKC a/4 .NK/, which is contained in the kak-neighbourhood of the boundary
of NK. Since a is fixed and K convex, this kak-neighbourhood has a volume of order
O.N s�1/, see e.g. [21, Corollary A.2], and thus

vol..NKC a/4 .NK// D O.N s�1/:

Since all �j vanish on Z�0, the domain NK can immediately be replaced by

KCN WD .NK/ \

n\
jD1

'�1j .RC/

D ¹n 2 NK W 'j .n/ D  j .n/C 'j .0/ > 0 for all j º:

In order to compare this set to the set KC from the statement, we note that, since each of
the  j is homogeneous, we have

NKC D ¹n 2 NK W  j .n/ > 0 for all j º:
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Writing bj D 'j .0/, it thus follows that

vol.KCN 4NKC/ �

rX
jD1

vol.¹n 2 NK W  j .n/ 2 Œ�bj ; bj �º/ D O.N
s�1/:

The above information will be used to bound one factor in an application of Cauchy–
Schwarz, while the second factor will be handled with the help of the following bound. Let
� denote the multiplicative function whose values at prime powers are given by �.pj / D
max ¹j�1.pj /j; : : : ; j�r .pj /jº. If H 2 N is such that (3) of Definition 2.6 holds for all
the �j , then [4, Lemma 7.9] implies thatX

n2Zs\NK�

rY
iD1

�.'j .n//
2
�C jZ

s
\NK�j.logN/Or;H .1/

for any bounded convex subset K� � Œ�C; C �s . To use this bound, let Ka WD ¹kC �a W

k 2K; � 2 Œ0;1�º and note thatNK[ .NKC a/�NKa. The error incurred by replacing
NKC a by NKC on the left hand side of (3.7) can be bounded by

1

volNKC

X
n2Zs\..NKCa/4NK/[.NKC4KC

N
//

rY
jD1

j�j .'j .n//j

�
1

N s

X
n2Zs\NKa

rY
iD1

�.'i .n//1n2..NKCa/4NK/[.NKC4KC
N
/
:

Applying Cauchy–Schwarz to the latter expression and invoking the above second
moment bound as well as the bounds on the volumes of the sets in the indicator func-
tion, our error term is seen to be O.N�1.logN/Or;H .1//, which is negligible in view of
the error term in (3.7).

Replacing thusNKC a byNKC on the left hand side of (3.7) and in view of Proposi-
tion 3.3, we are left with an expression to which [35, Theorem 2.1] can be applied. In view
of the error term in (3.7), the conclusion of Theorem 3.10 is, however, stronger than what
is implied by a direct application of [35, Theorem 2.1]. The reason behind this is that in
the special case of frobenian multiplicative functions, we can prove a stronger ‘W -trick’.
More precisely, Lemma 3.4 shows that the set of primitive characters that determine the
behaviour of the mean value of a frobenian multiplicative function � in progressions is
a fixed set that does not depend on the cut-off parameter x as long as x is sufficiently
large. In the general setting of [35] one has to work, instead of with this fixed set, with the
set E�;k that appeared in the proof of Lemma 3.4 and might depend on x and C . Running
through the proof of [33, Proposition 5.1] with E replaced by our fixed set E�, we see
that if q� denotes the conductor of a character �, then zW .x/ D W.x/

Qr
jD1

Q
�2E�j

q�

satisfies the conclusion of [33, Proposition 5.1]. In particular, the value of � in [33, Propo-
sition 5.1] can be chosen independent of E in this case, and it follows, moreover, that the
W -trick in [33, Theorem 6.1] is independent of the degree and dimension of the nilse-
quence involved. This in turn allows us to take limits in the application of the inverse
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theorem in the proof of [35, Theorem 2.1] (more precisely in the proof of the auxiliary
result stated in [35, Proposition 4.2]) without changing theW -trick. Hence, " can be omit-
ted from the conclusion of [35, Theorem 2.1] when applied to frobenian multiplicative
functions.

3.3. Proof of Theorem 1.9

Theorem 3.10 applies in the situation of Theorem 1.9 with s D nC 1 and N D B . As an
intermediate step, we will prove:

Proposition 3.11. Let K� Œ�1;1�n, �1; : : : ; �r WN!R�0 andL1; : : : ;Lr 2ZŒx0; : : : ; xn�
be as in Theorem 1.9. If s D n C 1, N D B and 'i .x/ D Li .x/ for i D 1; : : : ; r , and
provided vol KC > 0 in the notation of Theorem 3.10, then the main term in (3.7) equals

.C�;L C o.1//

rY
jD1

.logB/m.�i /�1

for some absolute constant C�;L that depends at most on �1 : : : ; �r and L1; : : : ; Lr .
Further, C�;L > 0 if and only if there exists x 2 ZnC1 with

�1.L1.x// � � � �r .Lr .x// > 0:

Remark 3.12 (Leading constant). The proof yields the following information on the
leading constant. Let E�i denote the set of primitive Dirichlet characters � such that
m.�i / D m.��i /, let q�i denote the least common multiple of the conductors of the ele-
ments of E�i , and let H 2 N be such that (3) of Definition 2.6 holds for all the �i . If
B0 � 1 is sufficiently large in terms of r , s, H , q�1 ; : : : ; q�r and the coefficients of the
linear forms Li .x/ � Li .0/, thenX
x2.BKCa/\ZnC1

�1.L1.x// � � � �r .Lr .x//

D BnC1
�
C ��;L vol KC CO.B

�1=2
0 /C oB!1.1/

� rY
jD1

1

logB

Y
B0<p�B

�
1C

�j .p/

p

�
for all B > B0, where

C ��;L D

� rY
jD1

e�m.�j /

�.m.�j //

� X
b1;:::;br

bi2.Z=q�iZ/�

� rY
jD1

X
�2E�j .q�j /

N�.bj /
�� Y
p�B0

.1 � p�1/�r
�

�

X
u1;:::;ur

p jui)p�B0

X
A1;:::;Ar
2.Z=Q0Z/�

Ai�bi .modq�i /

� rY
iD1

�i .ui /
� 1

.uQ0/s

X
v2

.Z=uQ0Z/s

rY
jD1

1Lj .v/�ujAj .modujQ0/
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with Q0 D
Q
p�B0

p1Cvp.q/, where q D
Qr
iD1

Q
�2E�i

q�, and u D lcm.u1; : : : ; ur /.
Note that the character sums that appear in the expression for C �

�;L prevent us from being
able to factorise this expression as a product over primes in general.

Proof of Theorem 1.9 assuming Proposition 3.11. In view of the proposition, it suffices to
prove that CK;�;L D 0 if vol KC D 0, and that vol KC > 0 if and only if there exists y 2K

such that Lj .y/ > Lj .0/ for all 1 � j � r . The latter part is clear from the definition
of KC and continuity. The former part follows from the proof of Theorem 3.10: In the
notation of the proof, we have

# ZnC1 \
�
..NKC a/4NK/ [ .KCN 4NKC/

�
� N n;

and, since KC � RnC1 is convex, it follows from a volume-packing argument (see [21,
Appendix A]) that # ZnC1 \ .NKC/ D volnC1 KC C O.N n/ D O.N n/ if vol KC D

volnC1 KC D 0. Thus, if vol KC D 0, the same Cauchy–Schwarz application as in that
proof shows that the contribution of all of NKC a can be included in the error term, i.e.
the main term is zero.

Assuming that � is a non-negative frobenian multiplicative function, the following
lemma provides an asymptotic formula for the mean values S�.N I zW .N/;A/ that appear
in the main term (3.7). It will later be used to ‘lift’ any given ‘starting point’ x for which
�1.L1.x// : : : �r .L1.x// > 0 and deduce from the existence of such a point that the main
term in (3.7) is of the correct order of magnitude.

Lemma 3.13 (Lifting property). Let � be a non-negative frobenian multiplicative func-
tion withm.�/ > 0, let E� denote the set of characters from Lemma 3.4, and let q� denote
the least common multiple of all conductors of characters from this set. Let N > 1 be a
parameter and let zW D zW .N/ be as in Theorem 3.10, in particular q� j zW . If further
gcd.A; zW / D 1, then

S�.N I zW .N/;A/

D

�
e�m.�/

�.m.�//

X
�2E�.q�/

N�.A/C oN!1.1/

�
zW

�. zW /

1

logN

Y
p�N;p− zW

�
1C

�.p/

p

�
;

where  denotes Euler’s constant. The leading constant above is real and non-negative
and it only depends on the residue class of A mod q�. If A D 1, the constant is positive.

Remark 3.14. Since the leading constant above only takes values in a finite set, which is
determined by m.�/ and q�, we have

S�.N I zW .N/;A/�
zW

�. zW /

1

logN

Y
p�N;p− zW

�
1C

�.p/

p

�
for all N � 3 and for all reduced residues A mod zW .N/ for which

P
�2E�

N�.A/ is posi-
tive.
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Proof of Lemma 3.13. By Lemma 3.4 we have, as N !1,

S�.N I zW ;A/ D
zW

�. zW /

X
�2E�.q�/

N�.A/
1

N

X
n�N

�.n/��.n/C o.E�.N I zW //;

where zW D zW .N/ and where �� denotes the character modulo zW induced by �. We seek
to relate each of the mean values S���.N / D 1

N

P
n�N �.n/�

�.n/ in this expression to
S�.N /. To start with, let �� denote the completely multiplicative function whose values
at primes are given by ��.p/ D �.p/1p 62S . Increasing S if necessary, we may suppose
that S contains all primes p � H 8. By Lemma 3.5, S���.N / thus equals

1

N

X
n�N

.n; zW /D1

�.n/�.n/ D S���.N /
Y

p j zW ;p 62S

�
1 �

�.p/�.p/

p

�
C o

�
�. zW /E��.N; zW /

zW

�
:

Concerning the mean value S���.N /, recall that m.�/ D m.��/ for all � 2 E�, and note
that Lemma 2.5 (3) thus impliesX

p prime; p 62S

�.p/ � Re�.p/�.p/
p

<1:

It therefore follows from Elliott [15, Theorem 4] that

S���.N / D S��.N /
Y

p�N;p 62S

1 � �.p/p�1

1 � �.p/�.p/p�1
C o.S��.N //

as N !1. Since m.�/ D m.��/, it further follows from Lemma 2.4 thatY
w.N/�p�N

�
1 �

�.p/�.p/

p

�
D .1C o.1//

�
logN

logw.N/

��m.�/
;

where the leading constant is 1 and no longer depends on �, and thatY
p j zW ;p 62S

�
1 �

�.p/�.p/

p

�
�

Y
p�w.N/;p 62S

�
1 �

�.p/

p

�
� .logw.N//�m.�/:

Thus, combining all the above, we obtain

S���.N / D .1C o.1//S��.N /

�
logN

logw.N/

�m.�/ Y
p�N;p 62S

�
1 �

�.p/

p

�
C o

�
S��.N /.logw.N//�m.�

�/
�

D
e�m.�/

�.m.�//

1

logN

�
logN

logw.N/

�m.�/
C o

�
.logN/m.�/�1

.logw.N//m.�/

�
;
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where we have applied Wirsing’s theorem [48, Satz 1.1] together with the identity m.��/
D m.�/ to S��.N / in order to express the leading constant explicitly. Hence, the average
value of � in progressions modulo zW .N/ satisfies

S�.N I zW .N/;A/

D
zW

�. zW /

e�m.�/

�.m.�//

1

logN

�
logN

logw.N/

�m.�/ X
�2E�.q�/

N�.a/C o.E�.N I zW //

D
zW

�. zW /

e�m.�/

�.m.�//

1

logN

� Y
p�N;p− zW

�
1C

�.p/

p

�� X
�2E�.q�/

N�.a/C o.E�.N I zW //;

as claimed.

Proof of Proposition 3.11. Our aim is to evaluate the main term of the asymptotic formula
from Theorem 3.10 for s D nC 1, N D B and ' D L.

By Lemma 3.13 there exists for every j 2 ¹1; : : : ; rº and bj 2 .Z=q�jZ/� a constant
Cbj .�j / � 0 such that

S�j .N I
zW ;Aj / D .Cbj .�j /C o.1//

zW

�. zW /

1

logN

Y
p�N;p− zW

�
1C

�j .p/

p

�
(3.8)

uniformly for all reduced residues Aj mod zW .N/ that satisfy Aj � bj .mod q�j /. Thus,
Lemma 3.13 allows us to reduce the task of evaluating the main term of (3.7) to that of
evaluating the expressionX

w1;:::;wr
p jwi)p j zW

wi�.logN/B2

X
A1;:::;Ar2.Z= zWZ/�

Ai�bi .modq�i /

ˇL.w1A1; : : : ; wrAr /

rY
jD1

�j .wj / (3.9)

for any given tuple .b1; : : : ; br / 2 .Z=q�1Z/
� � � � � � .Z=q�rZ/

� and for

ˇL.w1A1; : : : ; wrAr / D
1

.w zW /s

X
v2.Z=w zWZ/s

rY
jD1

1Lj .v/�wjAj .modwj zW /
(3.10)

with w D lcm.w1; : : : ; wr /.
Before considering (3.9) more carefully, let us indicate how the existence of a point

x 2 ZnC1 with the property �1.L1.x// � � � �r .Lr .x// > 0 implies positivity of the leading
constant: By Lemma 3.13 we have Cbj .�j / > 0 in the special case when bj D 1 in (3.8).
Given x 2 ZnC1 as above, we write w�j WD Lj .x/ for each j 2 ¹1; : : : ; rº, and assume
that N is sufficiently large so that p jw�j implies p j zW .N/. Since x solves the system

Lj .x/ D w�j ; �j .w
�
j / > 0 .1 � j � r/;
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it follows, writing w D lcm.w1; : : : ; wr / as before, that

X
w1;:::;wr

p jwj)p<B0

X
A1;:::;Ar
2.Z=QZ/�

Aj�1 .modq�j /

� rY
iD1

�i .wi /
� 1

.wQ/s

X
v2

.Z=wQZ/s

rY
jD1

1Lj .v/�wjAj
.modwjQ/

> 0 (3.11)

for everyQ 2N, provided B0 is sufficiently large for .w�1 ; : : : ;w
�
r / to appear in the outer

sum.
Our analysis of (3.9) will rest upon the fact that the quantities ˇL are closely related

to the notion of local divisor densities studied in [21, p. 1831] and [4, Section 5.2]. We
proceed by recalling this notion as well as some of the properties essential to this proof.
For this purpose, let 'D .'1; : : : ; 'r / be a finite complexity system of linear polynomials.
If c D .c1; : : : ; cr / 2 Nr

0 andm D max ¹c1; : : : ; crº, then the associated divisor density is
defined to be

˛'.p
c1 ; : : : ; pcr / WD

1

pms

X
u2.Z=pmZ/s

rY
iD1

1'i .u/�0 .modpci /:

Divisor densities can, away from finitely many primes, be asymptotically evaluated and
we have (cf. [4, (5.6)])

˛'.p
c1 ; : : : ; pcr /

8̂̂̂̂
<̂
ˆ̂̂:
D 1 if n.c/ D 0,

D p�maxi ci if p �L 1 and n.c/ D 1,

� p�maxi¤j ¹ciCcj º if p �L 1 and n.c/ > 1,

�L p
�maxi ci otherwise,

(3.12)

where n.c/ denotes the number of non-zero components of c, where

L D max
1�i�r

¹k'ik; r; sº

and where k'ik denotes the maximum modulus of the coefficients of 'i . Extending ˛'
multiplicatively, it follows from (3.12) that

˛'.n1; : : : ; nr /�L .lcm.n1; : : : ; nr //�1 �L

�
max
j
nj

��1
:

These divisor densities are linked to expressions of the form (3.10) for LD ' through the
following identity. Let m � aCmax ¹c1; : : : ; crº be an integer. Then

X
a1;:::;ar2.Z=paZ/�

1

pms

X
v2.Z=pmZ/s

rY
jD1

1
'j .v/�p

cj aj .modpaCcj /

D
1

pms

X
v2.Z=pmZ/s

rY
jD1

1pcj k'j .v/ D
X

"1;:::;"r2¹0;1º

.�1/"1C���C"r˛'.p
c1C"1 ; : : : ; pcrC"r /:

(3.13)
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Returning to the expression (3.9), let us consider for any fixed tuple .w1; : : : ; wr / the
sum over .A1; : : : ;Ar /. By the Chinese remainder theorem, the function ˇL is multiplica-
tive. Since the congruence conditions restricting the summation over .A1; : : : ; Ar / only
involve the finite set of prime factors dividing q�1 : : : q�r , it follows by multiplicativity
of ˇL and from the first equality in (3.13) thatX
A1;:::;Ar2.Z= zWZ/�

Ai�bi .modq�i /

ˇL.w1A1; : : : ; wrAr /

D

X
A1;:::;Ar2.Z= zWZ/�

Ai�bi .modq�i /

1

.w zW /s

X
v2.Z=w zWZ/s

rY
jD1

1Lj .v/�wjAj .modwj zW /

D

� X
A1;:::;Ar2.Z=QZ/�

Ai�bi .modq�i /

1

.uQ/s

X
v2.Z=uQZ/s

rY
jD1

1Lj .v/�wjAj .modujQ/

�

�

Y
p j zW ;p−Q

�
lim
m!1

1

pms

X
v2.Z=pmZ/s

.1pvp.wi / jLi .v/ � 1pvp.wi /C1 jLi .v//
�

(3.14)

whenever Q is a divisor of zW with the property that gcd.Q; zW =Q/ D 1 and that q�i jQ
for every i 2 ¹1; : : : ; rº. Further, ui WD

Q
p jQ p

vp.wi / and u WD lcm.u1; : : : ; ur / in the
first factor above.

To handle the sum over .w1; : : : ; wr / in (3.9), we will use the decompositionX
w1;:::;wr

p jwi)p j zW .N/

wi�.logN/B2

D

X
w1;:::;wr

p jwi)p j zW .N/

�

X
w1;:::;wr

p jwi)p j zW .N/

9j Wwj>.logN/B2

(3.15)

together with the boundX
w1;:::;wr

p jwi)p j zW .N/

9j Wwj>.logT /B2

X
A1;:::;Ar
2.Z= zWZ/�

� rY
iD1

�i .wi /
�
ˇL.w1A1; : : : ; wrAr /�L .logN/�B2=6Co.1/:

(3.16)

The latter bound is almost identical to the bound obtained in [35, (11.3) and (11.4)]
and its proof is identical except for one step: the final line of [35, (11.4)] needs to be
replaced by

�L .logN/�B2=62!. zW .N// �L .logN/�B2=62�.log logN/
�L .logN/�B2=6Co.1/:

The bound (3.16) certainly is

oN!1.1/

�
�. zW /

zW

�r rY
iD1

Y
p j zW

�
1C

�i .p/

p

��1
; (3.17)



D. Loughran, L. Matthiesen 28

which will be enough to handle the contribution of the second sum in (3.15) towards (3.9).
Turning towards the first sum in (3.15), we letB0 > 0 be sufficiently large in terms ofL so
that the second and third bound of (3.12) apply to every p � B0 in the case where 'DL.
In addition, suppose that B0 > 2rH r and B0 > PC.q�1 : : : q�r / is bounded below by the
largest prime factor of q�1 : : : q�r . Let

Q0 D
Y
p�B0

pvp.
zW .N//

be the factor of zW .N/ that is composed of small primes. Then it follows from (3.14) that

X
w1;:::;wr

p jwi)p j zW .N/

�
zW

�. zW /

�r X
A1;:::;Ar2.Z= zWZ/�

Ai�bi .modq�i /

� rY
iD1

�i .wi /
�
ˇL.w1A1; : : : ; wrAr /

D

Y
p j zW .N/
p>B0

X
a1;:::;ar2N0

rY
iD1

�i .p
ai /

1 � p�1

�
lim
m!1

1

pms

X
v2.Z=pmZ/s

.1pai jLi .v/ � 1paiC1 jLi .v//
�

�

X
u1;:::;ur

p jui)p<B0

�
Q0

�.Q0/

�r X
A0
1
;:::;A0r2.Z=Q0Z/�

A0
i
�bi .modq�i /

� rY
iD1

�i .ui /
� 1

.uQ0/s

�

X
v2.Z=uQ0Z/s

rY
jD1

1Lj .v/�ujA0j .modujQ0/; (3.18)

where u D lcm.u1; : : : ; ur /. Let ˇP.B0/.b1; : : : ; br / denote the final factor above, i.e. the
factor that involves all primes p � B0 and starts with the summation in .u1; : : : ; ur /. By
(3.11), we have

ˇP.B0/.1; : : : ; 1/ > 0:

For every p j zW .N/ with p � B0, the relation (3.13) shows that the contribution to the
above factorisation can be rewritten as

X
a1;:::;ar2N0

rY
iD1

�i .p
ai /

1 � p�1
lim
m!1

1

pms

X
v2.Z=pmZ/s

.1pai jLi .v/ � 1paiC1 jLi .v//

D

X
a1;:::;ar2N0

rY
iD1

�i .p
ai /

1 � p�1

X
"2¹0;1ºr

.�1/n."/˛L.p
a1C"1 ; : : : ; parC"r /: (3.19)

This expression can now be asymptotically evaluated with the help of (3.12). Note that
whenever the bound (3.12) on ˛L.pa1C"1 ; : : : ; parC"r / takes the form p�k for a given
k > 1, then there at most 2rkr admissible choices of .a1; : : : ; ar / and ."1; : : : ; "r /, and
for each of these choices we have j�i .paiC"i /j < H k for every i 2 ¹1; : : : ; rº. Thus, the
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expression (3.19) for p � B0 equals�
1 �

1

p

��r�
1 �

r

p
C

rX
iD1

�i .p/

p
CO

�X
k�2

krH rk

pk

��
D

rY
iD1

�
1C

�i .p/

p

�
COH;r .p

�2/ D .1COH;r .p
�2//

rY
iD1

�
1C

�i .p/

p

�
;

and is certainly non-zero as long as B0 is sufficiently large in terms of H and r . By
possibly increasing its value, we may suppose that B0 is sufficiently large forY

p�B0

.1COH;r .p
�2// D 1CO.B

�1=2
0 / > 0

to hold.
Taking everything together, that is, applying first Lemma 3.13 to (3.7) and then com-

bining (3.9) with (3.15), the bounds (3.16) and (3.17), as well as the above analysis of
(3.18), the main term of (3.7) is seen to satisfyX
w1;:::;wr

p jwi)p j zW

wi�.logN/B2

X
A1;:::;Ar2.Z= zWZ/�

� rY
jD1

�j .wj /S�j .T I
zW ;Aj /

�
ˇL.w1A1; : : : ; wrAr /

�

X
w1;:::;wr

p jwi)p j zW

wi�.logN/B2

X
b1;:::;br

bi2.Z=q�iZ/�

X
A1;:::;Ar2.Z= zWZ/�W
Ai�bi .modq�i /

zW

�. zW /

�

� rY
jD1

Cbj .�j /
�j .wj /

logN

Y
p�N;p− zW

�
1C

�j .p/

p

��
ˇL.w1A1; : : : ; wrAr /

� C�1;:::;�r

rY
jD1

1

logN

Y
B0<p�N

�
1C

�j .p/

p

�
.1COH;r .p

�2//

� .1CO.B
�1=2
0 //C�1;:::;�r

rY
jD1

1

logN

Y
B0<p�N

�
1C

�j .p/

p

�
; (3.20)

where

C�1;:::;�r D
X

b1;:::;br
bi2.Z=q�iZ/�

ˇP.B0/.b1; : : : ; br /Cb1.�1/ : : : Cbr .�r /

� ˇP.B0/.1; : : : ; 1/C1.�1/ : : : C1.�r / > 0:

We note as an aside that on inserting the explicit expressions for the constants Cbi .�i /
from Lemma 3.13 as well as the definition of ˇP.B0/.b1; : : : ; br /, the above yields the
information about the leading constant summarised in Remark 3.12.
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Finally, Lemma 2.4 shows that (3.20) is, in fact, equal to

.1C o.1//C�;L

rY
jD1

.logN/m.�j /�1

for some constant C�;L > 0, as claimed.

4. Families of varieties over P1

In this section we prove Theorem 1.1. The upper bound is proved in [31], so it suffices to
prove the lower bound.

4.1. Detectors

We first construct frobenian multiplicative functions for detecting the everywhere locally
soluble fibres.

4.1.1. Set-up. Let � W V ! P1 be as in Theorem 1.1. We fix a choice of primitive integer
vector y D .y0; y1/ such that the fibre over y D .y0 W y1/ 2 P1.Q/ is smooth and every-
where locally soluble; this exists by assumption. We assume for simplicity of exposition
that y0 ¤ 0.

Let‚.�/ denote the set of rational points of P1 which lie below the non-pseudo-split
fibres of � . We let U D P1 n ¹� W � 2 ‚.�/º, so that the fibre over every point of U
is pseudo-split. For each � 2 ‚.�/ we let L� .x0; x1/ 2 ZŒx0; x1� be a primitive binary
linear form whose zero locus in P1 is � and such that L� .y/ > 0.

Let S be a large finite set of primes such that there exists a smooth proper scheme
V ! Spec ZS whose generic fibre is isomorphic to V , together with a morphism � W

V ! P1ZS which extends the map V ! P1Q. We will allow ourselves to increase S in this
section. In particular, let U be the complement in P1ZS of the closure of ‚.�/ in P1ZS .
Then we may assume that the fibre over every element of U is pseudo-split. We also
enlarge S to include all primes that divide the resultants of any two of the L� and such
that gcd.L� .y/; p/ D 1 for all p … S .

For each � 2 ‚.�/, let Q � k� be a finite Galois extension containing the field of
definition of every geometric irreducible component of ��1.�/. We let �� D Gal.k�=Q/.
We assume S contains all primes which ramify in the k� . Let

ı� .�/ D

#
²
 2 �� W

 fixes an irreducible component
of ��1.�/k� of multiplicity 1

³
#��

as in Definition 1.16, and

P� D S [

²
p … S W

Frobp 2 �� fixes an irreducible component
of ��1.�/k� of multiplicity 1

³
: (4.1)
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This set is frobenian of density ı� .�/. Moreover, ı� .�/ > 0, due to our assumption that
each fibre contains an irreducible component of multiplicity 1. For each � 2 ‚.�/ we
define a completely multiplicative function $� via

$� .n/ D

´
1; 8p jn we have p 2 P� ;

0; otherwise:

Lemma 4.1. Let � 2 ‚.�/. Then $� is a frobenian multiplicative function of mean
ı� .�/.

Proof. Follows immediately from the definitions.

4.1.2. Large primes. We use these $� to detect whether a fibre is locally soluble at suf-
ficiently large primes.

Lemma 4.2. On enlarging S if necessary, the following holds. Let .x0; x1/ 2 Z2 be such
that gcd.x0; x1/D 1. If

Q
�2‚.�/$� .L� .x0; x1//D 1 then ��1.x0 W x1/ has a Qp-point

for all p … S .

Proof. We claim that .x0 W x1/ mod p lies below a split fibre. To see this, first sup-
pose that p −

Q
�2‚.�/ L� .x0; x1/. Then .x0 W x1/ 6� � .mod p/ for all � 2 ‚.�/. Thus

.x0 W x1/ mod p 2 U, hence the fibre over .x0 W x1/ mod p is pseudo-split by construc-
tion. But a pseudo-split scheme over a finite field is split, as required. Next assume that
p j L� .x0; x1/ for some � 2 ‚.�/, so that .x0 W x1/ � � .mod p/. Then p 2 P� as
$� .p/ D 1, hence Frobp 2 �� fixes an irreducible component of multiplicity one of the
fibre. So the fibre over .x0 W x1/ mod p is split, as required.

Thus, on enlarging S if necessary, the Lang–Weil estimates [28] imply that the set
��1.x0 W x1/ mod p contains a smooth Fp-point (S may be chosen uniformly for all
.x0; x1/, due to the uniformity of the Lang–Weil estimates). Hensel’s lemma therefore
implies that the fibre ��1.x0 W x1/ has a Qp-point, as required.

We now fix a choice of S satisfying the above properties.

4.1.3. Real points and small primes. Recall that the fibre over .y0 W y1/ is smooth and
everywhere locally soluble. The implicit function theorem implies that the fibre over any
sufficiently close real point .x0 W x1/ 2 P1.R/ to .y0 W y1/ has a real point. So there exists
ı > 0 such that if jx1=x0 � y1=y0j < ı, then the fibre over .x0 W x1/ has a real point. We
choose ı sufficiently small so that L� .x0; x1/ > 0.

By the p-adic implicit function theorem, a similar conclusion applies for primes
p 2 S . Therefore, shrinking ı if necessary, for all p 2 S and all .x0; x1/ 2 Z2, if we
have jx1=x0 � y1=y0jp < ı, then the fibre over .x0 W x1/ has a Qp-point.

4.1.4. Conclusion. Putting everything together and passing to the affine cone, we obtain
the following.
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Lemma 4.3. We have

Nloc.�; B/ �
1

2

X
.x0;x1/2Z2

jx0j;jx1j�B
gcd.x0;x1/D1

jx1=x0�y1=y0jv<ı 8v2S[¹1º

Y
�2‚.�/

$� .L� .x0; x1//:

The sum in Lemma 4.3 is non-zero, as the term .x0; x1/ D .y0; y1/ contributes non-
trivially. Indeed, it clearly occurs in the range of summation. Moreover, we haveL� .y/>0
and p jL� .y/) p 2 S ; but $� .p/ D 1 for all p 2 S . Combining these facts shows that
the summand is non-zero in this case.

We have thus reduced to a problem on sums of frobenian multiplicative functions
evaluated at binary linear forms. Theorem 1.9 does not immediately apply due to the
coprimality condition and the imposed local conditions. As it will cause us no additional
difficulties, we proceed by obtaining a general technical result on handling the kind of
sums appearing in Lemma 4.3. We also give a higher-dimensional version to assist with
later applications.

Theorem 4.4. Let L1.x/; : : : ; Lr .x/ 2 ZŒx0; : : : ; xn� be pairwise linearly independent
linear forms. Let �1; : : : ; �r be real-valued non-negative frobenian multiplicative func-
tions which are completely multiplicative and satisfy m.�i / ¤ 0. Let S be a finite set of
primes and 1 > ı > 0. Assume that there exists a primitive integer vector y 2 ZnC1 such
that �j .Lj .y// > 0 for all j 2 ¹1; : : : ; rº. Then there exists Cı;S;�;L > 0 such that as
B !1, X

x2ZnC1
maxi jxi j�B

gcd.x/D1
max

v2S[¹1º
jxi=x0�yi=y0jv<ı

rY
jD1

�j .Lj .x// � Cı;S;�;LBnC1
rY

jD1

.logB/m.�j /�1:

The result applies to the $� , as they are completely multiplicative.

4.2. Proof of Theorem 4.4

Let � D
Qr
jD1 �j and let N.B/ be the sum appearing in Theorem 4.4.

4.2.1. Möbius inversion. We first apply Möbius inversion. To simplify some later parts
of the proof, we only do this to primes not in S . This gives

N.B/ D
X
k�B

gcd.k;S/D1

�.k/
X

x2ZnC1
maxi jxi j�B
k j gcd.x/

gcd.x;S/D1
max

v2S[¹1º
jxi=x0�yi=y0jv<ı

rY
jD1

�j .Lj .x//:
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Here we use the notation gcd.x; S/ WD
Q
p2S gcd.x0; : : : ; xn; p/. Using the fact that � is

completely multiplicative and that the Li are homogeneous, we obtain

N.B/ D
X
k�B

gcd.k;S/D1

�.k/�.k/
X

x2ZnC1
maxi jxi j�B=k

gcd.x;S/D1
max

v2S[¹1º
jxi=x0�yi=y0jv<ı

rY
jD1

�j .Lj .x//: (4.2)

As �j .n/�" n
"=2r , using k � B we find that the inner sum above is

�

X
.x0;:::;xn/2ZnC1

maxi jxi j�B=k

rY
jD1

�j .Lj .x//�" B
"=2

X
.x0;:::;xn/2ZnC1

maxi jxi j�B=k

1�" B
"=2

�
B

k

�nC1
:

This in particular shows that the contribution to (4.2) from those B" � k � B is
O".B

nC1C"=2�n"/ D O.BnC1�"=2/. This gives

N.B/ D
X
k�B"

gcd.k;S/D1

�.k/�.k/
X

x2ZnC1
maxi jxi j�B=k

gcd.x;S/D1
max

v2S[¹1º
jxi=x0�yi=y0jv<ı

rY
jD1

�j .Lj .x//CO".BnC1�"=2/:

(4.3)

4.2.2. Removing the p-adic conditions. We next deal with our p-adic conditions by
rewriting them in terms of congruences.

Lemma 4.5. There exists an integer M and a subset A � .Z=MZ/nC1 such that

gcd.x; S/ D 1 and 8i;8p 2 S; jxi=x0 � yi=y0jp < ı ” x mod M 2 A:

Proof. Let p 2 S and choose the largest m 2 Z such that ı � p�mC1. The condition
gcd.x; p/ D 1 is equivalent to p − xi for some i . We first assume that p − x0. Here
xi=x0 2 Zp , thus also yi=y0 2 Zp when jxi=x0 � yi=y0jp < 1. Therefore in this case our
condition is equivalent to the congruence

xi � .yi=y0/x0 .mod pm/;

as claimed. Now consider the case p j x0, so that without loss of generality p − x1. Then
x0=x1 2 Zp . If jx0=x1jp ¤ jy0=y1jp then

jx1=x0 � y1=y0jp D max ¹jx1=x0jp; jy1=y0jpº � jx1=x0jp � 1 > ı;

thus we must have jx0=x1jp D jy0=y1jp under our condition. As x1 2 Z�p we obtain

jx1=x0 � y1=y0jp D jx1y0 � y1x0jp=jx0y0jp D jx1y0 � y1x0jp � jy1=y
2
0 jp:
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Letting s D vp.y20=y1/, we find that jx1=x0 � y1=y0jp < ı is equivalent to

x0y1 � x1y0 .mod pmCs/:

Now let j > 1. Then

jxj =x0 � yj =y0jp D j.xjy1=x1y0/.1CO.p
mCs// � yj =y0jp:

Letting r D vp.y0/, using p − x1 and r � s, we find that jxj =x0 � yj =y0jp < ı is equiv-
alent to the congruence

xjy1 � yjx1 .mod pmCr /:

This handles all cases and proves the result for all p 2 S . One then deduces the result
from the Chinese remainder theorem.

Using this lemma in (4.3) we therefore obtain the main termX
k�B"

gcd.k;S/D1

�.k/�.k/
X

x2ZnC1
maxi jxi j�B=k

x mod M2A
max
i
jxi=x0�yi=y0j<ı

rY
jD1

�j .Lj .x//

D

X
a2A

X
k�B"

gcd.k;S/D1

�.k/�.k/
X

x2ZnC1
maxi jxiCai=M j�B=.Mk/

max
i
j.xiCai=M/=.x0Ca0=M/�yi=y0j<ı

rY
jD1

�j .MLj .x/C Lj .a//

after summing over the elements of A and making the obvious change of variables. Here
we make the abuse of notation of identifying each element of Z=MZ with its representa-
tive in Œ0;M � 1� \ Z.

4.2.3. Applying Theorem 1.9. We now apply Theorem 1.9 to the above sum with

K D ¹x 2 RnC1 W jxi j � 1; jxi=x0 � yi=y0j < ıº;

with a replaced by .�a0=M; : : : ;�an=M/, and as B=.Mk/ ! 1. The non-constant
parts MLj .x/ of the linear polynomials are still pairwise linearly independent. More-
over, as Lj .y/ > 0 we haveMLj .y/CLj .a/ > MLj .0/CLj .a/. Thus, all assumptions
of Theorem 1.9 are satisfied. Since K and the linear forms are independent of k, and
B=.Mk/!1 as B !1 for k � B", we obtain

N.B/ �
X
a2A

X
k�B"

gcd.k;M/D1

�.k/�.k/CK;a;M
BnC1

.Mk/nC1

rY
jD1

�
log

B

Mk

�m.�j /�1
for some constant CK;a;M � 0 which is non-zero for a� y .modM/, as follows from our
assumption that

Qr
jD1 �j .Lj .y// > 0. Expanding out gives

rY
jD1

�
log

B

Mk

�m.�j /�1
D .1CO.log k=logB//

rY
jD1

.logB/m.�j /�1:
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The resulting error term here is satisfactory since the sum
P
k j�.k/j�.k/.logk/=knC1 is

convergent. As for the main term, the leading constant is given byX
a2A

CK;a;M

M nC1

1X
kD1

gcd.k;M/D1

�.k/�.k/

knC1
:

To show positivity of the leading constant in Theorem 4.4 it suffices to note that
1X
kD1

gcd.k;M/D1

�.k/�.k/

knC1
D

Y
gcd.p;M/D1

�
1 �

�.p/

pnC1

�
is positive. Indeed, this Euler product is absolutely convergent, so it suffices to show each
Euler factor is non-zero. But it is easily checked that � being completely multiplicative and
Definition 2.7 imply that j�.p/j � 1 for all primes p, as otherwise this would contradict
�.n/�" n

". This proves Theorem 4.4.

Theorem 1.1 now follows from Lemma 4.1, Lemma 4.3 and Theorem 4.4.

Remark 4.6. The proof of Theorem 1.1 shows the following stronger statement. For any
y 2 P1.Q/with ��1.y/ smooth and everywhere locally soluble, any finite set S of places
and any open neighbourhoods y 2 Up � P1.Qp/, we have

#¹x 2 P1.Q/ W H.x/ � B; x 2 �.V.AQ//; x 2 Up 8p 2 Sº �
BnC1

.logB/�.�/
:

This stronger statement is useful for applications, and can be viewed as a version of weak
approximation. We will require this for the proof of Theorem 1.5.

Remark 4.7. Let us now give an example of a global obstruction to the positivity of the
leading constant in Theorem 1.9 (cf. Remark 1.11).

Let V be a smooth projective variety over Q with a morphism � W V ! P1 whose
generic fibre is rationally connected and such that each non-split fibre lies over a rational
point. Assume that V fails the Hasse principle, but each smooth fibre of � satisfies the
Hasse principle. (See [10, Proposition 7.1] for an explicit example coming from a Brauer–
Manin obstruction.)

Let S be a finite set of places of Q. The argument in Section 4.1.3 applies in this case,
under our weaker assumption that only V.AQ/¤;, and shows that there is a smooth fibre
which is soluble at all places in S . Taking S sufficiently large and choosing such a point
y 2 P1.Q/, analogously to Lemma 4.3 we have

Nloc.�; B/ �
1

2

X
.x0;x1/2Z2

jx0j;jx1j�B
gcd.x0;x1/D1

jx1=x0�y1=y0jv<ı 8v2S

Y
�2‚.�/

$� .L� .x0; x1//:

There is no local obstruction here to the vanishing of the leading constant, in the following
sense: Recall that the frobenian multiplicative functions $� satisfy $� .p/ D 1 for all
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p 2 S , so there is clearly no obstruction for such p. For p … S , providing S is sufficiently
large, there exists x 2 Z2 such that p −

Q
�2‚.�/L� .x0; x1/. Thus the p-adic component

of
Q
�2‚.�/ L� .x0; x1/ is just a unit, hence the p-adic part of $� equals 1 in this case as

well.
But the leading constant in Theorem 4.4 must be zero here; indeed, � has no smooth

everywhere locally soluble fibre, since otherwise this fibre would have a rational point,
which contradicts that V has no rational point. Thus here there is no local obstruction to
the vanishing of the leading constant in Theorem 1.9, but there is a global obstruction
coming from a failure of the Hasse principle. These observations show that, in general,
there is no simple local-global principle, nor a simple condition involving a finite set S of
places, for the positivity of the leading constant in Theorem 1.9. The crucial assumption
in Theorem 1.1 that there is an everywhere locally soluble smooth fibre is required to
show the positivity of the leading constant in our application of Theorem 4.4.

The above construction uses the fact that $� .p/ D 1 for all p 2 S . Comparing with
the expression from Remark 3.12 for the leading constant in Theorem 4.4, one might be
tempted to think that the factor C �

�;L can be forced to be positive by a condition of the
form �j .p/ D 1 for all p 2 S and 1 � j � r , if S is sufficiently large to include all
primes p � B0. In this case, the asymptotic formula stated in Remark 3.12 would imply
a local-global principle.

We point out that this line of reasoning does not apply to the situation above. In fact,
the linear polynomialsMLj .x/CLj .a/ that we apply Theorem 4.4 to depend onM , and
therefore on the set S . Thus, the parameter B0 in Remark 3.12 needs to be sufficiently
large in terms of not only H , r and L, but also in terms of S in order to be able to decide
the positivity of the leading constant. Hence, the factor C �

$;MLCa involves primes outside
of S at which the functions $� are not trivially equal to 1.

5. Controlling failures of the Hasse principle

In this section we prove Theorem 1.5. We first recall some facts about Brauer groups and
the Brauer–Manin obstruction.

5.1. The Brauer group

Let V be a regular integral Noetherian scheme.

5.1.1. Residues. We define the (cohomological) Brauer group of V to be Br V D
H2.V;Gm/. A theorem of Grothendieck [37, Proposition 6.6.7] states that the natural
map Br V ! Br �.V / is injective, where �.V / denotes the function field of V . This in
particular shows that BrV is a torsion group, so that

BrV D
M

primes `

BrV ¹`º: (5.1)
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Let D 2 V .1/. If ` is a prime which is invertible on V , then there is a residue map
@D W Br �.V /¹`º ! H1.�.D/;Q`=Z`/. Using (5.1), one defines the residue @D.b/ 2
H1.�.D/;Q=Z/ of any element b 2 Br �.V / whose order is invertible on V . We say
that b is unramified at D 2 V .1/ if @D.b/ D 0. The residue maps give rise (see [37, Sec-
tion 6.8] for details) to an exact sequence

0! BrV ¹`º ! Br �.V /¹`º !
M

D2V .1/

H1.�.D/;Q`=Z`/: (5.2)

5.1.2. Brauer–Severi schemes. To any Brauer–Severi scheme � W B ! V one may asso-
ciate a Brauer group element ˛ 2 Br V . This construction is such that � has a section if
and only if the class of ˛ is trivial in BrV . In particular, for P 2 V , we have ˛.P / D 0 if
and only if ��1.P / has a �.P /-rational point.

5.1.3. Filtration. If V is defined over a field k, then we define the algebraic part of the
Brauer group of V to be Br1 V D ker.Br V ! Br V Nk/ . The map Br k ! Br V need not
be injective in general, but it is injective if V.k/ ¤ ;. An element of BrV which does not
lie in Br1 V is called transcendental.

5.1.4. The Brauer–Manin obstruction. We recall some facts about the Brauer–Manin
obstruction (see e.g. [37, Section 8.2]). We have the fundamental exact sequence

0! Br Q!
M
v

Br Qv ! Q=Z! 0; (5.3)

where the direct sum is over the places v of Q. The last map is given by the sum over
all local invariants invv W Br Qv ! Q=Z. Given a smooth variety V over Q, there is a
well-defined pairing

BrV � V.AQ/! Q=Z; .˛; .Pv// 7!
X
v

invv ˛.Pv/;

which is right continuous and trivial on the image of V.Q/. We denote the right kernel
of a subset A � BrV by V.AQ/

A; note that V.Q/ � V.AQ/
A by the fundamental exact

sequence. For A D BrV we simply write V.AQ/
Br.

We say that the Brauer–Manin obstruction is the only obstruction to the Hasse prin-
ciple for V if the implication V.AQ/

Br ¤ ; ) V.Q/ ¤ ; holds.

5.2. The result

We prove the following generalisation of Theorem 1.5.

Theorem 5.1. Let V be a smooth projective variety over Q equipped with a morphism
� W V ! P1 whose generic fibre is geometrically integral. Assume that each fibre of �
contains an irreducible component of multiplicity 1 and that each non-split fibre of � lies
over a rational point. Assume also that H1.V N�;Q=Z/ D H2.V N�;OV N�/ D 0, and that the
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Brauer–Manin obstruction is the only one to the Hasse principle for the smooth fibres
of � . If V.Q/ ¤ ; then

N.�;B/�
B2

.logB/!.�/
for some !.�/ > 0:

Proof. Our approach combines the method of proof of Theorem 1.1 with the techniques
from the proof of [25, Theorem 9.17], as well as some conceptual improvements on
loc. cit. due to Colliot-Thélène (cf. the proof of [9, Theorem 7.13]).

Let A � Br V� be a set of representatives of the elements of Br V�=Br �.�/. This is
finite by our assumptions and [25, Lemma 8.6]. Choose some dense open set U � P1

such that VU WD V �U P1 is smooth and each element of A is defined on VU . Choose
Brauer–Severi schemes  ˛ W Y˛ ! VU representing each ˛ 2 A. We let  W Y ! V be a
smooth projective compactification of the fibre product

Q
˛ Y˛ over VU .

For motivation, let us briefly explain how we would like the proof to go. Let P 2
VU .Q/. As ˛.P /2BrQ, we may change our choice of representative for ˛ to assume that
˛.P / D 0 for all ˛ 2 A. As explained in Section 5.1.2, this implies that P 2  ˛.Y˛.Q//
for all ˛, hence P 2  .Y.Q// and so YU .Q/¤ ;. We now apply Theorem 1.1 to � ı W
Y ! P1, which gives the stated order of magnitude of x 2 P1.Q/ such that Yx.AQ/¤ ;,
with !.�/ D �.� ı  /. For such x we have Vx.A/A ¤ ; by the construction of Y ;
however for almost all x the group A generates BrVx=Br Q, thus Vx.AQ/

Br ¤ ; and so
Vx.Q/ ¤ ; by our assumptions, as required.

The problem with this argument is that � ı  may not satisfy the assumptions of
Theorem 1.1: despite the non-split fibres of � lying over rational points, there may be new
non-split fibres of � ı  which do not lie over rational points. We thus need to re-run the
proof of Theorem 1.1, paying careful attention to the new non-split fibres. This subtlety
also arises in the proof of [25, Theorem 9.17], and the method to deal with it originated
in work of Harari [22, Lemma 4.1.1]. This is quite a delicate argument that requires us to
introduce more notation and work with a larger set of Brauer elements than A. We have
modified this approach to our setting, which manages to avoid the use of Harari’s “formal
lemma”.

Let S 0 be a sufficiently large set of places. Let �1; : : : ; �n 2 P1.Q/ be the points below
the non-split fibres of � and Li the corresponding primitive binary linear forms. We let
$�i be the frobenian multiplicative function obtained by applying the construction from
Section 4.1 to the fibre of � ı  above �i . Let �nC1; : : : ; �N denote those closed points
of P1 below the new non-split fibres of � ı . Let ki be the residue field of �i andKi=ki
the splitting field of the irreducible components of Y�i . Choose sufficiently large distinct
primes pi … S 0 which are completely split inKi . Let �i � BrU be a finite subgroup such
that the image of the residue map at �i ,

@�i W �i ! H1.ki ;Q=Z/;

contains H1.Ki=ki ;Q=Z/; this exists by assumption (9.9) from [25, Theorem 9.17],
which holds in our case as at least one of the �i is rational (see [25, Remark 9.18 (ii)]). We
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let � D
PN
iDnC1 �i and set A0 D A [ ��� . Then, as above, we choose Brauer–Severi

schemes  0˛ W Y
0
˛ ! VU representing each ˛ 2 A0 and let  0 W Y 0 ! V be a smooth

projective compactification of the fibre product of the  0˛ .
We have assumed the existence of a rational point in V.Q/. To get the proof to work,

we need to choose this point carefully. By [25, Theorem 9.28] and our assumptions, the
variety V satisfies weak approximation. Namely, choosing S 0 sufficiently large, the set
V.Q/ is dense in

Q
p…S 0 V.Qp/. Moreover, as pi is completely split inKi and sufficiently

large, we have V�i .Qpi / ¤ ;. Thus there exists a rational point P 2 VU .Q/ such that
y D �.P / is arbitrarily close to �i with respect to pi , for each i . This is our choice of
rational point, which we fix.

As P lies in VU , the evaluation ˛.P / 2 Br Q of each ˛ 2A0 is well-defined. We may
change our choices of representatives ˛ by an element of Br Q if we wish. So without loss
of generality, we may assume that ˛.P / D 0 for all ˛ 2 A0. Then ˛.P / D 0 implies that
P 2  0˛.Y

0
˛.Q//. It follows that P 2  0.Y 0.Q//.

For x 2 P1.Q/, we let�x;i D ¹p … S 0 W x mod p 2 �i mod pº. We now apply Theo-
rem 4.4 to$1.L1.x//; : : : ;$n.Ln.x// with S D S 0 [ ¹pnC1; : : : ; pN º and the chosen y.
As in the proof of Theorem 1.1, for all sufficiently small ı we obtain

#¹x 2 U.Q/ W H.x/ � B; x satisfies (5.5)º � B2
nY
iD1

.logB/m.$i /�1; (5.4)

where

jx1=x0 � y1=y0jv < ı 8v 2 S [ ¹1º; Y 0x.Qp/¤ ; 8p …�x;nC1; : : : ;�x;N : (5.5)

Let us clarify that we are only applying the method for i D 1; : : : ; n, so we do not claim
local solubility at the primes in �x;nC1; : : : ; �x;N . The leading constant in Theorem 4.4
is non-zero in this case, due to the existence of y.

Fix now x satisfying (5.5). For p … �x;nC1; : : : ; �x;N , we have Y 0x.Qp/ ¤ ; by
(5.5). As explained in Section 5.1.2, it follows that the image Qp 2 Vx.Qp/ of such a
point satisfies ˛.Qp/ D 0 for all ˛ 2 A0. In particular, for each ˛ 2 A0 we haveX

p…�x;nC1;:::;�x;N

invp ˛.Qp/ D
X

p…�x;nC1;:::;�x;N

0 D 0: (5.6)

We now construct p-adic points Qp for the remaining primes p, to find an adele which is
orthogonal to each ˛ 2 A0.

Fix i D nC 1; : : : ; N . First note that pi 2 �x;i by our choice of P . For p 2 �x;i ,
the fibre Vx mod p is split. Thus by the Lang–Weil estimates, providing S 0 is sufficiently
large, there is a smooth Fp-point of Vx which we can lift using Hensel’s lemma to obtain a
Qp-point Qp of Vx . We do this for all p 2 � n ¹piº. For pi , we apply [25, Lemma 9.20]
and the resulting arguments (cf. [25, (9.13)] – this uses the assumption that pi is com-
pletely split in Ki and is the key step of Harari’s trick). This yields the existence of a
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Qpi -point Qpi such that

invpi ˛.Qpi / D �
X

p2�x;in¹pi º

invp ˛.Qp/

for all ˛ 2 A0. Applying this to each i and recalling (5.6), we find an adelic point .Qp/ 2
Vx.AQ/ whose sum over all local invariants is trivial for each ˛. So for any x satisfying
(5.5), we have Vx.AQ/

A0 ¤ ;; in particular Vx.AQ/
A ¤ ;.

However, by [25, Proposition 4.1], our assumptions imply that

BrV�=Br �.�/! BrVx=Br Q

is an isomorphism outside a thin set of x 2 P1.Q/. But, by a theorem of Serre [41, Sec-
tion 9.7], only O.B/ of rational points in P1.Q/ of height at most B lie in any given
thin set; thus (5.4) still holds when restricted to x with the property that the image of A

in Br Vx generates Br Vx=Br Q. For such x we therefore have Vx.AQ/
Br ¤ ;. But, by

assumption, the Brauer–Manin obstruction is the only one to the Hasse principle for Vx ,
so Vx.Q/ ¤ ;. This completes the proof.

Theorem 1.5 now follows immediately from Theorem 5.1.

Remark 5.2. The proof of Theorem 5.1 shows that an admissible value of the exponent
!.�/ of .logB/�1 in the lower bound is �.� ı  0/. In fact, the proof gives exactly the
value �.� ı  / when � ı  has no new non-split fibres, i.e. when

Yx split ” Vx split; for all closed points x 2 P1:

6. Detector functions for general pencils

We generalise our detector functions from Section 4.1 to general fibrations over P1, i.e. if
there is a non-split fibre over a non-rational closed point.

6.1. Set-up

Let V be a smooth projective variety over Q equipped with a morphism � W V ! P1

whose generic fibre is geometrically integral, such that each fibre of � contains an irre-
ducible component of multiplicity 1. We assume that the fibre over some y 2 P1.Q/ is
smooth and everywhere locally soluble.

Let‚.�/ be the set of closed points of P1 which lie below the non-pseudo-split fibres
of � . We let U D P1 n ¹� W � 2 ‚.�/º. Let f� .x0; x1/ 2 ZŒx0; x1� be a primitive binary
form whose zero locus in P1 is � . Let S be a finite set of primes such that there exists
a smooth proper scheme V ! Spec ZS whose generic fibre is isomorphic to V , together
with a morphism � WV! P1ZS which extends the map V ! P1Q. We choose S sufficiently
large so that the fibre outside each � mod p is pseudo-split and the � mod p are disjoint
in P1Fp . (� mod p is a collection of closed points of P1Fp in general.)
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6.2. A negative result

Analogously to Lemma 4.2, one might expect the existence of frobenian multiplicative
functions $� of mean ı� .�/ such that if

Q
� $� .f� .x0; x1// D 1, then ��1.x/ has a

Qp-point for all sufficiently large primes p. In certain cases this holds.

Example 6.1. Consider the conic bundle surfaces

x2 � ay2 D f .t/

where f is separable of even degree and a 2 Z a non-square. Then for p − 2a, the con-
dition that a fibre over .t W 1/ with p k f .t/ has a Qp-point is that a 2 Q�2p , a purely
frobenian condition over Q.

This simple example is misleading; in general there are no such arithmetic functions,
even for conic bundle surfaces (the next surface is a quartic del Pezzo).

Lemma 6.2. Let � W V ! P1 be the conic bundle surface given by a smooth compactifi-
cation of

x2 � ty2 D .t2 � 2/z2 � P2 �A1:

There is no arithmetic function $ W N ! ¹0; 1º and no finite set of primes S with the
following property: Let p … S and let .t0; t1/ be a primitive integer vector such that
p k .t20 � 2t

2
1 /. Then $.t20 � 2t

2
1 / D 1 if and only if ��1.t0 W t1/ has a Qp-point.

Proof. Assume there exist $ and S as in the statement. Consider � W t2 � 2 D 0 2 A1Q.
Let p � 7 .mod 8/ with p … S . As p � 7 .mod 8/ we have 2 2 F�2p , so let ˛ 2 Fp be
such that ˛2 D 2. Then � mod p D .t � ˛/.t C ˛/, and the fibres over these points are

x2 � ˛y2 D 0; x2 C ˛y2 D 0; (6.1)

respectively. But . ˛
p
/ ¤ .�˛

p
/ since �1 … F�2p . Thus exactly one of ˙˛ is in F�2p . Then

(6.1) shows that the fibre over exactly one of t D ˙˛ is split over Fp .
Now let t0; t1 2 Z be such that t20 � 2t

2
1 D p (these exist by a classical theorem). Then

.t0 W ˙t1/ mod p are the points of � mod p, thus the fibre over exactly one is split (say the
fibre over .t0 W t1/ mod p). A Hilbert symbol calculation shows that the fibre over .t0 W t1/
has a Qp-point, but the fibre over .t0 W �t1/ has no Qp-point. However, by our assumptions
on $ , we find that both $.p/ D $.t20 � 2t

2
1 / D 1 and $.p/ D $.t20 � 2.�t1/

2/ D 0,
which is a contradiction.

The problem above is the following: the condition p j f� .x/ means that x mod p 2
� mod p. But we do not know which closed point it corresponds to! The fibre over this
closed point may or may not be split.

6.3. The detector functions

One needs to work over the number field determined by f� . Our choices are inspired by
the constructions from [7, 25]. For simplicity of exposition, we assume that the fibre at
infinity is smooth.
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For each � 2 ‚.�/, let k� D QŒx�=.f� .x; 1// and let ˛� denote the image of x in k� .
Let k� � K� be a finite Galois extension which contains the field of definition of every
geometric irreducible component of ��1.�/ and let �� D Gal.K�=k� /. We assume that
S contains all primes which ramify in the K� . We identify the prime ideals of k� above
p with the irreducible factors of f� mod p; in particular, we view these as closed points
of P1Fp . We let

P� D ¹p 2 Sº [

²
p … S W

Frobp 2 �� fixes an irreducible component
of ��1.�/ of multiplicity 1

³
:

Here p is a non-zero prime ideal of the ring of integers of k� . We abuse notation, and
write p 2 S if p lies above a rational prime in S . For � 2 ‚.�/ we define a completely
multiplicative function $� on the ideals of k� via

$� .n/ D

´
1; 8p jn we have p 2 P� ;

0; otherwise:

The theory of frobenian (multiplicative) functions makes sense over any number field
[42, Section 3.3], and one immediately obtains the following.

Lemma 6.3. Each $� is a frobenian multiplicative function on the ideals of k� of mean
ı� .�/.

We now have the following generalisation of Lemma 4.2.

Lemma 6.4. On enlarging S if necessary, the following holds. Let .x0; x1/ 2 Z2 be such
that gcd.x0; x1/ D 1. If Y

�2‚.�/

$� .x0 � ˛�x1/ D 1

then ��1.x0 W x1/ has a Qp-point for all p … S .

Proof. Let x0; x1 be such that
Q
�2‚.�/$� .x0 � ˛�x1/ D 1 and gcd.x0; x1/ D 1. Let

p … S . We claim that .x0 W x1/ mod p lies below a split fibre.
If p −

Q
�2‚.�/ f� .x0; x1/ then .x0 W x1/ mod p … � mod p for all � 2 ‚.�/, thus

the fibre is split. If p j f� .x0; x1/ for some � 2 ‚.�/ then .x0 W x1/ mod p 2 � mod
p, so .x0 W x1/ mod p corresponds to the prime ideal p D .x0 � ˛�x1; p/ of k� . Since
p j .x0 � ˛�x1/ and $� .x0 � ˛�x1/ D 1, we find that p 2 P� . Hence Frobp fixes an
irreducible component of multiplicity 1 of the fibre, so the fibre over .x0 W x1/ mod p is
split, as required.

The result now follows from the Lang–Weil estimates and Hensel’s lemma, on enlarg-
ing S if necessary.

One deals with the small primes and the real place exactly as in Section 4.1.3. We
deduce the following.
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Corollary 6.5. There exists a finite set S of primes and ı > 0 such that

Nloc.�; B/ �
1

2

X
.x0;x1/2Z2

jx0j;jx1j�B
gcd.x0;x1/D1

jx1=x0�y1=y0jv<ı 8v2S[¹1º

Y
�2‚.�/

$� .x0 � ˛�x1/:

Note that it is still linear forms that are used for the detector functions. But the linear
forms x0 � ˛�x1 are defined over the larger field k� , not over Q.

Example 6.6. (1) We show that our detector functions recover the naive ones for the
conic bundle surfaces x2 � ay2 D f .t/z2 from Example 6.1. For simplicity assume that
f is irreducible. Let $� be as in Section 6.3. Explicitly, for almost all p,

$� .p/ D 1 ”

�
a

p

�
D 1;

where the Legendre symbol is over k� . However, let $ be the naive detector function
over Q, where for almost all p we have

$.p/ D 1 ”

�
a

p

�
D 1:

For prime ideals p j p of degree 1 we have $� .p/ D $.p/I indeed, the map Z! Fp

induces a canonical isomorphism Fp Š Fp . As a 2 Z, our condition is independent of the
choice of the prime ideal p of degree 1.

So let x0; x1 be such that gcd.x0; x1/D 1 and let F be the homogenisation of f . Note
that F.x0; x1/DNk�=Q.x0 � ˛�x1/. It easily follows that the ideal .x0 � ˛�x1/may only
be divisible by prime ideals of degree 1, and that p jF.x0; x1/ if and only if x0 � ˛�x1
is divisible by some prime ideal of degree 1 over p. We conclude that $� .x0 � ˛�x1/ D

$.F.x0; x1//; which recovers Example 6.1.
(2) We next compute our detector functions for the conic bundle surfaces from Lem-

ma 6.2. The non-split fibres occur over the closed points �1 W t D 0 and �2 W t2 � 2 D 0,
with corresponding frobenian functions

$1.p/ D 1 ”

�
�2

p

�
D 1; $2.p/ D 1 ”

�p
2

p

�
D 1;

for p a prime of Q.
p
2/. The summand in Corollary 6.5 is$1.x0/$2.x0 �

p
2x1/. Note

that if p � 7 .mod 8/ and p D pq, then we have�p
2

p

�
D

�
�
p
2

q

�
D �

�p
2

q

�
:

Hence $2.p/ ¤ $2.q/ so here $2 is not constant on prime ideals of degree 1 above p.
This agrees with the behaviour observed in the proof of Lemma 6.2.
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For sums of multiplicative functions as in Corollary 6.5, one expects that the asymp-
totic behaviour is controlled by expressions of the formX

N a�x

�2.a/$.a/

N a

(see [6] for upper bounds of this shape). The following is a minor variant of the results
from Section 2, and agrees with the conjectural lower bound.

Lemma 6.7. X
N a�x

�2.a/$.a/

N a
� .logB/m.$/:

7. Brauer groups

In this section we prove Theorem 1.12. We will use the various properties of Brauer
groups recalled in Section 5.1.

7.1. Specialisations and ramification

The following will be used to construct the detector functions in the proof of Theorem
1.12.

Proposition 7.1. Let Y be a smooth geometrically integral variety over a number field k
and let b 2 Brk.Y /. Then there exists a finite set S of primes of k together with a regular
model Y for Y over Ok;S such that the following holds.

Let v … S and assume that b ˝ kv is unramified at all codimension 1 points of Ykv .
Then for all y 2 Y.Ov/ we have b.y/ D 0 2 Br kv .

If b is in fact unramified at all codimension 1 points of Y (so that b 2 BrY by (5.2)),
then it is well-known that for all but finitely many places v we have b.y/ D 0 for all
y 2 Y.Ov/ [37, Proposition 8.2.1]. Proposition 7.1 yields a generalisation of this to the
case when b may be ramified on Y .

Proof of Proposition 7.1. By (5.1), it suffices to prove the result when b has order a power
of a prime `. Choose a finite set S of primes such that ` 2 O�

k;S
, together with a regular

integral model Y for Y over Ok;S . Enlarging S if necessary, we extend b to an element of
some open subset U�Y such that U! SpecOk;S is surjective. Thus b˝ Fv 2BrUFv is
well-defined for all v … S . Let U DU\ Y ; by (5.2) we may assume that the complement
of U in Y is pure of codimension 1. We also assume that Y ˝ Fv is geometrically integral
for all v … S .

Now let v … S be such that b ˝ kv is unramified at all codimension 1 points of Ykv .
We claim that b is also unramified at all codimension 1 points of YOv . To see this, let D

be an irreducible divisor of YOv . If D D YFv , then b is unramified along D ; indeed, by
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construction b is well-defined on the non-empty open subset YFv \U of YFv . Assume
instead that D meets the generic fibre in some divisorD. The residue maps then give rise
to the commutative diagram

Br �.YOv /¹`º

��

@D // H1.�.D/;Q`=Z`/

��

Br �.Ykv /¹`º
@D // H1.�.D/;Q`=Z`/

However, the maps �.YOv / ! �.Ykv / and �.D/ ! �.D/ are isomorphisms, thus the
downward maps are also isomorphisms. As @D.b/D 0 by assumption, we find that @D.b/

D 0. This proves the claim, hence b ˝ kv 2 Br YOv by (5.2).
We may now prove the proposition. Let y 2 Y.Ov/. As b ˝ kv 2 Br YOv , we have

b.y/ 2 Br Ov D 0 (see [37, Corollary 6.9.3]), as required.

We now obtain a quantitative description of those primes v which satisfy the assump-
tions of Proposition 7.1. For simplicity, we only consider geometrically irreducible divi-
sors.

Proposition 7.2. Let Y be a smooth geometrically integral variety over a number field k
and let B�Brk.Y / be a finite subgroup. LetD 2 Y .1/ and assume that k is algebraically
closed in the residue field k.D/. Then the set of places

FD.b/ WD ¹v 2 Val.k/ W @D.B/˝ kv D 0º

is frobenian. Moreover:

(1) If @D.B/˝ Nk ¤ 0 then FD.b/ D ;.

(2) If @D.B/˝ Nk D 0 then dens.FD.b// D 1=j@D.B/j:

In the statement, for a field extension k � L we let � ˝k L W H1.k.D/;Q=Z/ !
H1.k.D/˝k L;Q=Z/ denote the usual restriction map on Galois cohomology.

Proof. The group of residues @D.B/ is a subgroup of H1.k.D/;Q=Z/. Thus it deter-
mines some finite abelian field extension k.D/ � R of degree @D.B/.

First assume that @D.B/ ˝ Nk ¤ 0. We need to show that @D.B/ ˝ kv ¤ 0 for all
places v. To do this, it suffices to show that these residues are non-zero after a finite field
extension. In particular, we may pass to a finite field extension if we wish, and assume
that k is algebraically closed in R. In this case D is geometrically irreducible, the field
R is the function field of a geometrically irreducible variety over k, and k.D/ � R is a
non-trivial finite field extension. It follows that k.D/˝ kv � R˝ kv is still a non-trivial
finite field extension for all v. However, this is exactly the field extension corresponding
to the residues @D.B/˝ kv; this group is therefore non-trivial, as required.

Now assume that @D.B/˝ Nk D 0. Inflation-restriction yields

0! H1.Gal. Nk.D/=k.D//;Q=Z/! H1.k.D/;Q=Z/! H1. Nk.D/;Q=Z/I
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thus k.D/! R is the base change of some finite abelian extension k � K of number
fields of degree @D.B/. A moment’s thought reveals that

FD.b/ D ¹v 2 Val.k/ W v is completely split in Kº:

The set of such places is clearly frobenian of density 1=ŒK W k� D 1=j@D.B/j.

7.2. Proof of Theorem 1.12

The upper bound is obtained in [31, Section 5.3]. It therefore suffices to prove the lower
bound.

Let S be a sufficiently large set of primes. Let U and B be as in Theorem 1.12 and
y 2 U.Q/B. Let ‚ denote the set of codimension 1 points of Pn which lie outside of U .
For each D 2 ‚, let LD 2 ZŒx0; : : : ; xn� be the primitive linear form defining D and let
PD be the union of S and those primes p for which @D B˝Qp D 0. As B � Br1U and
each D is geometrically integral, Proposition 7.2 implies that PD is frobenian of density
1=j@D.B/j. We define the completely multiplicative function $D via

$D.n/ D

´
1; 8p jn we have p 2 PD;

0; otherwise:

Lemma 7.3. Each $D is a frobenian multiplicative function of mean 1=j@D.B/j.

Proof. Follows immediately from Proposition 7.2.

These functions enjoy an analogue of Lemma 4.2.

Lemma 7.4. Enlarging S if necessary, the following holds. Let x D .x0; : : : ; xn/ be a
primitive integer vector. If

Q
D2‚$D.LD.x//D 1 then b.x0 W � � � W xn/˝Qp D 02BrQp

for all p … S and all b 2 B.

Proof. Let p be a prime and let‚p.x/ be the subset of‚ of thoseD for which p jLD.x/.
Let Y D PnZ n

S
D…‚p.x/ D , where D is the closure of D in PnZ. Our choice of ‚p.x/

implies that x 2 Y.Zp/. As $D.p/ D 1 for all D 2 ‚p.x/, we have p 2
T
D2‚.x/ PD .

Thus, by definition, the Brauer elements B ˝ Qp are unramified at each D 2 ‚p.x/.
If p is sufficiently large (independently of x), it now follows from Proposition 7.1 that
b.x/˝Qp D 0 for all b 2 B, as required.

We next obtain an analogue of Lemma 4.3.

Lemma 7.5. There exists ı > 0 such that

N.U;B; B/ �
1

2

X
.x0;:::;xn/2ZnC1

gcd.x0;:::;xn/D1
maxi jxi j�B

max
v2S[¹1º

jxi=x0�yi=y0jv<ı

Y
D2‚

$D.LD.x0; : : : ; xn//:
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Proof. Let x D .x0; : : : ; xn/ be a primitive integer vector withY
D2‚

$D.LD.x0; : : : ; xn// D 1:

By Lemma 7.4, we have b.x/˝Qp D 0 for all primes p … S , where x D .x0 W � � � W xn/.
For the real place and small primes recall that y 2 U.Q/B. As the Brauer pairing is

locally constant for the real and p-adic topologies [37, Proposition 8.2.9], we deduce the
existence of ı > 0 such that if jxi=x0 � yi=y0jv < ı for each i ¤ 0 and each v 2 S [1,
then b.x/˝Qv D 0 for all v 2 S [ ¹1º and all b 2 B.

For x as in the sum, we have shown that b.x/˝Qv D 0 for all places v of Q and
all b 2 B. However, the Hasse principle for Br Q (5.3) implies that b.x/ D 0 2 Br Q
for all b 2 B, as required.

Given Lemma 7.5, we see that Theorem 1.12 follows from Theorem 4.4.

7.3. A negative result

We finish this section by highlighting some of the subtleties which arise if one is trying to
generalise the proof of Theorem 1.12 to the case B � BrU , i.e. where the Brauer group
elements can be transcendental. Here we have a transcendental analogue of Lemma 6.2.

Example 7.6. Consider the conic bundle

a0x
2
C a1x

2
1 C a2x

2
2 D 0: (7.1)

There is no arithmetic function $ with the following properties: Let p be an odd prime
and .a0; a1; a2/ a primitive integer vector such that p ka0 but p − a1a2. Then$.a0/D 1
if and only if the conic (7.1) has a Qp-point.

This is proved without difficulty. The papers [29, 32] also restrict to algebraic Brauer
group elements, as the transcendental case is more difficult in general. The only transcen-
dental cases known are the lower bounds obtained by Hooley [26, 27], which includes
the correct lower bound for Example 7.6. It would be interesting to try to solve Serre’s
problem for other transcendental cases.

8. Multinorms

We now prove Theorem 1.14. We let V;W and E be as in the statement of Theorem 1.14.
Let  W W ! Pn be the projection given by the x-coordinate. By [31, Lemma 5.2] we
have

Nloc. ;B/ D Nloc.�; B/CO".B
nC1=2C"/

for any " > 0. Thus to prove a lower bound we may work with the explicit equation
(1.5) for W . Theorem 1.14 concerns rational numbers, so we first pass to a homogeneous
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problem involving integers. Let

e D gcd ¹ŒEi W Q� W i D 1; : : : ; sº; (8.1)

i.e. e is the gcd of the degrees of the maximal subfields Ei of the finite étale Q-algebra E.
We let Lj be the homogenisation of the linear polynomial Lj . We also let L0 D x0 and
let a0 2 Z be a representative of the congruence class �r mod e. A moment’s thought
reveals the following.

Lemma 8.1. Let x 2 ZnC1 be a primitive integer vector with x0 ¤ 0. Then
 �1.x1=x0; : : : ; xn=x0/ is everywhere locally soluble if and only if L0.x/a0 � � �Lr .x/ar
is a norm from

Qr
iD1 AEi .

Thus we need to understand when a p-adic number is a norm from a product of finite
field extensions. This is achieved by the following simple lemma.

Lemma 8.2. Let F be a finite étale Qp-algebra such that the integral closure OF of Zp
in F is unramified over Zp . Let f D gcdk�F Œk WQp�; where the greatest common divisor
is taken over all maximal subfields k of F . Then an element x 2 Qp is a norm from F if
and only if f j vp.x/.

Proof. We write F as a product of its maximal subfields, and p is a uniformiser in each
of these subfields as OF is unramified over Zp . This shows that

¹vp.NF=Qp .y// W y 2 F º D f Z

as ideals of Z. In particular, if f − vp.x/ then x is clearly not a norm from F .
So assume that f j vp.x/. Then as pf is a norm from F , it suffices to show that all

units of Zp are norms from F . However, this follows from the fact that OF is unramified
over Qp [39, Proposition V.2.3].

For each j D 0; : : : ; r we therefore let

Pj D S [
°

primes p W gcd
kp�Ep

Œkp W Qp� divides aj
±
;

where the greatest common divisor is taken over all maximal subfields kp of the finite
étale Qp-algebra Ep D E ˝Q Qp and S is the set of primes which are ramified in E. Let

$j .n/ D

´
1; 8p jn we have p 2 Pj ;

0; otherwise:

This is easily seen to be a frobenian multiplicative function with m.$j / ¤ 0.

Lemma 8.3. Let xD .x0; : : : ; xn/ be a primitive integer vector with x0 ¤ 0. Suppose that
rY

jD0

$j .Lj .x// D 1:

Then  �1.x/ has a Qp-point for all p … S .
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Proof. Let p … S and let j 2 ¹0; : : : ; rºwith$j .Lj .x//D 1. First suppose that p − Lj .x/.
Then Lj .x/aj is a p-adic unit, hence a local norm by Lemma 8.2. Next suppose that
p j Lj .x/. Then as $j .p/ D 1 we have p 2 Pj . As aj j vp.Lj .x/aj /, it follows from
Lemma 8.2 and the choice of Pj that Lj .x/aj is a local norm.

Thus when
Qr
jD0$j .Lj .x// D 1 we see that each Lj .x/aj is a local norm. To finish,

it suffices to note that the product of norms is again a norm.

This takes care of the primes not in S . For small primes and the real place one proceeds
in an analogous manner to Section 4.1.3. An application of Theorem 4.4 then completes
the proof of the following more explicit version of Theorem 1.14.

Theorem 8.4. In the above notation and the notation of Theorem 1.14 we have

Nloc.�; B/� BnC1
rY

jD0

.logB/dens.Pj /�1:

To complete the proof of Theorem 1.14 it suffices to prove the following.

Lemma 8.5. We have

dens.Pj / D ıDj .�/; j 2 ¹0; : : : ; rº; (8.2)

where Dj is the hyperplane in Pn determined by Lj .

Proof. The proof is inspired by the proof of [31, Theorem 5.5]. Choose a finite Galois
extension k=Q which contains the splitting fields of the Ei . Let � D Gal.k=Q/. Then the
Chebotarev density theorem implies that

ıDj .�/ D dens
�

primes p W
Frobp 2 Gal.k=Q/ fixes some multiplicity 1
geometric irreducible component of ��1.Dj /

�
:

However, Frobp fixes some multiplicity 1 geometric irreducible component if and only
if the fibre ��1.Dj / is split over Qp . As the divisors Dj are geometrically integral, [31,
Theorem 5.4] shows that this happens if and only if gcdkp�Ep Œkp WQp� divides aj ; where
the greatest common divisor is over all maximal subfields kp of Ep D E ˝Q Qp . The
lemma now follows from the definition of Pj .

This completes the proof of Theorem 1.14.

9. Multiple fibres

We finish with the proof Theorem 1.4, using the method from [11, Section 2]. Let V be a
smooth projective variety over a number field k equipped with a morphism � W V ! P1

whose generic fibre is geometrically integral. We assume that � has at least six double
fibres over Nk. (We say that � has a double fibre over a point P 2 P1 if ��P D 2D for
some divisor D on V .)
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To prove the result, we may assume that the fibre at infinity is smooth. Moreover, we
are free to pass to a finite field extension of k, so that we may assume that every double
fibre over Nk is actually defined over k.

Choose a square-free polynomial f 2 kŒx� of degree 6 such that the fibre over every
root of f is a double fibre. For ˛ 2 k�=k�2 we denote byC˛ the hyperelliptic curve ay2D
f .x/ for some representative a 2 k� of ˛. Let T˛ be the normalisation of V �P1 C˛ , so
that we obtain the commutative diagram

T˛

�˛

��

�˛ // V

�

��

C˛
w˛ // P1

(9.1)

By [11, Remark 2.1.1] the map �˛ is a Z=2Z-torsor. Moreover, let U � P1 be the com-
plement of the singular locus of � . Then diagram (9.1) is cartesian on restricting to U ,
since the fibre product is smooth above U .

Let now S be a finite set of places of k and let kS D
Q
v…S kv . Let x 2 U.k/ \

�.V.kS //. Choose ˛ 2 k�=k�2 such that x 2 w˛.C˛.k// (e.g. ˛ D f .x/). As diagram
(9.1) is cartesian over U , we see that the fibre ��1˛ .w�1˛ .x// has a kS -point. In particular,
T˛.k

S / ¤ ;.
As V is projective and �˛ is a Z=2Z-torsor, there exists a finite set AS � k�=k�2 such

that T˛.k
S / D ; for all ˛ … AS (see [44, Proposition 5.3.2]). It follows that

¹x 2 P1.k/ W x 2 �.V.kS //º � .P1 n U/.k/
[
˛2AS

¹x 2 P1.k/ W x 2 w˛.C˛.k//º:

As degf D 6, each C˛ is a hyperelliptic curve of genus 2. Therefore each C˛.k/ is finite
by Faltings’s theorem [16]. Theorem 1.4 follows.
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