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Abstract. Let p be a prime and F a totally real field in which p is unramified. We consider mod p
Hilbert modular forms for F , defined as sections of automorphic line bundles on Hilbert modular
varieties of level prime to p in characteristic p. For a mod p Hilbert modular Hecke eigenform
of arbitrary weight (without parity hypotheses), we associate a two-dimensional representation of
the absolute Galois group of F , and we give a conjectural description of the set of weights of
all eigenforms from which it arises. This conjecture can be viewed as a “geometric” variant of
the “algebraic” Serre weight conjecture of Buzzard–Diamond–Jarvis, in the spirit of Edixhoven’s
variant of Serre’s original conjecture in the case F DQ. We develop techniques for studying the set
of weights giving rise to a fixed Galois representation, and prove results in support of the conjecture,
including cases of partial weight 1.

Keywords. Hilbert modular forms, Serre’s Conjecture

1. Introduction

1.1. The weight part of Serre’s Conjecture

Let p be a rational prime. Serre’s Conjecture [56], now a theorem of Khare and Winten-
berger [43, 44] (completed by a result of Kisin [46]), asserts that every odd, continuous,
irreducible representation � W Gal.Q=Q/! GL2.Fp/ is modular in the sense that it is
isomorphic to the mod p Galois representation associated to a modular eigenform. Fur-
thermore, Serre predicts the minimal weight k � 2 such that � arises from an eigenform
of weight k and level prime to p, the recipe for this minimal weight being in terms of the
restriction of � to an inertia subgroup at p. Under the assumption that � is modular, the
fact that it arises from an eigenform of Serre’s predicted weight was known prior to the
work of Khare–Wintenberger (assuming p > 2), and indeed this plays a crucial role in
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their proof of Serre’s Conjecture. This fact, called the weight part of Serre’s Conjecture,
was proved by Edixhoven [24] using the results of Gross [37] and Coleman–Voloch [13]
on companion forms. Edixhoven also presents (and proves for p > 21) an alternative for-
mulation, which predicts the minimal weight k � 1 such that � arises from a mod p
eigenform of weight k and level prime to p, where mod p modular forms are viewed as
sections of certain line bundles on the reduction mod p of a modular curve. The qualitative
difference between the two versions of the conjecture stems from the fact that a mod p
modular form of weight 1 does not necessarily lift to characteristic zero.

There has been a significant amount of work towards generalising the original for-
mulation of the weight part of Serre’s Conjecture to other contexts where one has (or
expects) Galois representations associated to automorphic forms. This line of research
was first developed by Ash and collaborators in the context of GLn over Q (in particu-
lar [2]), and the most general formulation to date is due to Gee, Herzig and Savitt [31]. We
refer the reader to the introduction of [31] for a discussion of this history and valuable per-
spectives provided by representation theory, p-adic Hodge theory and the Breuil–Mézard
Conjecture.

An important setting for the development of generalisations of the weight part of
Serre’s Conjecture has been that of Hilbert modular forms, i.e., automorphic forms for
G D ResF=Q GL2 where F is a totally real field. Work in this direction was initiated by
Buzzard, Jarvis and one of the authors in [5], where a Serre weight conjecture is for-
mulated under the assumption that p is unramified in F . For a totally odd, continuous,
irreducible representation

� W Gal.F =F /! GL2.Fp/; (1.1)

there is a notion of � being modular of weight V , where V is an irreducible Fp-represen-
tation of G.Fp/ D GL2.OF =pOF /, where OF denotes the ring of integers of F . In this
context, the generalisation of the weight part of Serre’s Conjecture assumes that � is mod-
ular of some weight, and predicts the set of all such weights in terms of the restriction of �
to inertia groups at primes over p. This prediction can be viewed as a conjectural descrip-
tion of all pairs .�1; �p/ where �1 (resp. �p) is a cohomological type at1 (resp. K-type
at p) of an automorphic representation giving rise to � (see [5, Prop. 2.10]). The conjec-
ture was subsequently generalised in [30,55] to include the case where p is ramified in F ,
and indeed proved under mild technical hypotheses (for p > 2) in a series of papers by
Gee and collaborators culminating in [33, 34], with an alternative endgame provided by
Newton [50].

It is also natural to consider the problem of generalising Edixhoven’s variant of the
weight part of Serre’s Conjecture, especially in view of the innovation due to Calegari–
Geraghty [8] on the Taylor–Wiles method for proving automorphy lifting theorems. By
contrast with the original formulation of the weight part of Serre’s Conjecture, there has

1Both versions in the case p D 2 should ultimately follow from the results of Khare–
Wintenberger and Kisin, as explained in [6].
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been relatively little work in this direction. The main aim of this paper is to formulate
such a variant in the setting of Hilbert modular forms associated to a totally real field F in
which p is unramified. More precisely, for � as in (1.1), we give a conjectural description
of the set of all weights of mod p Hilbert modular eigenforms giving rise to �, where we
view mod p Hilbert modular forms as sections of certain line bundles on the special fibre
of a Hilbert modular variety. Furthermore, we develop some tools for studying the set of
possible weights, and prove results towards the conjecture in the first case that exhibits
genuinely new phenomena relative to the settings of [24] and [5]. A forthcoming paper
of the authors generalises all the conjectures and results of this article to the case where
p is ramified in F . Another direction that warrants further research is consideration of
higher degree cohomology of automorphic bundles, and it would be natural to pursue the
problem in the context of more general Shimura varieties.

A key point we should make is that in the setting of classical modular forms, the
enhancement provided by Edixhoven’s variant of Serre’s Conjecture pertains essentially
just to unramified-at-p Galois representations and weight 1 modular forms, but already in
the Hilbert modular setting, a much richer tableau emerges from the geometric variant, in
terms of both the related p-adic Hodge theory and arithmetic of automorphic forms. We
touch on this further in the course of outlining the contents of the paper below.

1.2. Mod p Hilbert modular forms and Galois representations

The foundations for this paper have their roots in the work of Andreatta–Goren [1], which
develops the theory of mod p Hilbert modular forms and partial Hasse invariants. In
particular, they use the partial Hasse invariants to define the filtration, which we refer to
instead as the minimal weight, of a mod p Hilbert modular form. However, the framework
for [1] is based on an alternative notion of Hilbert modular forms, defined using Shimura
varieties and automorphic forms associated to the reductive groupG�, the preimage of Gm

under det W G! ResF=Q Gm where G D ResF=Q GL2. We wish to work throughout with
automorphic forms with respect to G itself, which are more amenable to the theory of
Hecke operators and associated Galois representations. To this end we need to adapt the
setup of [1].

We begin by recalling the definition of Hilbert modular varieties in §2 and Hilbert
modular forms in §3 in our context. For us, a weight will be a pair .k; l/ 2 Z† � Z†,
where † is the set of embeddings F ! Q. A fundamental observation is the absence in
characteristic p of the parity condition on k that appears in the usual definition of weights
of Hilbert modular forms (with respect toG, as opposed toG�) in characteristic zero; our
.k; l/ is arbitrary. In §4 we explain the construction of Hecke operators in our setting, and
in §5 we recall (and adapt) the definition of partial Hasse invariants from [1].

In §6 we establish the existence of Galois representations associated to mod p Hilbert
modular eigenforms of arbitrary weight. More precisely, we prove (see Theorem 6.1.1):

Theorem. If f is a mod p Hilbert modular eigenform of weight .k; l/ and level U.n/
with n prime to p, then there is a Galois representation �f W GF ! GL2.Fp/ such that
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if v − np, then �f is unramified at v and the characteristic polynomial of �f .Frobv/ is
X2 � avX C dv NmF=Q.v/, where Tvf D avf and Svf D dvf .

Under parity hypotheses on k, this was proved by Emerton–Reduzzi–Xiao [26] and
Goldring–Koskivirta [36] (independently). The new ingredient allowing us to treat arbi-
trary .k; l/ is to use congruences to forms of level divisible by primes over p. This
introduces a number of technical difficulties, the most critical of which is overcome using
a cohomological vanishing result proved in joint work with Kassaei [20].

1.3. A geometric Serre weight conjecture

In §7, we introduce the notion of geometric modularity and formulate a conjecture that
specifies the set of weights for which a given � is geometrically modular. A key point is
that the geometric setting allows for the notion of a minimal weight (among the possible
k for a fixed l) of eigenforms giving rise to �, something not apparent in the framework
of [5]. An investigation of this phenomenon and its interaction with properties of‚-cycles
(under which l varies) in this context led us to the expectation that this minimal weight
should lie in the cone „Cmin D „min \ Z†>0, where

„min WD ¹k 2 Z† j pk� � kFr�1 ı� for all � 2 †º;

and that geometric modularity of � for weights in „Cmin can be characterised using p-adic
Hodge theory. In particular, we make the following conjecture (see Conjecture 7.3.1 for a
stronger version, and Definitions 7.2.1 and 7.2.2 for conventions on Hodge–Tate weights):

Conjecture. Suppose that � W GF ! GL2.Fp/ is irreducible and geometrically modular
.of some weight/, and let l 2 Z†. Then there exists kmin D kmin.�; l/ 2„

C
min such that the

following holds for all k 2 „Cmin:

� is geometrically modular of weight .k; l/ ” k �Ha kmin

” �jGFv has a crystalline lift of weight .k� ; l� /�2†v for all v jp.

The inequality in the statement means that k � kmin is a non-negative integral linear
combination of weights of partial Hasse invariants, and the existence of a weight kmin

such that the second equivalence holds already has deep consequences in p-adic Hodge
theory which are not apparent from the framework of algebraic Serre weight conjectures.
We also stress that one might have expected that, by analogy with the algebraic setting
in [5], the preceding conjecture held with „Cmin replaced by the set of totally positive
weights. Indeed, we had been positing such a formulation to experts on Serre weight
conjectures, until R. Bartlett showed us a counterexample to the resulting p-adic Hodge-
theoretic implications; this led us to examine the possible ‚-cycles more closely and
arrive at the above version. The role of „min in the conjecture in turn inspired the main
result of [19], thus answering the basic question posed in [1] of whether the minimal
weight of a mod p Hilbert modular form is totally non-negative; in fact [19, Cor. 1.2]
establishes the stronger result that it lies in „min.
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In §7 we also explain the relation with the Serre weight conjectures of [5], which
can be viewed as specifying the weights .k; l/ 2 Z†�2 � Z† (i.e., algebraic weights) for
which � is algebraically modular. In particular, Conjecture 7.5.2 predicts that geometric
and algebraic modularity of � for a weight .k; l/ are equivalent if k 2 Z†�2 \„min. The
hypothesis k 2 Z†�2 is needed for the notion of algebraic modularity, and it is not hard to
see that it implies geometric modularity even without the assumption k 2 „min, at least if
all k� have the same parity (see Proposition 7.5.4). On the other hand, the opposite impli-
cation seems much more difficult, and its failure for k 62 „min can be observed through
the optic of modular representation theory (see Remark 7.5.3). Furthermore, for algebraic
weights in „min, the Breuil–Mézard Conjecture [4] (or more precisely its generalisation
in [33, Conj. 1.1.5]) converts the p-adic Hodge-theoretic implications of Conjecture 7.3.1
into non-trivial results on the mod p representation theory of GL2.Fpr / (see Wiersema’s
PhD thesis [62]). We remark also that the interplay between algebraic and geometric Serre
weights is reflected in the geometry of Hilbert modular varieties; this theme motivated the
construction in [20] of a filtration and Jacquet–Langlands relation for mod p Hilbert mod-
ular forms of pro-p-Iwahori level at p.

In the case F D Q, the only non-algebraic weights with k 2 „Cmin have the form
.1; l/, for which Conjecture 7.3.22 reduces to the statement that � is unramified at p if
and only if it arises from a mod p eigenform of weight 1. For general F , the analogous
statement relating (modular) � unramified at p to parallel weight 1 forms is established
(under technical hypotheses) by work of Gee–Kassaei [32] and Dimitrov–Wiese [23];
however, there is a much richer range of possibilities for � to arise (minimally) from
forms with non-algebraic minimal weights. The first instance where this is apparent is for
real quadratic fields F in which p is inert, and we investigate this in detail in §11.

1.4. Partial ‚-operators, q-expansions and the inert quadratic case

We have already indicated how the perspective afforded by Conjectures 7.3.1 and 7.5.2
leads to new results on the geometry of Shimura varieties and mod p automorphic forms,
as in [19] and [20]. On the other hand, progress on these conjectures evidently requires
more geometric input than was needed for the proof of the algebraic Serre weight con-
jecture of [5]. To that end, we review and develop several useful general tools in the
context of Hilbert modular varieties, beginning with the theory of ‚-operators in §8. We
again proceed by adapting the treatment in [1], but in doing so we introduce some new
perspectives which we feel simplify and clarify some aspects of their construction. (See
Remark 8.1.3 and the proof of Theorem 8.2.2.) Furthermore, the approach taken here leads

2Strictly speaking, we assume F ¤Q throughout the paper to allow for a more uniform exposi-
tion, and because nothing new would be presented in the case F D Q. For F D Q, the equivalence
between algebraic and geometric modularity for k � 2 is standard, and the analogue of Conjec-
ture 7.3.2 reduces via the Breuil–Mézard Conjecture to Edixhoven’s variant of the weight part of
Serre’s Conjecture, hence is known (at least if p > 2).
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to a substantial improvement on the results in [1] on‚-operators when p is ramified in F ;
see [18].

In the last few sections, we make critical use of q-expansions. Most of §9 is a straight-
forward application of standard methods and results describing q-expansions and the
effect on them of Hecke operators. In addition to this, we construct partial Frobenius
operators, whose image we relate to the kernel of partial ‚-operators in Theorem 9.8.2;
this argument is (to our knowledge) new, and the result generalises a theorem of Katz [40].
These results are further generalised in [18] to the case where p is ramified in F .

In §10 we first prove various technical results on eigenforms and their q-expansions.
We then study the behaviour of the minimal weight for � as l varies (see Theorem 10.4.2),
and prove that if an eigenform of algebraic weight is ordinary at a prime over p, then so
is the associated Galois representation (Theorem 10.7.1).

Finally, in §11 we specialise to the inert quadratic case. We first use results from inte-
gral p-adic Hodge theory to describe those � for which the (conjectural) minimal weight is
not algebraic (i.e., has k� D 1 for some � ). We then use the tools developed in the preced-
ing sections to transfer modularity results between algebraic and non-algebraic weights.
In particular, we prove cases of Conjecture 7.3.2 in the setting of partial weight 1, condi-
tional on our conjectured equivalence between algebraic and geometric modularity (see
Theorem 11.4.1). Since one direction of this equivalence is easy under a parity hypothesis,
we also obtain the following unconditional result (Theorem 11.4.3):

Theorem. Suppose that ŒF W Q� D 2, p is inert in F , 3 � k0 � p, k0 is odd and � W
GF ! GL2.Fp/ is irreducible and modular. If �jGFp has a crystalline lift of weight
..k0; 1/; .0; 0//, then � is geometrically modular of weight ..k0; 1/; .0; 0//.

Our method is indicative of a general strategy for transferring results from the setting
of algebraic Serre weight conjectures to their geometric variants; further work in this
direction is carried out in Wiersema’s thesis [62].

2. Hilbert modular varieties

In this section we recall the definitions and basic properties of the models for Hilbert
modular varieties used throughout the paper.

2.1. General notation

Let p be a fixed rational prime. Let F be a totally real field in which p is unramified. We
let OF denote the ring of integers of F , and OF;` D OF ˝ Z` for any prime `.

Since this paper offers nothing new in the case F D Q (relative to [24]), we will
assume throughout that F ¤Q in order to avoid complications arising from consideration
of the cusps.

Let d D dF=Q denote the different of F over Q. Fix algebraic closures Q;Qp of Q
and Qp respectively, and fix embeddings of Q into Qp and C.
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Let † denote the set embeddings of F into Q. Let L denote a finite extension of Qp

in Qp containing the image of every embedding in †, O its ring of integers, � a uni-
formiser and E D O=� its residue field. We identify † with the set of embeddings of F
into L (and hence of OF into O), as well as the set of embeddings of F into R.

If T is a subset of F1 D F ˝ R '
Q
�2† R, we let TC be the set of totally positive

elements in T .

2.2. Hilbert modular varieties of level N

Definition 2.2.1. For a fractional ideal J of F and an integerN � 3, let MJ;N denote the
functor which sends an O-scheme S to the set of isomorphism classes of data .A; i; �; �/
comprising

� an abelian scheme A=S of relative dimension ŒF W Q�,

� a ring homomorphism � W OF ! End.A=S/,

� anOF -linear isomorphism � W .J;JC/' .Sym.A=S/;Pol.A=S// such that the induced
map A˝OF J ! A_ is an isomorphism, where Sym.A=S/ (resp. Pol.A=S/) denotes
the étale sheaf whose sections are symmetric OF -linear morphisms (resp. polarisa-
tions) A! A_,

� an OF -linear isomorphism � W .OF =N/
2 ' AŒN �.

We call such a quadruple a J -polarised Hilbert–Blumenthal abelian variety with level N
structure (or simply an HBAV when J and N are fixed) over S .

The functor MJ;N is representable by a smooth O-scheme, which we shall
denote YJ;N ; see [16, Thm. 2.2] and the discussion before it, from which it also follows
(using for example [10, Thm. 1.4]) that YJ;N is quasi-projective over O.

LetZJ;N denote the finite O-scheme representingOF -linear isomorphisms J=NJ '
d�1 ˝ �N . If .A; �; �; �/ is an HBAV over S , then �˝^2� defines an isomorphism

J=NJ D J ˝OF ^
2
OF
.OF =N/

2
' Sym.A=S/˝OF ^

2
OF
AŒN �;

where AŒN � is viewed as an étale sheaf on S . Composing with the isomorphisms

Sym.A=S/˝OF ^
2
OF
AŒN � ' Hom.OF ; �N / ' d�1 ˝ �N

induced by the Weil pairing and the trace pairing thus gives an element of ZJ;N .S/.
In particular, taking S D YJ;N and the universal HBAV over it, we obtain a canonical
morphism YJ;N ! ZJ;N with geometrically connected fibres.

2.3. Unit action on polarisations

The group O�F;C of totally positive units in OF acts on YJ;N by � in O�F;C send-
ing .A; �; �; �/ 2 YJ;N .S/ for every O-scheme S to .A; �; ��; �/ 2 YJ;N .S/. Similarly
u 2 GL2.OF =NOF / acts by sending .A; �; �; �/ to .A; �; �; � ı ru�1/ where ru�1 denotes
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right multiplication by u�1, thus defining a right action of GL2.OF =NOF /, and hence
of GL2. yOF / on YJ;N through the projection GL2. yOF /! GL2.OF =NOF / where yOF
denotes the profinite completion ofOF . If � 2O�F , then the action of �2 2O�F;C on YJ;N
coincides with that of ��1I2 2 GL2. yOF / (where I2 denotes the 2-by-2 identity matrix).

2.4. Adelic action on level structures

Let U be an open compact subgroup of ResF=Q GL2.yZ/ ' GL2. yOF / containing
GL2.OF;p/. Choose an integer N � 3 such that N is not divisible by p and
U.N/ � U , where U.N/ WD ker.GL2. yOF / ! GL2.OF =NOF //. Then the action of
O�F;C � GL2. yOF / induces one on YJ;N of the finite group

GU;N WD .O
�
F;C � U/=¹.�

2; u/ j � 2 O�F ; u 2 U; u � �I mod N º:

Note that the action of .�; u/ 2 O�F;C �GL2. yOF / on YJ;N is compatible with the natural
action on ZJ;N defined by multiplication by � det.u/�1.

We will show that if U is sufficiently small, then GU;N acts freely on YJ;N . To make
this precise, let PF denote the set of primes r in Q such that the maximal totally real
subfield Q.�r /C of Q.�r / is contained in F , and let CF denote the set of quadratic
CM-extensions K=F (in a fixed algebraic closure of F ) such that either

� K D F.�r / for some odd prime r 2 PF , or

� K D F.
p
ˇ/ for some ˇ 2 O�F .

Note that the sets PF and CF are finite.
For an ideal n of OF , we define the following open compact subgroups of GL2. yOF /:

U0.n/ WD

²�
a b

c d

�
2 GL2. yOF /

ˇ̌̌̌
c 2 n yOF

³
;

U1.n/ WD

²�
a b

c d

�
2 U0.n/

ˇ̌̌̌
d � 1 2 n yOF

³
;

1U1.n/ WD

²�
a b

c d

�
2 U1.n/

ˇ̌̌̌
a � 1 2 n yOF

³
:

Lemma 2.4.1. Suppose that one of the following holds:

� U � 1U1.n/ for some n such that if r 2 PF , then n does not contain rOF where r is
the prime over r in Q.�r /C, or

� U � U0.n/ for some n such that if �r � K and K 2 CF , then n � q for some prime
q of F inert in K and not dividing r .

Then GU;N acts freely on YJ;N .

Proof. For GU;N to act freely on YU;N means that the morphism GU;N � YU;N !

YU;N �O YU;N defined by .g; x/ 7! .gx; x/ is a closed immersion. Since this morphism
is finite and the fibre over every closed point is reduced, it suffices to prove that for every
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geometric point x 2 YU;N .S/, the mapGU;N ! YU;N .S/ defined by g 7! gx is injective,
i.e., the stabiliser of x in GU;N is trivial.

Suppose then that .A; �; �; �/ is an HBAV over an algebraically closed field, and that
.�; u/ 2 O�F;C � U is such that .A; �; ��; � ı ru�1/ is isomorphic to .A; �; �; �/. This
means that there is an automorphism ˛ of A such that ˛ commutes with the action of OF
and satisfies ˛ ı � D � ı ru�1 and �.j / D ˛_ ı �.�j / ı ˛ for j 2 J .

We wish to prove that ˛ D �.�/ for some � 2 O�F . Suppose this is not the case. View-
ing F as a subfield of End0.A/ D Q˝ End.A/ via �, it follows from the classification of
endomorphism algebras of abelian varieties that F.˛/ is a quadratic CM-extensionK=F .
Since ˛ is an automorphism, it is a unit in an order in K, so ˛ 2 O�K . Since O�F and O�K
have the same rank and ˛ … O�F , we have ˛n 2 O�F for some n > 0; replacing ˛ by a
power, we may assume n is a prime r . Since ˛r 2 F and K D F Œ˛� is Galois over F , it
follows that �r 2 K, and hence either K D F.�r / or r D 2. In either case we conclude
that r 2 PF , �r � K and K 2 CF .

Now let f .X/ denote the minimal polynomial of ˛ over F . Note that since ˛r 2 O�F ,
we have

f .X/ D .X � ˛/.X � �r˛/ D X
2
� .1C �r /˛X C �r˛

2 (2.1)

for some �r 2 �r . For each prime ` of F not dividing p, the `-adic Tate module T`.A/ is
free of rank 2 over OF;` and is annihilated by f .˛/, so f .X/ is in fact the characteristic
polynomial of ˛ on T`.A/. It follows that f .X/ is the characteristic polynomial of ˛ on
AŒN �, and hence also the characteristic polynomial of u on .OF =N/2.

Suppose now that U is as in the first bullet in the statement of the lemma, Since
U � 1U1.n/, the characteristic polynomial of u is .X � 1/2 mod n. Comparing with
(2.1), we see that .1C �r /˛ � 2mod n and �r˛2 � 1mod n. If r D 2, this implies 2 2 n,
contradicting the hypothesis on n. If r is odd, this implies �r˛2.�r � ��1r /2 2 n; since
�r˛

2 2 O�F and .�r � ��1r /2 generates r, this also contradicts the hypothesis on n.
Suppose now that U is as in the second bullet of the statement. Then there is a prime q

dividing n such that q is inert inK and does not divide r . Since the discriminant of f .X/
is only divisible by primes over r , we have OK;q D OF;qŒ˛�, so f .X/ is irreducible
modulo q. On the other hand, since u 2 U0.q/ its characteristic polynomial factors over
OF =q, and we again obtain a contradiction.

We have now shown that ˛D �.�/ for some�2O�F . It follows that u�1��I modN ,
and � D ��2. Therefore the image of .�; u/ in GU;N is trivial, as required.

Caveat 2.4.2. Unless otherwise indicated, we assume throughout the paper that the open
compact subgroup U of GL2. yOF / contains GL2.OF;p/ and is sufficiently small that the
conclusion of Lemma 2.4.1 holds for some, hence all, N � 3 such that U.N/ � U .

2.5. Hilbert modular varieties of level U

We fix a set T of representatives t in .A1F /
� for the strict ideal class group .A1F /

�=F �C
yO�F

' A�F =F
� yO�F F

�
1;C, and let Jt denote the corresponding fractional ideal of F . We
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assume the representatives t are chosen so that the Jt are prime to p i.e., tp 2 O�F;p
for each t 2 T .

Since YJt ;N is quasi-projective over O, the quotient YJt ;N =GU;N is representable by
a scheme over O (by [38, Prop.V.1.8]), and we define

YU D
a
t2T

YJt ;N =GU;N :

Then YU is smooth over O and the projection
`
t2T YJt ;N ! YU is Galois and étale with

Galois group GU;N (in view of Lemma 2.4.1 and Caveat 2.4.2). Moreover, YU is defined
over O \Q and is independent of the choices of N and T .

2.6. Components

LetZU D
`
t2T ZJt ;N =GU;N with .�;u/ 2GU;N acting by multiplication by � det.u/�1,

so if �N .Q/�O, thenZU .O/ can be identified with the set of (geometrically) connected
components of YU . Fixing a generator �N for d�1˝�N .O/ as anOF -module, we obtain
a bijection

.A1F /
�=F �C det.U / ' ZU .O/ (2.2)

by sending xF �C det.U / to the GU;N -orbit of the isomorphism Jt=NJt ' d�1 ˝ �N .O/

sending the class of .x˛/�1 2 Jt ˝OF yOF to �N , where t 2 T and ˛ 2 F �C (unique up to
multiplication by an element of O�F;C) are chosen so that x�1 2 t˛ yO�F .

2.7. Complex points

We recall that YU is defined over O \Q, and a standard construction yields an isomor-
phism

GL2.F /nGL2.AF /=UU1 ' YU .C/ (2.3)

where U1 D
Q
�2† SO2.R/R� �

Q
�2† GL2.R/ D GL2.F1/, allowing us to view YU

as a model for the Hilbert modular variety of level U . More precisely, by the Strong
Approximation Theorem, any double coset as in (2.3) can be written in the form

GL2.F /g1 diag.1; x/UU1

for some g1 2 GL2.F1/, x 2 .A1F /
�, such that det.g1/ 2 F �1;C and x yOF D Jd yOF

for some J . Such a double coset corresponds under (2.3) to the GU;N -orbit of the HBAV
over C defined by

C ˝OF =.g1.z0/OF ˚ .Jd/�1/

with the evident OF -action, isomorphism � W .J; JC/ ' .Sym.A=S/;Pol.A=S// defined
so that �.˛/ corresponds to the Hermitian form trF=Q.˛s Nt=Im.g1.z0//, and level N
structure defined by .a; b/ 7! .ag1.z0/C bx

�1/=N , where z0 D i ˝ 1 2 C ˝OF .
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3. Hilbert modular forms

In this section we recall the definition of Hilbert modular forms as sections of certain line
bundles on Hilbert modular varieties.

3.1. Automorphic line bundles

The condition that A˝OF J ! A_ is an isomorphism (in the definition of an HBAV) is
called the “Deligne–Pappas” condition. Our assumption that p is unramified in F ensures
its equivalence with the “Rapoport condition” that Lie.A=S/ is, locally on S , free of
rank 1 over OF ˝ OS [16, Cor. 2.9], and hence so is its OS -dual e��1

A=S
' s��

1
A=S

,
where s W A! S is the structure morphism and e W S ! A is the identity section. Since
OF ˝OS '

L
�2† OS as a coherent sheaf of OS -algebras, we may accordingly decom-

pose s��1A=S as a direct sum of line bundles on S . Applying this to the universal HBAV
AJ;N over YJ;N , we obtain a decomposition s��1AJ;N =YJ;N D

L
�2† !� where each !�

is a line bundle on S . For a tuple k D .k� /�2† 2 Z†, we let !˝k denote the line bundleN
� !
˝k�
� on YJ;N .

Remark 3.1.1. Note that the definition of !˝k makes sense “integrally” because p is
assumed to be unramified in F so that the Rapoport condition is satisfied; in the ramified
case, one can instead proceed as in [54] using models for Hilbert modular varieties defined
by Pappas and Rapoport [52].

Since H1
DR.A=S/ D R1s��

�
A=S

is locally free of rank 2 over OF ˝ OS (by [53,
Lem. 1.3]) sitting in the exact sequence

0! s��
1
A=S ! H1

DR.A=S/! R1s�OA ! 0

of locally free modules overOF ˝OS (given by the Hodge–de Rham spectral sequence),

^
2
OF˝OS

H1
DR.A=S/ ' s��

1
A=S ˝OF˝OS

R1s�OA (3.1)

is locally free of rank 1 over OF ˝ OS and similarly decomposes as a direct sum of
line bundles indexed by � 2 †. We let ı� denote the line bundles so obtained from the
universal HBAV over S D YJ;N , and for a tuple l D .l� /�2† 2 Z†, we let ı˝l denote the
line bundle

N
� ı
˝l
� . Finally, we let L

k;l
J;N denote the line bundle !˝k ˝ ı˝l .

Recall that we defined the action of O�F;C � GL2. yOF / on S D YJ;N by requiring the
pull-back via .�; u/ of the universal HBAV .A; �; �; �/ to be isomorphic to

.A; �; ��; � ı ru�1/I

we let ˛�;u W A! .�; u/�A be the unique such isomorphism. Note that

..�; u/�˛�0;u0/ ı ˛�;u D ˛��0;uu0



F. Diamond, S. Sasaki 3464

for .�; u/; .�0; u0/ 2 O�F;C � GL2. yOF / (where we identify .�; u/� ı .�0; u0/� with
.��0; uu0/� via the natural isomorphism resulting from the equality .�0; u0/ ı .�; u/ D
.��0; uu0/). It follows that the induced OF ˝OS -linear isomorphisms

˛��;u W .�; u/
�.s��

1
A=S /! s��

1
A=S ; .�; u/�.R1s��

�
A=S /! R1s��

�
A=S

satisfy the relation ˛��;u ı .�; u/
�˛��0;u0 D ˛

�
��0;uu0 . We thus obtain an action of the group

O�F;C � GL2. yOF / on the sheaves s��1A=S and R1s���A=S , and hence on the line bun-

dles L
k;l
J;N , compatible with its action on YJ;N .

Recall that if � 2 O�F , then .�2; �I2/ acts trivially on YJ;N . In this case the iso-
morphism ˛�2;�I2 is given by �.�/, and it follows that the induced action on L

k;l
J;N is

multiplication by the element �kC2l WD
Q
� �.�/

k�C2l� . In particular, if k� C 2l� is an
integerw independent of � , then �kC2l DNmF=Q.�/

w . Thus ifw is even, then the action
of O�F;C � U on L

k;l
J;N factors through GU;N and hence defines descent data; we let L

k;l
U

be the resulting line bundle on YU (given by [38, Cor. VIII.1.3]). The same holds if w is
odd and NmF=Q.�/D 1 for all�2O�F \U . Note that the line bundle L

k;l
U is independent

of the choice of N .

3.2. Hilbert modular forms

Definition 3.2.1. For two tuples k and l above, we say .k; l/ is paritious if k� C 2l� is
independent of � . For such .k; l/, we call an element of H 0.YU ;L

k;l
U / a Hilbert modular

form of weight .k; l/ and of level U (where in addition to Caveat 2.4.2, we assume that
NmF=Q.�/ D 1 for all � 2 O�F \ U if k� C 2l� is odd).

We now make an observation critical to our consideration of weights of mod p Hilbert

modular forms. Let Y J;N denote the special fibre of YJ;N , and similarly let L
k;l

J;N denote
the pull-back of L

k;l
J;N to Y J;N . If �kC2l � 1 mod � for all � 2 O�F \U , then the action

of O�F;C � U on L
k;l

J;N factors through GU;N , and hence defines descent data, giving rise

to a line bundle L
k;l

U on the special fibre Y U of YU (again independent of the choice ofN ).
If .k; l/ is paritious, then this is simply the pull-back of L

k;l
U to Y U , but the line bundles

L
k;l

U may be defined even if .k; l/ is not paritious. In particular, if O�F \ U is contained
in the kernel of reduction modulo p, then L

k;l
U is defined for all pairs .k; l/. This holds

for example if U � U1.n/ for some ideal n such that the kernel of O�F ! .OF =n/
� is

contained in the kernel of O�F ! .OF =p/
�.

More generally, for any O-algebra R in which the image of �kC2l is trivial for all
� 2 O�F \ U , we obtain a line bundle L

k;l
U;R on YU;R D YU �O R by descent from the

pull-back of the line bundles L
k;l
J;N .

Definition 3.2.2. If U , k, l and R are such that the image of �kC2l in R is trivial for all

� 2O�F \U , then we call an element ofH 0.YU;R;L
k;l

U;R/ a Hilbert modular form overR
of weight .k; l/ and level U , and we write Mk;l .U IR/ for the R-module of such forms.
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If R D E, then we call such a form a mod p Hilbert modular form (of weight .k; l/ and
of level U ).

Definition 3.2.3. We say that U is p-neat if O�F \ U is contained in the kernel of reduc-
tion modulo p (in addition to U being sufficiently small in the sense of Caveat 2.4.2).

3.3. The Koecher Principle

The Koecher Principle implies that Mk;l .U IR/ is a finitely generated R-module (assum-
ing an O-algebra R is Noetherian), and that M0;0.U IR/ D H

0.YU;R;OYU;R/ is the set
of locally constant functions on YU;R. Both of these assertions follow from the analogous
ones with YU replaced by YJ;N , proved by Rapoport. (The case J D OF is treated by
[53, Prop. 4.9 and discussion preceding Prop. 6.11], and the modifications needed for
the case of arbitrary J are given in [11]; see also [21, Thm. 8.3] and [22, Thm. 7.1] for
variants with different level structure and descent data in place.)

3.4. Canonical trivialisations

We observe that the sheaves ı˝l on YJ;N are in fact free (not just locally so). Indeed, if
A is the universal HBAV over S D YJ;N , then we have a sequence of canonical isomor-
phisms

R1s�OA ' Lie.A_/ ' Lie.A/˝OF J ' HomOS .s��
1
A=S ;OS /˝OF J

' HomOF˝OS .s��
1
A=S ; Jd�1 ˝OS /; (3.2)

from which it follows that ^2
OF˝OS

H1
DR.A=S/ ' s��

1
A=S
˝OF˝OS R

1s�OA is canoni-
cally isomorphic to Jd�1 ˝ OS , which is free of rank 1 over OF ˝ OS . Therefore each
ı� is free of rank 1 over OS , and hence so are the sheaves ı˝l .

Under the action of .�; u/ 2 O�F;C � U on YJ;N , one finds that the canonical isomor-
phism  from ^2

OF˝OS
H1

DR.A=S/ to Jd�1 ˝ OS is multiplied by � (in the sense that
.�; u/� D .� ˝ 1/ ı ˛��;u). Therefore the action of .�; u/ on the resulting trivialisa-
tion of L

0;l
J;N D ı

˝l is multiplication by �l . In particular, if .0; l/ is paritious (i.e., l� is

independent of � ), then �l D 1 so the trivialisation of L
0;l
J;N on YJ;N is invariant under

GU;N , hence descends to one on YU . Similarly if �l � 1 mod � for all � 2 O�F;C, then
the canonical trivialisation of L

0;l

J;N on Y J;N descends to one on Y U .

3.5. Complex Hilbert modular forms

If .k; l/ is paritious, then under the identification (2.3), the line bundle L
k;l
U gives the usual

automorphic line bundle whose sections are classical Hilbert modular forms of weight
.k; l/ and level U . More precisely, L

k;l
U is defined over O \Q, and its fibre at the point

yg1;x 2 YU .C/ corresponding to the double coset GL2.F /g1 diag.1; x/UU1 has basis
ek;l D

N
� .ds

˝k�
� ˝ h

˝l�
� /, where s D .s� /�2† are the coordinates on C˝ F ' C† and
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h� is the basis for ı� given by the trivialisation defined above. For � 2 Mk;l .U IC/, we
define the function f� W GL2.AF /! C so that

y�g1;x� D kxk
�1 det.g1/l�1j.g1; z0/kf�.g1u/ek;l for all  2 GL2.F /, u 2 U ,

where j.g1; z/ D cz C d for g1 D
�
a b
c d

�
2 GLC2 .R/ and z in the complex upper half-

plane H, and the exponents k and l � 1 denote products over the embeddings � 2 †.
Then � 7! f� defines an isomorphism Mk;l .U IC/ ' Ak;l .U /, where Ak;l .U / is the set
of functions f W GL2.AF /! C such that

� f .hu/ D det.u1/1�lj.u1; i/�kf .h/ for all  2 GL2.F /, h 2 GL2.AF / and u 2
UU1;

� fh.g1.z0// D det.g1/l�1j.g1; i/kf .hg1/ is holomorphic on H† for all h 2
GL2.A1F /.

Note also that f 7! .fdiag.1;x// defines an isomorphism Ak;l .U /'
L
xMk.�U;x/, where

x runs over a set of representatives of F �nA�F =det.U /F �1;C,

�U;x D GLC2 .F / \ diag.1; x/U diag.1; x/�1

and Mk.�/ denotes the set of holomorphic functions ' W H† ! C such that '..z// D
det./�k=2j.; z/k'.z/ for all  2 � .

3.6. Forms of weight .0; l/ in characteristic p

Let us now return to characteristic p and give sufficient hypotheses for the sheaf L
0;l

U on
the special fibre Y U to be globally free, even when .0; l/ is not paritious. Suppose that
�N .Q/�O, so the geometric components of YJ;N are defined over O. Recall that the set
of geometric components is in bijection with ZJ;N .O/, with .�; u/ acting by � det.u/�1,
so the stabiliser of each component of YJ;N is ¹.�; u/ 2 O�F;C �U j � � det.u/mod N º.
Letting HU;N denote the corresponding subgroup of GU;N , we see that if �l � 1 mod �

for each � 2 O�F;C \ det.U /, then the trivialisation of L
0;l

J;N on Y J;N is invariant under
HU;N , so descends to the quotient Y J;N =HU;N . Note that this hypothesis also implies that

�2l � 1 mod � for all � 2 O�F \ U , so that L
0;l

J;N descends to Y U ; since the projection
from

`
Y J;N =HU;N is an isomorphism on each connected component, it follows that

L
0;l

U is (globally) free on Y U .
We record this as follows (recall that ZU is defined in see §2.6):

Proposition 3.6.1. Suppose that�N .Q/�O for someN prime to p such thatU.N/�U .

If �l � 1 mod � for all � 2 O�F;C \ det.U /, then the sheaf L
0;l

U on Y U is .non-canoni-
cally/ isomorphic to OYU , and M0;l .U IE/ to the space of functions ZU .O/! E.

Note that the hypotheses of the proposition are satisfied for all l 2 Z† if O�F;C \
det.U / is contained in the kernel of reduction modulo p. This holds for example if U �
1U1.n/ for some ideal n such that the kernel ofO�F ! .OF =n/

� is contained in the kernel
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of O�F ! .OF =p/
�. In this case U is also p-neat, so the sheaves L

k;l

U are defined for all

pairs .k; l/, and the spaces of mod p Hilbert modular forms H 0.Y U ;L
k;l

U / for fixed k
and varying l are (non-canonically) isomorphic.

4. Hecke operators

In this section, we define Hecke operators geometrically on spaces of mod p Hilbert
modular forms.

4.1. Adelic action on Hilbert modular varieties

Suppose that U1 and U2 are open compact subgroups of GL2. yOF /; we assume as usual
that Caveat 2.4.2 holds, so U1 and U2 contain GL2.OF;p/ and are sufficiently small in
the sense that the conclusion of Lemma 2.4.1 holds.

Suppose that g2GL2.A1F /DGL2. yOF ˝Q/with gp2GL2.OF;p/ and g�1U1g�U2.
We now proceed to define a morphism �g W YU1 ! YU2 which corresponds to the one
defined by right multiplication by g on the associated Hilbert modular varieties; i.e. on
complex points it is given by GL2.F /xU1U1 7! GL2.F /xgU2U1.

We first choose

� ˛ 2 OF such that ˛g 2M2. yOF / and ˛ 2 O�F;p;

� N2 prime to p such that U.N2/ � U2;

� N1 prime to p such that U.N1/ � U1 and .˛g/�1N1=N2 2M2. yOF /.

We will define a morphism Q�g W
`
YJ;N1 !

`
YJ;N2 whose composite with the

projection to YU2 factors through YU1 , yielding the desired morphism �g W YU1 ! YU2 ,
independent of the above choices of ˛, N1 and N2.

We first note that the conditions above imply thatN2 jN1, g�1U.N1/g � U.N2/, and
(right) multiplication by .˛g/�1N1=N2 induces an injective OF -linear map

j W .OF =N2/
2
! .OF =N1/

2=.OF =N1/
2
� .˛g/�1N1:

Let .A1; �1; �1; �1/ denote the universal HBAV over S D YJ1;N1 where J1 D Jt1
for some t1 2 T , and let A01 D A1=�1.C / where C D .OF =N1/2 � .˛g/�1N1. Then A01
inherits an OF -action �01 from A1, and �1 induces an OF -linear closed immersion

.OF =N1/
2=.OF =N1/

2
� .˛g/�1N1 ! A01

whose composite with j defines an isomorphism �01 W .OF =N2/
2 ! A01ŒN2�.

Now consider the injective OF -linear map �� W Sym.A01=S/! Sym.A1=S/ defined
by f 7! �_ ı f ı � , where � is the natural projection A1 ! A01.

Lemma 4.1.1. The image of �� is .det.˛g//Sym.A1=S/ where .det.˛g// denotes the
ideal OF \ det.˛g/ yOF of OF .
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Proof. Note that since Sym.A1=S/ is an invertible OF -module, the image of �� is
(locally on S ) of the form ISym.A1=S/ for some ideal I of OF , non-zero since ��

is injective. Moreover, since ker.�/ � A1ŒN1�, there is an isogeny � W A01 ! A1 such
that � ı � is multiplication by N1; since �� ı �� is multiplication by N 2

1 , it follows that
N 2
1 2 I , so I can only be divisible by primes dividing N1.

We now determine I ˝ Z` for each prime ` jN1. Note in particular that ` ¤ p, so `
is invertible in OS . Consider the commutative diagram

Sym.A01=S/˝ Z` //

o

��

Sym.A1=S/˝ Z`

o

��

HomZ`.^
2
OF;`

T`.A
0
1/;Z`.1//

// HomZ`.^
2
OF;`

T`.A1/;Z`.1//

of OF -linear maps of `-adic sheaves on S , where the top map is �� ˝ Z`, the ver-
tical isomorphisms are induced by the Weil pairings, and the bottom map is given by
the map T`.�/ W T`.A1/! T`.A

0
1/ on `-adic Tate modules induced by � . The cokernel

of ��˝Z` is therefore isomorphic to that of the bottom map, which in turn is isomorphic
to HomZ`.M`;Q`=Z`.1//, where M` is the cokernel of ^2OF;`T`.�/. Since the `-adic
sheaves T`.A1/ and T`.A01/ are locally free of rank 2 overOF;` and the cokernel of T`.�/
is isomorphic to

ker.�/˝ Z` ' C ˝ Z` ' O
2
F;` � .˛g/

�1=O2F;`;

it follows that M` is isomorphic to OF;`=det.˛g/OF;`.
We have now shown that the cokernel of �� ˝ Z` is (étale locally) isomorphic to

OF;`=det.˛g/OF;` for all `. Since the cokernel of �� is also étale locally isomorphic
OF =I , it follows thatOF =I is isomorphic to yOF =det.˛g/ yOF , and hence I D .det.˛g//.

It follows from the lemma that �1 W J1 ' Sym.A1=S/ restricts to an isomor-
phism IJ1 ! ��Sym.A01=S/, where I D .det.˛g//. Moreover, since f is a section of
Pol.A01=S/ if and only if ��f is a section of Pol.A1=S/, we see that �1 further restricts
to an isomorphism .IJ1/C! ��Pol.A01=S/. Now let J2 D Jt2 where t2 2 T is the fixed
representative of IJ1 in the strict class group of F , and choose an element ˇ 2 F �C such
that ˇJ2 D IJ1. Thus ˇ is uniquely determined up to O�F;C, and the composite of �1 ı ˇ
with the inverse of �� yields an isomorphism

.J2; .J2/C/ ' .IJ1; .IJ1/C/ ' �
�.Sym.A01=S/;Pol.A01=S//

' .Sym.A01=S/;Pol.A01=S//;

which we denote by �01.
Finally, we note that since A satisfies the Deligne–Pappas condition, so does A0. This

follows for example from the commutative diagram
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A1 ˝OF IJ1
//

�˝1

��

A1 ˝OF J1 'A
_
1

A01 ˝OF IJ1
// .A01/

_

�_

OO

and the observation that the top left map is an isogeny with kernel A1ŒI �˝OF IJ1, hence
(constant) degree jOF =I j2, while deg.� ˝ 1/ D deg.�_/ D deg.�/ D jOF =I j, so the
bottom map must be an isomorphism.

Now .A01; �
0
1; �
0
1; �
0
1/ is a J2-polarised HBAV with level N2 structure over YJ1;N1 ,

so corresponds to a morphism YJ1;N1 ! YJ2;N2 such that the pull-back of the universal
HBAV over YJ2;N2 is .A01; �

0
1; �
0
1; �
0
1/. Taking the union over t1 2 T yields the desired

morphism Q�g W
`
YJ;N1 !

`
YJ;N2 .

It is straightforward to check that the composite of Q�g with the projection to YU2 is
independent of the choices of ˛, N2 and ˇ, and indeed of N1 in the sense that if N1 is
replaced by a multiple N , then the resulting morphism is obtained by composing with the
natural projection

`
YJ;N !

`
YJ;N1 . (The only non-trivial point is that if ˛ is replaced

by a multiple ı˛, then the resulting J2-polarised HBAV with levelN2 structure on YJ1;N1
is isomorphic to the original .A01; �

0
1; �
0
1; �
0
1/ via the map induced by �1.ı/.) Moreover, the

resulting morphism to YU2 is invariant under the action of GU1;N1 on
`
YJ;N1 (indeed,

we have Q�g ı .�; u/ D .�; g�1ug/ ı Q�g for all .�; u/ 2 O�F;C � U1 on each YJ1;N1 for
any choice of ˇ as above), hence factors through YU1 , yielding the desired morphism
�g W YU1 ! YU2 .

Suppose that U1, U2 and U3 are open compact subgroups of GL2. yOF / with g1; g2 2
GL2.A1F / as above with g�11 U1g1 �U2 and g�12 U2g2 �U3, so that �g1 W YU1! YU2 and
�g2 W YU2 ! YU3 are defined. Note that choosing ˛2, N2 and N3 to define �g2 , and then
˛1, N1 and (the same) N2 to define �g1 , we may use ˛1˛2, N1 and N3 to define �g1g2 .
Let .Ai ; �i ; �i ; �i / denote the universal HBAV over YNi ;Ji for i D 1; 2; 3, where Ji D Jti
for ti 2 T such that tiC1 represents the class of .det.˛igi //Ji for i D 1; 2. The above
construction of Q�gi then yields a JiC1-polarised abelian variety .A0i ; �

0
i ; �
0
i ; �
0
i / with level

NiC1 structure over YJi ;Ni , where A0i D Ai=�i .Ci / with Ci D .OF =Ni /2 � .˛igi /�1Ni .
It is straightforward to check that the pull-back via Q�g1 of .A02; �

0
2; �
0
2; �
0
2/ is isomorphic

to a J3-polarised HBAV with level N3 structure defining Q�g1g2 , so that we may take
Q�g1g2 D Q�g2 ı Q�g1 and conclude that �g1g2 D �g2 ı �g1 .

4.2. Adelic action on Hilbert modular forms

We revert to the original setting of §4.1, with g, U1 and U2 satisfying g�1U1g � U2, and
use the notation in the definition of �g (and in particular a choice of N1, N2, ˛ and ˇ),
but writing Si D YJi ;Ni for i D 1; 2 and si W Ai ! Si and s01 W A

0
1! S1 for the structural

morphisms. We let �˛ denote the canonical projectionA1!A01 ' Q�
�
gA2; the dependence

on ˛ is such that if ı 2 OF \ O�F;p (and N1 is such that .ı˛g/�1N1=N2 2 M2. yOF /),
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then �ı˛ D i.ı/�˛ . It follows that the OF ˝OS1 -linear morphisms

Q��gs2;��
1
A2=S2

' s01;��
1
A0
1
=S1
! s1;��

1
A1=S1

;

Q��gR
1s2;��

�
A2=S2

' R1s01;��
�

A0
1
=S1
! R1s1;��

�
A1=S1

(4.1)

induced by .˛ ˝ 1/�1��˛ are independent of the choice of ˛ (as well as N2 and ˇ, and
even N1 in the sense of compatibility with pull-back by the natural projection). Note that
these are in fact isomorphisms since the degree of the isogeny �˛ is invertible in OS .
Furthermore, the commutativity of the diagram

A1
˛�;u

//

�˛

��

.�; u/�A1

.�;u/��˛

��

Q��gA2
Q��g.˛�;g�1ug/

// Q��g.�; g
�1ug/�A2 ' .�; u/

� Q��gA2

implies that the isomorphisms in (4.1) are compatible with the action of GU1;N1 (where
GU1;N1 acts on the sources via the homomorphism .�; u/ 7! .�; g�1ug/ to GU2;N2
and pull-back by Q��g ). It follows that the same is true for the OS1 -linear isomorphisms

Q��gL
k;l
J2;N2

�
�! L

k;l
J1;N1

induced by those in (4.1) for k; l 2 Z†, which therefore descend to
define isomorphisms

��gL
k;l
U2;R

�
�! L

k;l
U1;R

(4.2)

for any O-algebraR in which the image of�kC2l is trivial for all�2O�F \U2 (and hence
all�2O�F \U1). We thus obtain anR-linear map ŒU1gU2� WMk;l .U2IR/!Mk;l .U1IR/

defined as the product of kdet.g/k D NmF=Q.det.g//�1 with the composite

H 0.YU2;R;L
k;l
U2;R

/! H 0.YU1;R; �
�
gL

k;l
U2;R

/
�
�! H 0.YU1;R;L

k;l
U1;R

/:

Returning now to the setting where U1, U2 and U3 are open compact subgroups of
GL2. yOF / and g1; g2 2 GL2.A1F / are such that g�11 U1g1 � U2 and g�12 U2g2 � U3, we
find that the composite

A1
�˛1
��! Q��g1A2

Q��g1
�˛2

�����! Q��g1 Q�
�
g2
A3 ' Q�

�
g1g2

A3

is �˛1˛2 . This in turn implies that the composite

��g1g2L
k;l
U3;R

' ��g1�
�
g2

L
k;l
U3;R

�
�! ��g1L

k;l
U2;R

�
�! L

k;l
U1;R

is the isomorphism in (4.2) used to define ŒU1g1g2U3�, which therefore coincides with
ŒU1g1U2� ı ŒU2g2U3�.

ForRDO and .k; l/ paritious, we thus obtain an action of the group ¹g 2GL2.A1F / j
gp 2 GL2.OF;p/º on

Mk;l .O/ WD lim
�!

Mk;l .U IO/;
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where the direct limit is over all sufficiently small open compact subgroups U

of GL2.A1F / containing GL2.OF;p/. Similarly we have an action on Mk;l .C/ WD
lim
�!

Mk;l .U IC/, which is compatible by extension of scalars with the one just defined
on Mk;l .O/. One can check that the action is also compatible under the isomorphisms
Mk;l .U IC/ ' Ak;l .U / with the usual action defined by right multiplication on the space
of automorphic forms Ak;l WD lim

�!
Ak;l .U /.

Recall that for R D E and arbitrary .k; l/, the space Mk;l .U IE/ is defined for suffi-
ciently small U (for example p-neat as in Definition 3.2.3), so we may similarly define

Mk;l .E/ WD lim
�!

Mk;l .U IE/:

ThenMk;l .E/ is a smooth admissible representation of ¹g2GL2.A1F / jgp 2GL2.OF;p/º
overE, and we recoverMk;l .U IE/DMk;l .E/

U for sufficiently small U � GL2.OF;p/.
(Note that Mk;l .E/

U D 0 if �kC2l ¤ 1 for some � 2 U \O�F .)
We may similarly define Mk;l .R/ for any .k; l/ and R in which p is nilpotent. We

again haveMk;l .U IR/DMk;l .R/
U for sufficiently smallU (indeed, for anyU for which

we have already defined Mk;l .U IR/), so we may define Mk;l .U IR/ to be Mk;l .R/
U

for any open compact subgroup U of GL2.A1F / containing GL2.OF;p/. Note then that
Mk;l .U IR/D 0 if�kC2l ¤ 1 for some�2U \O�F , but not necessarily under the weaker
assumption (if pR¤ 0) that �kC2l has non-trivial image inR for some � 2 U \O�F . We
shall restrict our attention however to the case R D E.

4.3. Hecke operators

Suppose thatU1 andU2 are open compact subgroups of GL2.A1F / containing GL2.OF;p/
and that g is an element of GL2.A1F / such that gp 2 GL2.OF;p/. We may then define the
double coset operator

ŒU1gU2� WMk;l .U2IE/!Mk;l .U1IE/

to be the map f 7!
P
i2I gif where U1gU2 D

`
i2I giU2. It is straightforward to check

that the map is independent of the choice of representatives gi , that the image is indeed in
Mk;l .U1IE/, and that the definition agrees with the one already made when U1 and U2
are sufficiently small and g�1U1g � U2. (Recall that a normalising factor of kdet.g/k is
incorporated into the definition of the action.)

If U1 and U2 are sufficiently small we may reinterpret ŒU1gU2� in the usual way using
trace morphisms as follows. Letting U 01 D U1 \ gU2g

�1, we have g�1U 01g � U2, so that
ŒU1gU2� D ŒU11U

0
1� ı ŒU

0
1gU2� and ŒU 01gU2� is the composite

H 0.Y U2 ;L
k;l

U 0
1
/! H 0.Y U 0

1
; ��gL

k;l

U2
/! H 0.Y U 0

1
;L

k;l

U 0
1
/

where the second map is kdet.g/k times the one induced from (4.2). On the other hand,
ŒU11U

0
1� is precisely the composite

H 0.Y U 0
1
;L

k;l

U 0
1
/! H 0.Y U 0

1
; ��1L

k;l

U1
/! H 0.Y U1 ;L

k;l

U1
/;
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where the first map is given by the inverse of the isomorphism ��1L
k;l
U1
! L

k;l

U 0
1

(from

(4.2)), and the last map is the trace times the index of U 01 \O
�
F in U1 \O�F .

For primes v of F such that v − p and GL2.OF;v/�U , we define the Hecke operators

Tv WD

�
U

�
1 0

0 $v

�
U

�
and Sv WD

�
U

�
$v 0

0 $v

�
U

�
(4.3)

on Mk;l .U IE/, where $v is a uniformiser of OF;v . These operators are independent of
the choice of$v , and commute with each other (for varying v). Note that under the above
interpretation via the trace map (for sufficiently small U ), we have U 01 D U \ U0.v/ and
U 01 \O

�
F D U \O

�
F , so that Tv can be written as NmF=Q.v/

�1 times the composite

H 0.Y U ;L
k;l

U /! H 0.Y U 0 ; �
�
gL

k;l

U /! H 0.Y U 0 ; �
�
1L

k;l

U /! H 0.Y U ;L
k;l

U /;

where U 0 D U \ U0.v/, the first map is the natural pull-back, the second map is induced

by the maps ��gL
k;l

U ! L
k;l

U 0 ' �
�
1L

k;l

U of (4.2), and the last map is the trace. We remark
also that if .k; l/ is paritious, then the above definitions withE replaced by O gives Hecke
operators compatible with the usual ones denoted Tv and Sv on the corresponding spaces
of automorphic forms.

4.4. Adelic action on components

We will describe below the action of the group ¹g 2 GL2.A1F / j gp 2 GL2.OF;p/º on the
spaces M0;l .E/, but first we consider the right action via �g on geometric components.
More precisely, suppose as usual that g�1U1g � U2 and N1, N2 and ˛ are as in the
definition of �g ; assume moreover that �N1.Q/ � O and consider the map ZU1.O/!
ZU2.O/ induced by �g (where ZUi was defined in §2.6). Maintaining the notation in
the construction of �g , one finds that the commutativity of the diagram in the proof of
Lemma 4.1.1 implies that of

J1 ˝OF
yOF

� // Sym.A1=S1/˝OF yOF // // Hom.^2
OF

A1ŒN1�; �N1/
� //

��

Hom.OF =N1; �N1/

��

J2 ˝OF
yOF

� //

o

OO

Sym.A01=S1/˝OF yOF

o

OO

// // Hom.^2
OF

A01ŒN2�; �N2/
� // Hom.OF =N2; �N2/

where the horizontal arrows of the top (resp. bottom) row are induced (from left to right)
by �1 (resp. �01), the Weil pairing on A1 (resp. A01), and �1 (resp. �01), the first ver-
tical arrow by ˇ det.˛g/�1, the second by det.˛g/�1��, the third by the surjections
^2OF

A1ŒN1� ! ^
2
OF
A01ŒN2� (arising from the isomorphisms det.˛g`/�1 ^2OF;` T`.�/

for ` jN2) and �N1=N2 W �N1 ! �N2 , and the last by the natural projection and �N1=N2 . It
follows that if � 2 ZJ1;N1.O/ (i.e., � W J1=N1

�
�! d�1 ˝ �N1.O/) then Q�g.�/ is the iso-

morphism J2=N2' d�1˝�N2.O/ induced by x 7! �.ˇ˛�2 det.g/�1x/N1=N2 . It follows
in turn that the map ZU1.O/! ZU2.O/ induced by �g corresponds to multiplication by
det.g/�1 under the bijections of (2.2), with �N2 chosen to be �N1=N2N1

,
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4.5. Adelic action on forms of weight .0; l/

Recall that the map ŒU1gU2� arises by descent (and reduction mod �) from maps

H 0.S2;L
0;l
J2;N2

/! H 0.S1; Q�
�
gL

0;l
J2;N2

/! H 0.S1;L
0;l
J1;N1

/ (4.4)

where Si D YJi ;Ni . Moreover, we have isomorphisms L
0;l
Ji ;N2

' OSi obtained by tensor-
ing powers of the components of the compositeL

�2†

ı� D ^
2
OF˝OSi

H1
DR.Ai=Si / ' Jid

�1
˝OSi '

L
�2†

OSi ;

where the first isomorphism is the canonical one following (3.2), and the second arises
from the isomorphisms Jid�1 ˝ O ' OF ˝ O '

L
�2† O induced by the inclusions

Jid
�1 � F (a choice permitted by our assumption that J1, J2 and d are prime to p).

Since the global sections of OSi are constant on components, we may realise (4.4) as a
map

¹ZJ2;N2.O/! Oº ! ¹ZJ1;N1.O/! Oº:

Under the canonical isomorphisms ^2
OF˝OSi

H1
DR.Ai=Si / ' Jid

�1 ˝ OSi , we find that
the map

Q��g
�
^
2
OF˝OS2

H1
DR.A2=S2/

�
! ^

2
OF˝OS1

H1
DR.A1=S1/

in the definition of ŒU1gU2� corresponds to the map J2d�1 ˝ OS1 ! J1d
�1 ˝ OS1

induced by multiplication by ˇ˛�2 2 .OF ˝ O/�. We therefore realise (4.1) as
the map sending s W ZJ2;N2.O/ ! O to the map ZJ1;N1.O/ ! O sending � to
kdet.g/k.ˇ˛�2/ls. Q�g.�//. Note in particular that if det.g/ D 1 and U1 � U2, then we
may choose ˇ D ˛2 and conclude that ŒU1gU2� coincides with the natural inclusion
M0;l .U2I E/ ! M0;l .U1I E/ defined by ŒU11U2�. It follows that the action of ¹g 2
GL2.A1F / j gp 2 GL2.OF;p/º on M0;l .E/ factors via det through that of ¹a 2 .A1F /

� j

ap 2 O
�
F;pº, giving an action of ¹g 2 GL2.A1F / j gp 2 GL2.OF;p/º on M0;l .U IE/ fac-

toring through
¹a 2 .A1F /

�
j ap 2 O

�
F;pº=det.U /:

We now determine the corresponding representation of the latter group on
M0;l .U IE/. Note that we have an exact sequence

1! O�F;C \ det.U /! F �C \O
�
F;p

! ¹a 2 .A1F /
�
j ap 2 O

�
F;pº=det.U /! .A1F /

�=F �C det.U /! 1; (4.5)

where the maps are all induced by the canonical inclusions. Note that the last quotient is
finite. If �l D 1 for all � 2 det.U /\O�F;C, then � 7! �l defines an E�-valued character
of .F �C \O

�
F;p/=.O

�
F;C \ det.U //, hence of a finite index subgroup of

¹a 2 .A1F /
�
j ap 2 O

�
F;pº=det.U /:
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Lemma 4.5.1. If �l D 1 for all � 2 det.U / \O�F;C, then M0;l .U IE/ is isomorphic, as
a representation of ¹a 2 .A1F /

� j ap 2 O
�
F;pº=det.U /, to the induction of the character

 l W .F
�
C \O

�
F;p/=.O

�
F;C \ det.U //! E�

defined by  l .�/ D NmF=Q.�/
�1�l ; otherwise M0;l .U IE/ D 0.

Proof. Note that the conclusion of the lemma is equivalent to the assertion that
M0;l .U IE/ is isomorphic to

IU D ¹f W G ! E j f .�xw/ D  l .�/f .x/ for all � 2 G \ F �C , x 2 G, w 2 det.U /º

as a representation of G D ¹a 2 .A1F /
� j ap 2 O

�
F;pº. We may therefore replace L by

a finite extension and U by an open subgroup U2 for which the hypotheses of Proposi-
tion 3.6.1 are satisfied.

Next observe that if det.g/ D � 2 F �C \ O
�
F;p and g�1U1g � U2, then we may

take ˇ D �˛2 in the definition of ŒU1gU2�, so that Q�g induces the natural projection
ZJ;N1.O/ ! ZJ;N2.O/ for each J , and the map in (4.4) is the composite of the nat-
ural inclusion with multiplication by NmF=Q.�/

�1�l . Therefore F �C \ O
�
F;p acts on

M0;l .U2IE/ via the character  l .
Let e be a non-zero element of M0;l .U2IE/ supported on a single component of

ZU2.O/. Since F �C \ O
�
F;p acts via  l on e, there is a G-equivariant homomorphism

IU2 ! M0;l .U2IE/ whose image contains e. Since G acts transitively on ZU2.O/, the
G-orbit of e spans M0;l .U2I E/, so the homomorphism is surjective. Since IU2 and
M0;l .U2IE/ both have dimension equal to the cardinality of .A1F /

�=F �C det.U2/, it fol-
lows that the map is in fact an isomorphism.

4.6. Twisting by characters

It follows from Lemma 4.5.1 that for any character

� W ¹a 2 .A1F /
�
j ap 2 O

�
F;pº=det.U /! E�

such that �.˛/ D ˛l for all ˛ 2 F �C \ O
�
F;p , the eigenspace consisting of those e 2

M0;l .U IE/ satisfying

ge D kdet.g/k�.det.g//e for all g 2 GL2.A1F / such that gp 2 GL2.OF;p/

is one-dimensional. We let e� be a basis element.

Lemma 4.6.1. If U , l and � are as above, then for any k;m 2 Z†, the map f 7! e� ˝ f

defines an isomorphism Mk;m.U IE/!Mk;lCm.U IE/ such that

ŒUgU �.e� ˝ f / D �.det.g//e� ˝ ŒUgU �f

for all f 2 Mk;m.U IE/, g 2 GL2.A1F / such that gp 2 GL2.OF;p/; in particular, we
have Tv.e� ˝ f / D �.$v/e� ˝ Tvf and Sv.e� ˝ f / D �.$v/

2e� ˝ Svf for all v such
that v − p and GL2.OF;v/ � U .
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Proof. We first prove that the map is an isomorphism. The existence of � implies that
�l D 1 for all � 2 det.U / \O�F;C, so replacing L by a finite extension, we may assume
that the hypotheses of Proposition 3.6.1 are satisfied and hence view e� as a function
ZU .O/! E. Since e� is non-zero and the action of the group ¹a 2 .A1F /

� j ap 2 O
�
F;pº

on ZU .O/ is transitive, it follows that e� is everywhere non-zero. We therefore have a
section e�1

�
2M0;�l .U IE/ such that f 7! f ˝ e�1

�
defines the inverse of our map.

We now establish the compatibility with the Hecke action. The definition of ŒUgU �
gives

ŒUgU �.e� ˝ f / D
X
i

gi .e� ˝ f / D
X
i

kdet.g/k�1gie� ˝ gif;

where UgU D
`
i giU . Noting that gie� D ge� D kdet.g/k�.det.g//e� since det.gi / 2

det.g/ det.U /, it follows that

ŒUgU �.e� ˝ f / D �.det.g//e� ˝
X
i

gif D �.det.g//e� ˝ ŒUgU �f

as required.

5. Partial Hasse invariants

We next adapt the definition of partial Hasse invariants from [1] to our setting.

5.1. Definition of partial Hasse invariants

We write VerA for the Verschiebung isogeny of an abelian scheme A over a base S of
characteristic p, i.e., the morphismA.p/!A defined as the dual of the relative Frobenius
morphism A_ ! .A_/.p/ D .A.p//_, where A.p/ denotes the pull-back A �S S with
respect to the absolute Frobenius morphism FrS W S ! S . Taking A to be the universal
HBAV over S D Y J;N , the pull-back Ver�A defines an OF ˝OS -linear morphism

s��
1
A=S ! s��

1
A.p/=S

D Fr�S s��
1
A=S ;

where s W A! S denotes the structure morphism. Writing s��1A=S D
L
� !� , we see that

the � -component of Fr�S s��
1
A=S

is canonically isomorphic to !˝p
Fr�1 ı�

, where Fr denotes

the absolute Frobenius on Fp . The � -component of Ver�A is therefore a section of L
k;0

J;N D

!
˝p

Fr�1 ı�
!˝.�1/� , where

� if Fr ı � D � , then k� D p � 1 and k� 0 D 0 if � 0 ¤ � ;

� if Fr ı � ¤ � , then k� D �1, kFr�1 ı� D p, and k� 0 D 0 if � 0 62 ¹Fr�1 ı�; �º.

For each � , we denote this weight by kHa� , and let HaJ;N;� 2 H 0.Y J;N ;L
kHa� ;0

J;N /

be the element just constructed. Then HaJ;N;� has non-zero restriction to each com-
ponent of Y J;N ; moreover, if we let Z� denote the associated divisor of zeros, then
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Z� is non-trivial on each component and
P
� Z� is reduced. (This follows from the cor-

responding result proved in [1, §8] for the partial Hasse invariants on the variety they
denote M.Fp; �N /: Choosing �N 2 �N .E/ for sufficiently large E yields an étale cover
Y J;N !M.E;�N / which identifies M.E;�N / with the quotient of Y J;N by the image
of U1.N / in GU1.N/;N and our Ha� with the pull-back of their partial Hasse invariant
hP;i for the pair .P; i/ corresponding to � .)

Note that �kHa� � 1 mod � for all � 2 O�F , so the line bundle L
kHa� ;0

U is defined for
allU under consideration. By the compatibility of the Verschiebung with base-change and
isomorphisms, we see that the sections HaJ;N;� on

`
Y J;N descend to define a mod p

Hilbert modular form of weight .kHa� ; 0/ and level U , which we denote by HaU;� . More-
over, from the compatibility of Verschiebung with isogenies, in particular with �˛ as
defined in §4.2, we see that ŒU1gU2�HaU2;� D kdet.g/kHaU1;� for any g 2 GL2.A1F /
such that gp 2 GL2.OF;p/ and g�1U1g � U2. In particular, the element

HaU;� 2MkHa� ;0
.E/ WD lim

�!
MkHa� ;0

.U IE/

is independent of the choice of U , so we henceforth omit the subscriptU and write simply
Ha� for this mod p Hilbert modular form, which we call the partial Hasse invariant
.associated to � ).

We record the following immediate consequence of the assertions above:

Proposition 5.1.1. The partial Hasse invariant Ha� satisfies g Ha� D kdet.g/kHa� for
all g 2 GL2.A1F / such that gp 2 GL2.OF;p/. For any weight .k; l/, multiplication by
Ha� defines an injective map

Mk;l .E/!MkCkHa� ;l
.E/

commuting with the action of g for all such g. In particular, for any open compact sub-
group U of GL2.A1F / containing GL2.OF;p/, multiplication by Ha� defines an injective
map

Mk;l .U IE/!MkCkHa� ;l
.U IE/

commuting with the operators Tv and Sv for all v − p such that GL2.OF;v/ � U .

5.2. Minimal weights

We now recall the definition of the minimal weight of a mod p Hilbert modular form,
again adapting notions from [1] to our setting (see also [19]). This is an analogue of the
weight filtration for mod p modular forms in the classical setting F D Q. For F D Q,
the vanishing of the spaces of mod p modular forms of negative weight forces the weight
filtration to be non-negative, but in the Hilbert case, the partial negativity of the weights
of partial Hasse invariants already shows the situation is more subtle. We let

„AG D

°X
�2†

n�kHa�

ˇ̌̌
n� 2 Z�0 for all � 2 †

±



A Serre weight conjecture for geometric Hilbert modular forms 3477

be the set of non-negative integer linear combinations of the weights of the partial Hasse
invariants. Note that the weights kHa� are linearly independent, so each k 2 „AG is of the
form

P
�2† n�kHa� for a unique n 2 Z†�0. We define a partial ordering �Ha on Z† by

stipulating that k0 �Ha k if and only if k � k0 2 „AG.
For any non-zero f 2Mk;l .U IE/, consider the set W.f / defined as°
k0 D k �

X
�

n�kHa�

ˇ̌̌
n 2 Z†�0, f D f 0

Y
�

Han�� for some f 0 2Mk0;l .U IE/
±
:

Since the divisor
P
� Z� is reduced, the set W.f / contains a unique minimal element

under the partial ordering�Ha (cf. [1, 8.19, 8.20]), which we call the minimal weight of f ,
and denote �.f /. Note that replacing U by an open compact subgroup U 0 � U does not
alter �.f /, since any f 0 2 Mk0;l .U

0IE/ satisfying f D f 0
Q
� Han�� will be invariant

under U , hence in Mk0;l .U IE/. We may therefore define �.f / for f 2Mk;l .E/ without
reference to U . Note also that �.f / is not affected by replacing E by an extension E 0.

We note also that the minimal weight of a form is independent of l in the follow-
ing sense: Recall from Lemma 4.6.1 that we have isomorphisms Mk;l .E/! Mk;l 0.E/

defined by multiplication by eigenvectors e� 2M0;l 0�l .E/ associated to suitable charac-
ters � of .A1F /

�. Since these isomorphisms commute with multiplication by the partial
Hasse invariants, it follows that �.e� ˝ f / D �.f / for all f 2Mk;l .E/.

Finally we define the minimal cone in Z† to be

„min D ¹k 2 Z† j pk� � kFr�1 ı� for all � 2 †º:

(Note that „min � Z†�0.) A recent result of the first author and Kassaei [19] shows that in
fact �.f / 2 „min for all non-zero mod p Hilbert modular forms f .

6. Associated Galois representations

The aim of this section is to prove the existence of Galois representations associated
to Hecke eigenforms of arbitrary weight. We first state the theorem and review some
ingredients needed for the proof.

6.1. Statement of the theorem

Theorem 6.1.1. Suppose that U is an open compact subgroup of GL2. yOF / contain-
ing GL2.OF;p/, and Q is a finite set of primes containing all v j p and all v such that
GL2.OF;v/ 6� U . Suppose that k; l 2 Z† and f 2 Mk;l .U IE/ is an eigenform for Tv
and Sv .defined in .4.3// for all v 62 Q. Then there is a Galois representation

�f W GF ! GL2.E/

such that if v 62 Q, then �f is unramified at v and the characteristic polynomial of
�f .Frobv/ is

X2 � avX C dv NmF=Q.v/;

where Tvf D avf and Svf D dvf .
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This has been proved for paritious weights .k; l/, independently by Emerton–
Reduzzi–Xiao [26] and Goldring–Koskivirta [36]; in fact, their methods yield the result
under a weaker parity condition. The contribution here is to remove the parity hypothesis
altogether, and the new ingredient is to use congruences to forms of level divisible by p.
For this we will need to work with the integral models for Hilbert modular varieties with
level structure U1.p/ at p studied by Pappas [51].

6.2. Hilbert modular varieties of level U 0 D U \ U1.p/

Suppose that J is a fractional ideal of F and N � 3 is an integer, with J and N both
prime to p. We let M0

J;N denote the functor which associates to an O-scheme S the set
of isomorphism classes of pairs .A;H/, where

� A D .A; i; �; �/ is a J -polarised HBAV with level N structure over S , and

� H is a free rank 1 .OF =p/-submodule scheme of AŒp� over S such that the quotient
isogeny A! A0 D A=H induces an isomorphism Sym.A0=S/! pSym.A=S/.

Then M0
J;N is represented by an O-scheme which we denote Y 0J;N , the forgetful mor-

phism Y 0J;N ! YJ;N is projective and Y 0J;N is a flat local complete intersection over O

of relative dimension ŒF W Q� [51, Thm. 2.2.2]. We let M1
J;N denote the functor which

associates to an O-scheme S the set of isomorphism classes of triples .A;H;P / where A
and H are as above and

� P 2 H.S/ is an .OF =p/-generator of H in the sense of Drinfeld–Katz–Mazur
[42, 1.10].

Then M1
J;N is represented by an O-scheme which we denote Y 1J;N , and the forgetful

morphism Y 1J;N ! Y 0J;N is finite flat; therefore Y 1J;N is flat and Cohen–Macaulay over O

[51, Thm. 2.3.3].
Suppose U is an open compact subgroup of GL2. yOF / containing GL2.OF;p/, and

let U 0 D U \ U1.p/. We suppose that U is sufficiently small, and in particular that
U is p-neat (see Definition 3.2.3). The action of the group GU;N on YJ;N then lifts
to one on Y 1J;N , corresponding to the action on M1

J;N defined by .�; u/ � .A; H; P / D
..�; u/ � A;H; P /. It follows from the corresponding assertions for YJ;N that GU;N acts
freely on

`
t2T Y

1
Jt ;N

, the quotient is representable by a scheme YU 0 , and the quotient map
is étale and Galois with groupGU;N . Since the Y 1J;N are flat and Cohen–Macaulay over O,
so is YU 0 , and let �U W YU 0 ! YU denote the natural projection (writing just � when U
is clear from the context). We let KU 0 denote the dualising sheaf on YU 0 over O (see [15,
§3.5]), and similarly let KU denote the dualising sheaf on YU over O. Since YU is smooth
over O, its dualising sheaf KU is canonically identified with �ŒF WQ�

YU =O
D ^

ŒF WQ�
OYU

�1
YU =O

.

Suppose now that g, U1 and U2 are as in §4, so in particular g�1U1g � U2, and
assume further that gp 2 U1.p/. We then obtain exactly as before finite étale �0g W
YU 0

1
! YU 0

2
, by descent from morphisms Q�1g W

`
Y 1Jt ;N1 !

`
Y 1Jt ;N2 , and compatible

with �g W YU1 ! YU2 via the projections �Ui W YU 0i ! YUi . Since �0g is étale, we have a
canonical isomorphism .�0g/

�KU 0
2

�
�!KU 0

1
.
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6.3. Hilbert modular forms of level U 0 D U \ U1.p/

For .m; n/ 2 Z2 (viewed also as an element of .Z†/2) and p-neat U , we let L
m;n
U 0 D

��UL
m;n
U , and we similarly define L

m;n
U 0;R for O-algebras R, writing also L

m;n

U 0 if R D E.
For k; l 2Z, we define the space of Hilbert modular forms overR of weight k and levelU 0

to be
Mk;l .U

0
IR/ WD H 0.YU 0;R;KU 0;R ˝OYU 0;R

L
k�2;lC1
U 0;R /:

Note that we could have made this definition for more general weights .k; l/, but we
will in fact only need the case of parallel weight. Recall also from [15] that formation of
the dualising sheaf is compatible with base change, so KU 0;R can be identified with the
dualising sheaf of YU 0;R over R.

For g, U1, U2 as above, we define an R-linear map

ŒU 01gU
0
2� WMk;l .U

0
2IR/!Mk;l .U

0
1IR/

as kdet.g/k times the composition of the pull-back from YU 0
2

to YU 0
1

with the map on
sections induced by the tensor product of the canonical isomorphism .�0g/

�KU 0
2

�
�!KU 0

1

with the map

.�0g/
�L

k�2;lC1

U 0
2

D ��U1�
�
gL

k�2;lC1
U2

! ��U1L
k�2;lC1
U1

D L
k�2;lC1

U 0
1

given by ��U1 of (4.2). We again have the compatibility ŒU 01g1U
0
2� ı ŒU

0
2g2U

0
3� D

ŒU 01g1g2U
0
3�, giving rise to an R-linear action of the group ¹g 2 GL2.A1F / j gp 2 U1.p/º

on M 0
k;l
.R/ WD lim

�!
Mk;l .U

0I R/. As before we may identify Mk;l .U
0I R/ with

.M 0
k;l
.R//U

0

, and define commutingR-linear Hecke operators Tv and Sv onMk;l .U
0IR/

for all v such that GL2.OF;v/ is contained in U 0.
Let S D YJ;N , and A D AJ;N the universal HBAV over S . Since A is smooth over S

and S is smooth over O, we have an exact sequence

0! s��1S=O ! �1A=O ! �1A=S ! 0

of locally free sheaves on A. Applying Ris�, we obtain the connecting homomorphism

s��
1
A=S ! R1s�s

��1S=O ' �
1
S=O ˝OS R

1s�OA: (6.1)

Combined with the canonical isomorphisms

HomOF˝OS

�
^
2
OF˝OS

H1
DR.A=S/; s��

1
A=S

� �
�! HomOS .R

1s�OA; OS /

induced by the inclusion OF � d�1
�
�! Hom.OF ;Z/ and the isomorphism (3.1), we

obtain an OS -linear homomorphism

HomOF˝OS

�
^
2
OF˝OS

H1
DR.A=S/;

N2
OF˝OS

.s��
1
A=S

/
�
! �1

S=O
; (6.2)
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which is in fact an isomorphism (see [41, 1.0.21]), called the Kodaira–Spencer isomor-
phism. Taking ^ŒF WQ�

OS
, we obtain an isomorphism

�J;N W L
2;�1
J;N D

N
�

.!2� ˝OS ı
�1
� /! ^

ŒF WQ�
OS

�1S=O D �
d
S=O :

The functoriality of the morphisms in the construction ensures that the isomorphism is
compatible with the action of GU;N , and therefore descends to an isomorphism

�U W L
2;�1
U 'KU :

Moreover, for g,U1 andU2 such that g�1U1g�U2, gp 2GL2.OF;p/, one finds similarly
that the canonical isomorphism ��gKU2!KU1 is compatible with the morphism of (4.2).
It follows that the isomorphisms

Mk;l .U IR/ ' H
0.YU;R;KU;R ˝OYU;R

L
k�2;lC1
U;R /

induced by �U are compatible with the operators ŒU1gU2�. Moreover, the generic fibre
of Y 1J;N is smooth over L, so that if p is invertible in R, the same constructions apply to
give isomorphisms

H 0.YU 0;R;L
k;l
U 0;R/ 'Mk;l .U

0
IR/

such that the operators ŒU 01gU
0
2� are compatible by extension of scalars with those on the

spaces Ak;l .U 0/ of automorphic forms of weight .k; l/ and level U 0.

6.4. Minimal compactifications

We will also make use of minimal compactifications of Hilbert modular varieties, whose
properties we now recall. The minimal compactification XJ;N of YJ;N is constructed by
Chai [11] (see also [21, 22]), and we define XU to be the quotient of

`
XJ;N under the

natural action ofGU;N . ThenXU is a flat, projective scheme over O with j W YU !XU as
an open subscheme whose complement is finite over O, and the line bundle L

1;0
U extends

to an ample line bundle on XU which we denote by LU . The Koecher Principle in this
setting means that the natural map OXU ! j�OYU is an isomorphism.

Definition 6.4.1. Assuming as usual that O is sufficiently large (i.e., containing the N th
roots of unity), then each (reduced) connected component C of XU � YU is isomorphic
to Spec O. We call C a cusp of XU .

If U is of the form U.n/ WD ker.GL2. yOF /! GL2.OF =n// for a sufficiently small,
prime-to-p ideal n of OF , then the completion of XU along C is canonically isomorphic
to Spf ySC , where

ySC WD OŒŒq˛��
U�n;C
˛2IC[¹0º

(6.3)

for a fractional ideal I depending on C , and � 2 Un;C D ker.O�F;C! .OF =n/
�) acts via

q˛ 7! q�˛ . (The O-algebra ySC is obtained from the corresponding one in [11] by working
over O instead of ZŒ�N ; 1=N � and taking invariants under the stabiliser inGU;N of a cusp
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QC of XJ;N mapping to C . In particular, the class of the ideal I in (6.3) is given by abn�1

where a and b are as in [11]; a more detailed discussion in the case of arbitrary U is
provided below in §9, where Proposition 9.1.2 gives (6.3) as a special case.)

The minimal compactification of YU 0 is then obtained as follows. First one con-
structs a toroidal compactification X tor

U 0 of YU 0 as the quotient of a toroidal compact-
ification of

`
Y 1J;N defined exactly as for

`
YJ;N , but using the functors M1

J;N and
�.Np/-admissible polyhedral cone decompositions (in the terminology of [11]). Then
� W YU 0! YU extends to a projective morphismX tor

U 0!XU such that the connected com-
ponents of the pre-image of a cusp C correspond to pairs .f; P / where pOF � f � OF
and P is an .OF =p/-generator of OF =f (or more canonically, b=bf). Moreover, a sim-
ilar calculation to the case of level U shows that if U D U.n/, then the ring of global
sections of the completion of X tor

U 0 along the component over C corresponding to .f; P /
is isomorphic to the ySC -algebra

O0f ŒŒq
˛��
Un;C

˛2.f�1I/C[¹0º
; (6.4)

where SpecO0f is the finite flat O-scheme representing .OF =p/-generators of�p˝f=pOF

(or more canonically, �p ˝ fa�1d�1=pa�1d�1).
Now let Xord

U denote the ordinary locus of XU , so Xord
U is an open subscheme of XU

containing the cusps, and let Y ord
U D YU \ X

ord
U . Let X tord

U 0 (resp. Y ord
U 0 ) denote the pre-

image of Xord
U (resp. Y ord

U ) in X tor
U 0 (resp. YU 0 ), and define

Xord
U 0 D Specf�OX tord

U 0
;

where f W X tord
U 0 ! Xord

U is the restriction of X tor
U 0 ! XU . Since f is proper, Xord

U 0 is finite
over Xord

U , and since Y ord
U 0 ! Y ord

U is finite, we can identify Y ord
U 0 with an open subscheme

of Xord
U 0 . We then define the minimal compactification j 0 W YU 0 ! XU 0 by gluing YU 0 and

Xord
U 0 along Y ord

U 0 .
Thus XU 0 is flat over O, and the morphism � extends to a projective morphism Q� W

XU 0 ! XU , so in particular XU 0 is projective over O. Furthermore, the restriction Q�ord W

Xord
U 0 ! Xord

U is finite, and �ord W Y ord
U 0 ! Y ord

U is finite flat. The cusps C 0 of XU 0 (i.e., the
reduced connected components of XU 0 � YU 0 ) lying over a cusp C of XU correspond
to pairs .f; P / as above, and in the case U D U.n/, the completion of XU 0 along C 0

is isomorphic to Spf ySC 0 where ySC 0 is the ySC -algebra defined by (6.4) above. Note in
particular that if f DOF , then ySC 0 DO0OF ˝O

ySC is flat over ySC . The Koecher Principle
carries over to show that j 0�OYU 0 D OXU 0 , and we let LU 0 denote the pull-back Q��LU of
the ample line bundle LU .

6.5. Proof of Theorem 6.1.1

We begin the proof with some preliminary reductions.
First we claim we can replace the fieldE by a finite extensionE 0. Indeed, if � WGF !

GL2.E 0/ satisfies the conclusion of the theorem with E replaced by E 0, then in fact � is
defined over E. For p > 2, this follows by an elementary argument using an element
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of g 2 GF (a complex conjugation, for example) such that �.g/ has distinct eigenvalues
inE. For p D 2, one can twist by the character � WGF !E� such that �2 D det� so as to
assume det � D 1, and then use the classification of subgroups of SL2.E 0/ ' PGL2.E 0/
to arrive at the desired conclusion.

Next we claim that we can assume U D U.n/ for a sufficiently small ideal n prime
to p. Indeed, by the proof of Chevalley’s Theorem on congruence subgroups of O�F , we
can choose ideals n1 and n2 relatively prime to each other and to p so that the kernels
of reduction mod ni for i D 1; 2 are contained in that of reduction mod p. We may
then apply the theorem with U replaced by U.mni /, where U.m/ � U and m is divisible
only by primes such that GL2.OF;v/ 6� U . This produces representations �i satisfying the
conclusions withQ augmented by the set of primes dividing ni . Moreover, we can replace
the �i by their semisimplifications, which are isomorphic to each other by the Brauer–
Nesbitt and Chebotarev Density Theorems. We therefore obtain the desired conclusion
for all v 62 Q.

Next we show that we can assume l D �1,3 i.e., l� D �1 for all � 2 †. Given any l ,
define l 0 2 Z† by l 0� D l� C 1. Recall from the discussion before Lemma 4.5.1 that our
hypothesis on U ensures that � 7! �l

0

is a well-defined E�-valued character on the finite
index subgroup .F �C \ O

�
F;p/=.O

�
F;C \ det.U // of ¹a 2 .A1F /

� j ap 2 O
�
F;pº=det.U /,

for which we may choose an extension � as in Lemma 4.6.1 (enlarging E if necessary).
The case l D�1 of the theorem then furnishes a Galois representation �f˝e�1

�
unramified

at all v 62 Q with Frobv having characteristic polynomial

X2 � �.$v/
�1avX C �.$v/

�2dv NmF=Q.v/:

Let V D ¹b 2 det.U / j bp � 1 mod pº, and define

� 0 W A�F =F
�F �1;CV ! E�

by � 0.˛za/ D �.a/a�l
0

p for ˛ 2 F �, z 2 F �1;C and a 2 .A1F /
� with ap 2 O�F;p . Let-

ting ��0 W GF ! E� be the character corresponding to � 0 by class field theory, we have
��0.Frobv/ D �.$v/ for all v 62 Q, so the representation ��0 ˝ �f˝e�1

�
satisfies the con-

clusion of the theorem.
Now we reduce to the case where f is of arbitrarily large, “nearly parallel” weight.

More precisely, we claim that, given any M 2 Z, we can assume that k D .k� /�2† has
the form k D mC 2 � � D .mC 2 � �� /� , where

� m 2 Z, m �M ;

� 0 � �� � p � 1 for all � 2 †;

� for each v jp, �� < p � 1 for some � 2 †v .

Here we have identified † with the set of embeddings OF ! O and written

† D
a
vjp

†v; where †v D ¹� 2 † j v D �
�1.�O/º. (6.5)

3In fact, any parallel l will do; the choice of l D �1 is made for later convenience.
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To prove the claim, suppose f 2 Mk;�1.U IE/, and choose any m 2 Z such that
m �M andm � k� C p � 3 for all � 2 †. For each v jp, choose some �v;0 2 †v and let
�v;i D Fri ı�v;0, so †v D ¹�v;i j i D 0; : : : ; fv � 1º where fv D ŒOF =v W Fp�. Now let
r 2 Z be such that 0 � r < pfv � 1 and

r �

fv�1X
iD0

.mC 2 � k�v;i /p
i mod .pfv � 1/:

We then define �� for � 2 †v by requiring that 0 � ��v;i � p � 1 for i D 0; : : : ; fv � 1
and r D

P
��v;ip

i . Note that the resulting �� is independent of the choice of �v;0 and that
�� < p � 1 for some � 2 †v . Now define k0 D .k0� /� 2 Z† by setting k0� D mC 2 � �� .
We then have k0 � k D

P
n�kHa� where

n� D .p
fv � 1/�1

fv�1X
iD0

.k0
Fri ı�

� kFri ı� /p
i

for � 2 †v . Note that n� 2 Z�0 for all � 2 †, so k0 � k 2 „AG. By Proposition 5.1.1
there is a Hecke-equivariant injectionMk;�1.U IE/!Mk0;�1.U IE/, so the theorem for
forms of weight .k;�1/ follows from the case of weight .k0;�1/.

The heart of the proof is to construct, for kDmC 2� � as above, a Hecke-equivariant
injective homomorphism

Mk;�1.U IE/!MmC2;�1.U
0
IE/:

Letting A denote the universal HBAV over S D Y J;N , FrobA W A ! A.p/ the relative
Frobenius morphism and H� D ker FrobA, the pair .A;H�/ defines a section Y J;N !
Y
0

J;N , where as usual we use Y to denote the special fibre of an O-scheme Y . Moreover,

the section identifies Y J;N with a union of irreducible components of Y
0

J;N , whose pre-

image in Y
1

J;N we denote by Y �J;N . The action ofGU;N on Y
1

J;N restricts to one on Y �J;N ,
and we let Y �U denote the corresponding quotient of

`
Y
�
Jt ;N

. Thus i W Y �U ! Y U 0 is a
closed immersion identifying Y �U with a union of irreducible components of Y U 0 , and
� ı i W Y

�
U ! Y U is finite flat. In particular, Y �U is Cohen–Macaulay (over E), and we

let K
�
U denote its dualising sheaf. By Grothendieck–Serre duality ([15, Thm. 3.4.4], and

the compatibility [15, (3.3.14)]) applied to the finite morphisms i and � ı i , we have
canonical isomorphisms

i�K
�
U ' HomO

YU 0
.i�OY�

U
; KU 0/; ��i�K

�
U ' HomO

YU
.��i�OY�

U
; KU /: (6.6)

Since i is a closed immersion, the first of these isomorphisms identifies i�K
�
U with a

subsheaf of KU 0 . To exploit the second isomorphism, we recall that [51, Prop. 5.1.5]
identifies Y 1J;N with a closed subscheme of the universal submodule schemeH over Y 0J;N .
In particular, if A is the universal HBAV on S D Y J;N , then

H�
D Spec

�
SymOS

�L
�2†

L�

�
=hL˝p� for � 2 †i

�
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as a Raynaud .OF =p/-module scheme (i.e., the morphisms �� W L
˝p
� ! LFr ı� of [51,

4.4.1] are zero), so that

Y
�
J;N D Spec

�
SymOS

�L
�2†

L�

�
=
˝
L˝p� for � 2 †;

N
�2†v

L˝.p�1/� for v jp
˛�
;

where the L� are line bundles on S . Moreover, the inclusionH�!A induces a canonical
OS ˝OF -linear isomorphism

s��
1
A=S ' e

��1A=S ' e
��1H�=S '

L
�2†

L� ;

and hence isomorphisms !� ' L� of line bundles on S for � 2 †. These isomorphisms
are compatible with the action of GU;N , and so give rise to an isomorphism

Y
�
U ' Spec

�
SymO

YU

�L
�2†

!�
�
=
˝
!˝p� for � 2 †;

N
�2†v

!˝.p�1/� for v jp
˛�
;

which in turn gives an isomorphism ��i�OY�
U
'
L
� L

�;0

U where the direct sum is over
� D .�� /�2† such that 0 � �� � p � 1 for each � , and �� < p � 1 for some � in each†v .
Combined with the Kodaira–Spencer isomorphism on Y U , we deduce from (6.6) that

��i�K
�
U ' HomO

YU

�L
�

L
�;0

U ;KU

�
'
L
�

L
2��;�1

U :

Tensoring with L
m;0

U , we get injective morphisms L
k;�1

U ! ��i�.K
�
U ˝O

�
Y
i�L

m;0

U 0 / for
kDmC 2� � as above. Composing the homomorphism on sections with the one induced
by the inclusion i�K

�
U !KU 0 obtained from (6.6), we obtain the desired injective homo-

morphism

H 0.Y U ;L
k;�1

U /! H 0.Y
�
U ;K

�
U ˝O

�
Y
i�L

m;0

U 0 /! H 0.Y U 0 ;KU 0 ˝O
YU 0

L
m;0

U 0 /:

Moreover, one finds that for g 2GL2.A1F /with gp 2 U1.p/, the isomorphisms ��i�OY�
U

'
L
� L

�;0

U are compatible with (4.2) under the restriction of �0g to the subschemes Y �U ,
and deduces that the maps Mk;�1.U IE/ ! MmC2;�1.U

0IE/ are compatible with the
Hecke action; in particular, they commute with the operators Tv and Sv for v 62 Q.

Next we show that for sufficiently large m, the image of Mk;�1.U I E/ in
MmC2;�1.U

0IE/ is contained in that of the reduction map from MmC2;�1.U
0IO/ to

MmC2;�1.U
0I E/. For this we will make use of the minimal compactifications j W

YU ! XU and j 0 W YU 0 ! XU 0 and their properties recalled above.
We first compute the completion of j 0�KU 0 along the cusps of XU 0 . We let j ord W

Y ord
U ! Xord

U denote the restriction of j . Recall also the notation Q� W XU 0 ! XU , Q�ord W

Xord
U 0 !Xord

U and �ord W Y ord
U 0 ! Y ord

U for the morphisms extending and restricting � . Since
�ord is finite flat, we have
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Q�ord
� .j

0
�KU 0/jXord

U 0
D j ord
� �ord

� .KU 0 jY ord
U 0
/

' j ord
�

�
HomO

Y ord
U

.�ord
� OY ord

U 0
;Oord

YU
/˝O

Y ord
U

.L
2;�1
U jY ord

U
/
�

' Homj ord
� O

Y ord
U

.j ord
� �ord

� OY ord
U 0
; j ord
� OY ord

U
/˝O

Xord
U

.L2U jXord
U
/

D HomO
Xord
U

. Q�ord
� OXord

U 0
;OXord

U
/˝O

Xord
U

.L2U jXord
U
/;

where we make use of the canonical trivialisation of L
0;1
U and the Koecher Principle (for

the last equality). Moreover, the isomorphism is of Q�ord
� OXord

U 0
-modules.

Since Q�ord is finite, it follows that the completion of Q��j 0�KU 0 ˝OXU
L�2U along a

cusp C � XU is canonically isomorphic to the coherent sheaf on Spf ySC associated to theL
ySC 0 -module

Hom ySC .
L
ySC 0 ; ySC /;

where the direct sums are over the cusps C 0 of XU 0 in the pre-image of C and the rings
ySC and ySC 0 are defined by (6.3) and (6.4) above. The completion of j 0�KU 0 ˝OXU 0

L�2U 0

along a cusp C 0 of XU 0 is therefore canonically isomorphic to Hom ySC .
ySC 0 ; ySC / as an

ySC 0 -module if C 0 � Q��1.C /.
Now consider the natural inclusion j 0�KU 0 ! j

0

�KU 0 of coherent sheaves on XU 0 ,
where as usual we write � for the special fibres of (quasi-coherent sheaves on and mor-
phisms of) schemes over O. This inclusion is an isomorphism on Y U 0 , so its cokernel
is supported on the cusps of XU 0 . The same computation as above shows that the com-
pletion of j

0

�KU 0 ˝O
XU 0

L
�2

U 0 along C
0
� XU 0 is canonically isomorphic to the sheaf

associated to Hom yS
C
. yS
C
0 ; ySC /, where ySC D ySC ˝O E and yS

C
0 D ySC 0 ˝O E. Let X�U

denote the closure of Y �U in XU 0 , so X�U is a union of irreducible components of XU 0 . If
C 0 � Q��1.C / is a cusp of XU 0 such that C

0
� X

�
U , then f D OF , so ySC 0 is flat over ySC

and the natural inclusion

Hom ySC .
ySC 0 ; ySC /˝O E ! Hom yS

C
. yS
C
0 ; ySC /

is an isomorphism. It follows that j 0�KU 0 ! j
0

�KU 0 is an isomorphism after completing
alongC 0, and so an isomorphism on stalks at the (closed points of) cusps ofX�U . Therefore
the cokernel of j 0�KU 0 ! j

0

�KU 0 is supported on the complement of X�U . It follows
that j

0

� of the inclusion i�K
�
U ! KU 0 factors through j 0�KU 0 , and hence the image of

Mk;�1.U IE/ is contained in the subspace

H 0.XU 0 ; j 0�KU 0 ˝O
XU 0

L
m

U 0/ � H
0.XU 0 ; j

0

�KU 0 ˝O
XU 0

L
m

U 0/

D H 0.XU 0 ; j
0

�.KU 0 ˝O
YU 0

L
m

U 0//

D H 0.Y U 0 ;KU 0 ˝O
YU 0

L
m

U 0/ DMmC2;�1.U
0
IE/:

A key ingredient we need at this point is [20, Th. E], which states that Ri��KU 0 D 0

for i > 0, so in particularR1��KU 0 D 0. Since Q�ord is finite, it follows thatR1 Q��.j 0�KU 0/
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vanishes, and hence the morphism Q��j 0�KU 0 ! Q��.j 0�KU 0/ is surjective. Since LU is
ample, we haveH 1.XU ; Q��j

0
�KU 0 ˝OXU

LmU /D 0 for sufficiently largem, and it follows
that the homomorphism

H 0.XU ; Q��j
0
�KU 0 ˝OXU

LmU /
// H 0.XU ; Q��.j 0�KU 0/˝OXU

LmU //

MmC2;�1.U
0IO/ // H 0.XU 0 ; j 0�KU 0 ˝O

XU 0
L
m

U 0//

is surjective. This completes the proof of the claim that the image of Mk;�1.U IE/ in
MmC2;�1.U

0IE/ is contained in that of MmC2;�1.U
0IO/.

The theorem now follows from a standard argument. Let T denote the ring of endo-
morphisms of MmC2;�1.U

0IO/ generated over O by the operators Tv and Sv for v 62 Q.
Then T is a finite flat O-algebra, and MmC2;�1.U

0I O/ is a faithful T -module with
Mk;�1.U IE/ as a subquotient. The formula Tf D �f .T /f defines an E-algebra homo-
morphism T ! E whose kernel is a maximal ideal m generated by the operators Tv � av
and Sv � dv for v 62 Q. By the Going Down Theorem, there is a prime ideal p � m such
that p \O D 0, and hence (enlarging L, O and E if necessary), an O-algebra homomor-
phism Q� W T !O whose kernel is p�m. Since p is in the support ofMmC2;�1.U

0IL/D

MmC2;�1.U
0IO/ ˝O L, there is an eigenform Qf 2 MmC2;�1.U

0IL/ such that T Qf D
Q�.T / Qf for all T 2T . By the existence of Galois representations associated to characteris-
tic zero eigenforms [9,58] (together with the usual association of reducible representations
to Eisenstein series), we have a representation

� Qf W GF ! GL2.L/

such that if v 62 Q, then � Qf is unramified at v and the characteristic polynomial of
� Qf .Frobv/ is

X2 � avX C dv NmF=Q.v/

where av D Q�.Tv/ and dv D Q�.Sv/. Choosing a stable lattice and reducing modulo �
gives the desired representation �f . This concludes the proof of Theorem 6.1.1.

Remark 6.5.1. Note that by construction, if ˛ 2 F � \O�F;p , then
�
˛ 0
0 ˛

�
acts onMk;l .E/

as ˛kC2l�2. Therefore if f 2Mk;l .U IE/ is an eigenform for Sv with eigenvalue dv for
all v 62 Q, then there is a character

 W .A1F /
�=.U \ .A1F /

�/! E�

such that  .˛/ D ˛kC2l�2 for all ˛ 2 F � \ O�F;p and  .$v/ D dv for all v 62 Q. It
follows from the description of �f in Theorem 6.1.1 that det.�f /�cyc (where �cyc is the
cyclotomic character) corresponds via class field theory to the character

 0 W A�F =F
�F �1V ! E�

defined by 0.˛za/D .a/a2�k�2lp for ˛ 2 F �; z 2 F �1 and a 2 .A1F /
� with ap 2O�F;p ,

where V D ¹a 2 A1F j a 2 U; ap � 1 mod pº.



A Serre weight conjecture for geometric Hilbert modular forms 3487

7. Geometric weight conjectures

In this section we formulate our geometric Serre weight conjectures and discuss the rela-
tion with [5].

7.1. Geometric modularity

Let
� W GF D Gal.F =F /! GL2.Fp/

be an irreducible, continuous, totally odd representation of the absolute Galois group ofF .

Definition 7.1.1. We say that � is geometrically modular of weight .k; l/ if � is equivalent
to the extension of scalars of �f for some open compact subgroup U � GL2. yOF / and
eigenform f 2Mk;l .U IE/ as in the statement of Theorem 6.1.1.

Note that the level U is unspecified, but required to contain GL2.OF;p/. Also unspec-
ified are the fieldE (and thus implicitly the fieldL�Qp , by which we viewE DO=� �

Fp) and the finite set of primes of Q. Thus � is geometrically modular of weight .k; l/
if there is a non-zero element f 2 Mk;l .U IE/ for some U � GL2.OF;p/ and E � Fp
such that

Tvf D tr.�.Frobv//f and NmF=Q.v/Svf D det.�.Frobv//f

for all but finitely many primes v. (Note that both sides of both equations are defined
whenever v − p, GL2.OF;v/ � U and � is unramified at v.)

Remark 7.1.2. Folklore conjectures predict that every � as above is indeed geometrically
modular of some weight .k; l/. The focus of this paper is to give a conjectural recipe for
all such weights .k; l/ in terms of the local behaviour of � at primes over p.

7.2. Crystalline lifts

In order to formulate our conjectures, we recall the notion of labelled Hodge–Tate
weights. Let K be a finite extension of Qp , and let

� W GK ! GLd .L/ D AutL.V /

be a continuous representation on a d -dimensional L-vector space V . Recall that V is
crystalline if Dcrys.V / D .V ˝Qp Bcrys/

GK is free of rank d over

.L˝Qp Bcrys/
GK D L˝Qp K0

whereBcrys is Fontaine’s ring of crystalline periods [27] andK0 is the maximal unramified
subfield of K. One similarly defines the notion of a de Rham (resp. Hodge–Tate) repre-
sentation and an associated filtered (resp. graded) free moduleDdR.V / (resp.DHT.V /) of
rank d over L˝Qp K in terms of the rings BdR (resp. BHT). Moreover, if V is crystalline,
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then it is de Rham, and if V is de Rham then it is also Hodge–Tate. Thus if V is crystalline,
then DHT.V / is a graded free module of rank d over L˝Qp K. If L is sufficiently large
to contain the image of each embedding ofK into Qp , thenL˝Qp K '

Q
�2†K

L where
†K D ¹� W K ! Lº, and for each � 2 †K , the corresponding component of DHT.V / is a
graded d -dimensional vector space over L.

Definition 7.2.1. If V is crystalline, then the � -labelled weights of V are defined as the
d -tuple of integers .w1; : : : ; wd / 2 Zd such that w1 � � � � � wd and the � -component
of DHT.V / is isomorphic to

Ld
iD1 LŒwi �, where LŒwi � has degree wi . We define the

Hodge–Tate type of V to be the element of .Zd /†K whose � -component is given by the
� -labelled weights of V ; thus to give the Hodge–Tate type of V is equivalent to giving the
isomorphism class of DHT.V / as a graded L˝Qp K-module.

We now specialise to the case d D 2 andK D Fv where v is a prime of F dividing p,
so†K is identified with the subset†v �†D ¹� W F ! Lº defined by (6.5), and consider
the representation

� W GK ! GL2.Fp/:

Definition 7.2.2. For a pair .k; l/ 2 Z†v�1 � Z†v , we say that � has a crystalline lift of
weight .k; l/ if for some sufficiently large extensionL�Qp of Qp with ring O of integers
and residue field E � Fp , there exists a continuous representation

Q� W GK ! GL2.O/

such that Q� ˝O Fp is isomorphic to � , and Q� ˝O L is crystalline with Hodge–Tate type
.k C l � 1; l/.

7.3. Statement of the conjectures

First recall from §5.2 the definition of the minimal cone:

„min D ¹k 2 Z† j pk� � kFr�1 ı� for all � 2 †º;

and let „Cmin D „min \ Z†�1.

Conjecture 7.3.1. Let � W GF ! GL2.Fp/ be an irreducible, continuous, totally odd
representation, and let l 2 Z†. There exists kmin D kmin.�; l/ 2 „

C
min such that

(1) � is geometrically modular of weight .k; l/ if and only if k �Ha kmin;

(2) if k 2 „Cmin, then k �Ha kmin if and only if �jGFv has a crystalline lift of weight of
.k� ; l� /�2†v for all v jp.

Note that the conjecture, in particular the existence of kmin as in (1), incorporates
the “folklore conjecture” (see Remark 7.1.2) that � is geometrically modular of some
weight .k; l/. Moreover, for any l 2 Z† there should be weights .k; l/ for which � is
geometrically modular. In fact, one can show using partial ‚-operators (defined below
in §8) that for any given l and l 0, if � is irreducible and geometrically modular of some
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weight .k; l/, then � is geometrically modular of some weight .k0; l 0/. We explain this,
and the dependence of kmin on l (for fixed �), in §10.4. A simpler observation is that the
conjecture is compatible with twists by arbitrary characters � WGF ! F

�

p . More precisely,
by Lemma 4.6.1 and the well-known computation of reductions of crystalline characters
(see for example [14, Prop. B4]), we see that the conjecture holds for the pair .�; l/ if and
only if it holds for the pair .�˝ �; l �m/ for any m 2 Z† such that �jIFv D

Q
�2†v

�
m�
�

for all v jp, where IFv is the inertia subgroup of GFv and

�� W IFv ! O�F;v ! F
�

p

is the fundamental character defined as the composite of the maps induced by � and local
class field theory. Thus Conjecture 7.3.1 for all pairs .�; l/ reduces to the case l D 0, with
the resulting minimal weights related by kmin.�; l/ D kmin.� ˝ �; 0/ for any character �
chosen so that �jIFv D

Q
�2†v

�
l�
� for all v j p. We remark also that �jGFv always has

a crystalline lift of some weight .k� ; l� /�2†v with 2 � k� � p C 1 for all � 2 †v , from
which it follows that � has a twist for which kmin as in (2) would satisfy k� � p C 1 for
all � 2 †.

Assuming that � is geometrically modular of some weight, the existence of a
weight kmin satisfying (1) in Conjecture 7.3.1 is strongly suggested by Corollary 1.2
of [19], which implies that the minimal weight �.f / of the eigenform f satisfies
�.f / 2„min, but it is not an immediate consequence. Indeed, there are two issues: firstly,
we would need �.f / 2 „Cmin (which we expect to hold if �f is irreducible), and secondly,
the eigenform f giving rise to � is not unique. However, if we grant the existence of kmin

as in (1), then Conjecture 7.3.1 reduces to the following:

Conjecture 7.3.2. Suppose that � W GF ! GL2.Fp/ is irreducible and geometrically
modular of some weight, and that k 2 „Cmin. Then � is geometrically modular of weight
.k; l/ if and only if �jGFv has a crystalline lift of weight of .k� ; l� /�2†v for all v jp.

Remark 7.3.3. The existence of kmin satisfying part (2) of Conjecture 7.3.1 is a purely
p-adic Hodge-theoretic statement, and it is strongly suggested by the Breuil–Mézard
Conjecture (of [4] as generalised by [33]) and the modular representation theory of
GL2.OF =p/, but again not an immediate consequence. We remark also that the con-
dition k 2„Cmin is needed; indeed, R. Bartlett has constructed local Galois representations
with crystalline lifts of weight4 .k; l/, but none of weight .k0; l/, where k0 D k C kHa�
is in Z†�1 but not in „Cmin. Granting the existence of a weight kmin as in (2), then Con-
jecture 7.3.1 follows from Conjecture 7.3.2 under the assumptions that � is geometrically
modular of some weight and that �.f / 2 „Cmin if �f � � is irreducible.

7.4. The case k D 1

We now consider a special case of Conjecture 7.3.2. Since a representationGK!GLd .L/
is crystalline of Hodge–Tate type 0 2 .Zd /†K if and only if it is unramified, it follows that

4For notational consistency, assume here that p is inert in F .
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� W GK ! GL2.Fp/ has a crystalline lift of weight .1; 0/ if and only if it is unramified.
Thus Conjecture 7.3.2 incorporates the prediction that �, assumed to be geometrically
modular, is of weight .1; 0/ if and only if it is unramified at all primes v jp. One direction
of this, that if � is geometrically modular of weight .1; 0/ then it is unramified at all
v jp, is a theorem of Dimitrov and Wiese [23] (also proved independently by Emerton,
Reduzzi and Xiao [25] under additional hypotheses), and the other direction is proved
under technical hypotheses by Gee and Kassaei [32]. By twisting, these results extend to
the case of weight .1; l/ for arbitrary l .

7.5. Relation to algebraic modularity

We now explain how our conjecture is consistent with results on the weight part of Serre’s
Conjecture as formulated by Buzzard, Jarvis and one of the authors in [5]. These results
provide information about algebraic weights, meaning weights .k; l/ such that k� � 2 for
all � , but with a different notion of modularity, which we call algebraic modularity. We
will next explain this notion and its relation to the conjectures above. The remainder of
the paper will then focus on developing methods applicable to the case of partial weight 1,
which lies outside both settings just mentioned, namely weights that are algebraic or of
the form .1; l/.

Recall that in [5], a Serre weight is an irreducible representation of GL2.OF =p/
over Fp . For an algebraic weight .k; l/ 2 Z†�2 � Z†, we let Vk;l denote the represen-
tation N

�2†

�
det l� ˝ Symk��2 F

2

p

�
;

where GL2.OF =p/ acts on the factor indexed by � via the homomorphism to GL2.Fp/
induced by � . The irreducible representations of GL2.OF =p/ (i.e., Serre weights) are
precisely the Vk;l such that 2 � k� � p C 1 for all � 2 †; moreover, for such .k; l/, Vk;l
is isomorphic to Vk0;l 0 if and only if k D k0 and l � l 0 2

L
�2†Z �Ha� . (More concretely,

the latter condition means that
Pf��1
iD0 lFri ı�p

i �
Pf��1
iD0 l 0

Fri ı�
pi mod .pf� � 1/ for all

� 2 †, where f� D Œ�.OF / W Fp�.)
For an irreducible representation � W GF ! GL2.Fp/ and an aribtrary finite-dimen-

sional representation V of GL2.OF =p/ over Fp , we say � is modular of weight V if it
arises in the étale cohomology of a suitable quaternionic Shimura curve over F with coef-
ficients in a lisse sheaf associated to V ; we refer the reader to [5, Section 2] for the precise
definition.5 It is also proved in loc. cit. that � is modular of weight V if and only if it is
modular of weight W for some Jordan–Hölder constituent W of V , so the determination
of the weights V for which � is modular reduces to the consideration of Serre weights.

5Alternatively, but not a priori equivalently, one can define the notion of modularity of weight
V in terms of the presence of the corresponding system of Hecke eigenvalues on spaces of mod p
automorphic forms on totally definite quaternion algebras over F .
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Definition 7.5.1. For an algebraic weight .k; l/ 2 Z†�2 � Z†, we will say that � is alge-
braically modular of weight .k; l/ if it is modular of weight Vk;1�k�l in the sense of [5]
(the presence of the twist being to reconcile the conventions of this paper with the ones
of [5]).

A conjecture is formulated in [5] for the set of Serre weights for which � is modular.
Under the assumption that � is algebraically modular of some weight and mild technical
hypotheses, the conjecture is proved in a series of papers by Gee and coauthors, culmi-
nating in [33, 34], with an independent alternative to the latter (deducing the conjecture
from its analogue in the context of certain unitary groups) provided by Newton [50].
They also prove variants of the conjecture (under the same hypotheses), including that if
2 � k� � p C 1 for all � , then � is algebraically modular of weight .k; l/ if and only if
�jGFv has a crystalline lift of weight of .k� ; l� /�2†v for all v jp. The generalised Breuil–
Mézard Conjecture (as in [33]) would imply that this result extends to arbitrary algebraic
weights. We are therefore led to conjecture:

Conjecture 7.5.2. Let � W GF ! GL2.Fp/ be an irreducible, continuous, totally odd
representation, and let .k; l/ 2 Z†�2 � Z†. If � is algebraically modular of weight .k; l/,
then � is geometrically modular of weight .k; l/. Moreover, if in addition k 2 „Cmin, then
the converse holds.

Remark 7.5.3. The assumption k 2 „Cmin appears for reasons related to its presence in
part (2) of Conjecture 7.3.1; here however one can see its necessity more readily from
modular representation-theoretic considerations. Indeed, if k; k0 2 Z†�2 with k0 D k C

kHa� 62„
C
min, then Vk;l may have Jordan–Hölder constituents not present in Vk0;l , so there

are representations which are algebraically modular of weight .k; l/, but not of weight
.k0; l/. Note though that if 2 � k� � pC 1 for all � , then k 2 „Cmin, so we conjecture that
algebraic and geometric modularity are equivalent for weights associated to Serre weights.

From our construction of the Galois representation associated to an eigenform f , we
see that �f is the reduction of some representation associated to a characteristic zero
eigenform, from which it follows (e.g. from [5, Prop. 2.10]) that �f is modular of some
weight V . Thus if � is geometrically modular of some weight, then it is algebraically
modular of some weight.

Conversely, suppose that � is algebraically modular of some paritious weight .k; l/ 2
Z†�2 � Z† (see Definition 3.2.1). Then [5, Prop. 2.5] implies that � is the reduction of
some representation associated to a characteristic zero eigenform of weight .k; l/ and level
prime to p, and hence that � is geometrically modular of weight .k; l/. More generally,
if .k; l/ is any algebraic weight such k� � k� 0 mod 2 for all �; � 0 2 †, then we can
choose l 0 so that .k; l 0/ is paritious and a character � so that �jIFv D

Q
�2†v

�
l��l

0
�

� . If �
is algebraically modular of weight .k; l/, then � ˝ � is algebraically modular of weight
.k; l 0/ (by [5, Prop. 2.11]), so the above argument shows that � ˝ � is geometrically
modular of weight .k; l 0/ and hence that � is geometrically modular of weight .k; l/. We
have thus proved the following:
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Proposition 7.5.4. If � is geometrically modular of some weight, then it is algebraically
modular of some .algebraic/ weight. Conversely, if � is algebraically modular of some
algebraic weight .k; l/ such that k� � k� 0 mod 2 for all �; � 0 2 †, then � is geometrically
modular of the same weight .k; l/.

8. ‚-operators

In this section we recall the definition due to Andreatta and Goren of partial ‚-operators
(see [1, §12]), with some simplifications and adaptations to our setting. See also [18],
where the approach taken here is applied in the context of Pappas–Rapoport models
defined in [52], leading to a substantial refinement of the results in [1] when p is ram-
ified in F .

8.1. Igusa level structure

We assume that U is p-neat, as in Definition 3.2.3. For � 2 †, we will write !� (resp. ı� )

for the line bundle L
k;0

U (resp. L
0;k

U ) on Y U , where k is such that k� D 1 and k� 0 D 0 for
� 0 ¤ � . We view the partial Hasse invariant

Ha� 2 H 0.Y U ;L
kHa� ;0

U / D H 0.Y U ; !
�1
� ˝ !

p

Fr�1 ı�
/

as a morphism !
�p

Fr�1 ı�
! !�1� . For each v jp, we let Hav D

Q
�2†v

Ha� , which we view
as a morphism .

N
�2†v

!
�p

Fr�1 ı�
/ ˝ .

N
�2†v

!� / ! OYU , i.e.,
N
�2†v

!1�p� ! OYU
(where †v is defined in (6.5)).

We define the scheme

Y
Ig
U D Spec

�
SymO

YU

�L
�2†

!�1�
�
=I
�
;

where I is the sheaf of ideals of SymO
YU

.
L
�2†!

�1
� / generated by the sheaves of OYU -

submodules

.Ha� �1/!
�p

Fr�1 ı�
for � 2 †; .Hav �1/

� N
�2†v

!1�p�

�
for v jp.

We define an action of .OF =pOF /� on Y Ig
U over Y U by having ˛ 2 .OF =pOF /� act

on the structure sheaf as the OYU -algebra automorphism defined by multiplication by
�.˛/�1 on the summand !�1� . (Note that the action is well-defined since the Ha� are
invariant under this action and hence I is preserved.)

Proposition 8.1.1. Let �U W Y
Ig
U ! Y U denote the natural projection. Then

(1) the morphism �U is finite and flat, and identifies Y U with the quotient of Y Ig
U by the

action of .OF =pOF /�;

(2) the restriction of �U to the preimage of Y ord
U is étale;

(3) the scheme Y Ig
U is normal.
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Proof. Each assertion can be checked over affine open subschemes V � Y U on which
the line bundles !�1� are trivial. For each � 2†, let x� be a generator ofM� D �.V;!

�1
� /

overRD �.V;OYU /. Then Ha� .x
p

Fr�1 ı�
/D r�x� for some r� 2R, and ��1U .R/D SpecT

where

T D RŒx� ��2†=
D
x
p

Fr�1 ı�
� r�x� for � 2 †,

Y
�2†v

xp�1� �

Y
�2†v

r� for v jp
E
:

Thus T is free over R with basis ¹
Q
�2† t

��
� º, where t� denotes the image of x� in T and

the tuples � D .�� /�2† are those satisfying

� 0 � �� � p � 1 for each � 2 †;

� �� < p � 1 for some � in each †v .

Note that .OF =pOF /� acts on
Q
�2† t

��
� by the character

Q
�2† �

��� , and these are
precisely the distinct characters of the .OF =pOF /�. Therefore T .OF =pOF /

�

D R, and
(1) follows.

To prove (2), recall that Y ord
U is the complement of

S
�2†ZU;� whereZU;� is vanishing

locus of Ha� on Y U . We must therefore show that if all r� are invertible in R, then T is
étale over R. From the above description of T , we see that

r�dt� D d.t
p

Fr�1 ı�
� r� t� / D 0

in �1
T=R

. It follows that dt� D 0 for all � , and hence �1
T=R
D 0, so T is étale over R.

To prove (3), we use Serre’s Criterion. Since R is regular and T is finite and flat over
R, T is Cohen–Macaulay, so it suffices to prove that T is regular in codimension 1. Thus
it suffices to prove that the semilocal ring Tp is regular for every height 1 prime p of R.
If p 2 Y ord

U , then Tp is étale over Rp, so Tp is regular. Otherwise p defines an irreducible
component of V \ ZU;� for some � D �0 2 †. Since V \ ZU;� is defined by r� andP
ZU;� is reduced, the DVR Rp has uniformiser r�0 , and r� 2 R�p for � ¤ �0. Letting

�0 2 †v0 , f D #†v0 and

S D RŒx� ��2†v0 =
D
x
p

Fr�1 ı�
� r�x� for � 2 †v0 ,

Y
�2†v0

xp�1� �

Y
�2†v0

r�

E
;

the formulas tFri ı� D r
�1

Fri ı�
t
p

Fri�1 ı�
for i D 1; : : : ; f � 1 show that

Sp D RpŒx�0 �=
D
xp

f �1
�0

� r�0

f �1Y
iD1

r
pi

Frf�i ı�0

E
;

which is a DVR with uniformiser t�0 . Since r� is invertible in Sp for � 62 †v0 , we see as
above that Tp is étale over Sp, and is therefore also regular.

Remark 8.1.2. We could similarly have defined schemes Y Ig
J;N as above by replacing Y U

with Y J;N . Then Y Ig
J;N is isomorphic to the closed subscheme (in fact, a union of irre-

ducible components) of Y
1

J;N for which the subgroup scheme H � AŒp� is generically
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étale. However, under this isomorphism, the natural projection Y Ig
J;N ! Y J;N corresponds

to the restriction of the morphism Y
1

J;N ! Y J;N defined by .A;H;P / 7! A=H . Further-

more, we can realise Y Ig
U as the quotient of

`
Y

Ig
J;N by the action of GU;N obtained from

the one on Y
1

J;N defined by .�;u/ � .A;H;P /D ..�;u/ �A;H;�P /; as this differs from the
one already defined, it does not yield an identification of Y Ig

U with a union of irreducible
components of Y U 0 .

Remark 8.1.3. We note also that the ordinary locus of Y Ig
J;N can instead be viewed as

parametrising pairs .A; �/ where � W �p ˝ OF
�
�! ker FrobA. Since Y Ig

J;N is normal, it is
essentially the scheme defined as M.E; �pN /

Kum in [1, §9]; the differences are that we
are working with full level N structure and not including the cusps. We will not however
make any direct use of the fact that Y Ig

U or Y Ig
J;N is normal; in particular, we will not

compute divisors on them as in [1, §12], appealing instead in the proof of Theorem 8.2.2
below to general properties of logarithmic differentiation in order to descend the problem
to Y U .

8.2. Construction of ‚-operators

For each � 2 †, we consider the inclusion !�1� � SymO
YU

.
L
�2† !

�1
� /, which induces

an injective morphism

!�1� ! �U;�OY Ig
U

D SymO
YU

�L
�2†

!�1�
�
=I;

hence an injective morphism ��U!
�1
� ! O

Y
Ig
U

, which we view as a section of ��U!� . We

denote this section by h� , and call it a fundamental Hasse invariant. The definition of Y Ig
U

implies that these satisfy the relation

h
p

Fr�1 ı�
D h��

�
U .Ha� /:

Recall now the Kodaira–Spencer isomorphism (6.2). Taking A to be the universal
HBAV over S D Y J;N and decomposing over embeddings � yields a GU;N -equivariant
isomorphism L

�2†

�
!2� ˝O

YJ;N
ı
�1

�

�
' �1

Y J;N =E

whose union over J descends to an isomorphismL
�2†

�
!2� ˝O

YU
ı
�1

�

�
' �1

YU =E
(8.1)

of vector bundles on Y U . We let KS� W �1
YU =E

! !2� ˝O
YU

ı
�1

� denote the composite
of its inverse with the projection to the � -component.

Let FU denote the sheaf of total fractions on Y U , and FU D H 0.Y U ;FU / the ring
of meromorphic functions on Y U , so FU is the product of the function fields of the com-
ponents of Y U . Similarly let F

Ig
U be the sheaf of total fractions on Y Ig

U (so F
Ig
U D �

�
UFU )
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and let F Ig
U be the ring of meromorphic functions on Y Ig

U , so F Ig
U is Galois over FU with

Galois group .OF =pOF /�. Since the natural map ��U�
1

YU =E
! �1

Y
Ig
U
=E

is generically

an isomorphism, i.e.,

��U .�
1

YU =E
˝O

YU
FU / ' �

�
U�

1

YU =E
˝O

Y
Ig
U

F
Ig
U ' �

1

Y
Ig
U
=E
˝O

Y
Ig
U

F
Ig
U ;

the pull-back of KS� induces a morphism

�1
Y

Ig
U
=E
˝O

Y
Ig
U

F
Ig
U ! ��U

�
!2� ˝O

YU
ı
�1

�

�
˝O

Y
Ig
U

F
Ig
U ;

which we will denote by KSIg
� .

Suppose now that f 2Mk;l .U IE/. Let hk D
Q
� h
k�
� and gl D

Q
� g

l�
� , where h� is the

fundamental Hasse invariant and g� is any trivialisation of ı� . Then h�k��U .g
�lf / 2 F

Ig
U ,

so we may apply KSIg
� to

d.h�k��U .g
�lf // 2 �1

F
Ig
U
=E
D H 0.Y

Ig
U ; �

1

Y
Ig
U
=E
˝O

Y
Ig
U

F
Ig
U /:

Definition 8.2.1. We define

‚Ig
� .f / D h

k��U .g
l Ha� /KSIg

� .d.h
�k��U .g

�lf /// 2 H 0.Y
Ig
U ; �

�
UL

k0;l 0

˝O
Y

Ig
U

F
Ig
U /;

where

� if Fr ı � D � , then k0� D k� C p C 1 and k0� 0 D k� 0 if � 0 ¤ � ;

� if Frı� ¤ � , then k0� D k�C1, k0
Fr�1 ı�

D kFr�1 ı�Cp, and k� 0 D k� 0 if � 0 62 ¹Fr�1 ı�;�º;

� l 0� D l� � 1, and l 0� 0 D l� 0 if � 0 ¤ � .

Since the ratio of any two trivialisations of ı� is locally constant, we see that ‚Ig
� .f /

is independent of the choice of g� . Moreover, it is straightforward to check that‚Ig
� .f / is

invariant under the action of .OF =p/�, hence descends to a section of !k
0;l 0
˝O

YU
FU ,

which we denote by ‚� .f /. What is more difficult is that ‚� .f / is in fact a section
of !k

0;l 0 . In fact, we have the following result, essentially due to Andreatta and Goren [1]:

Theorem 8.2.2. If f 2 Mk;l .U IE/ and � 2 †, then ‚� .f / 2 Mk0;l 0.U IE/. Moreover,
‚� .f / is divisible by Ha� if and only if either f is divisible by Ha� , or k� is divisible
by p.

Proof. First note that the formulaY
� 02†

h
p�1
� 0 D

Y
� 02†

��U .Ha� 0/

implies that hk is non-vanishing on ��1U .Y ord
U /, so h�k��U .g

�lf / and hence
d.h�k��U .g

�lf // are regular on ��1U .Y ord
U /. Since �U is étale on ��1U .Y ord

U /, it follows
that d.h�k��U .g

�lf // restricts to a section of

��U�
1

Y ord
U
=E
D �1

��1
U
.Y ord
U
/=E
:

Therefore ‚Ig
� .f / is regular on ��1U .Y ord

U /, and ‚� .f / is regular on Y ord
U .
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To complete the proof of the first assertion, we must show that if z is the generic point
of an irreducible component Z � ZU;�0 , then (the germ at z) of ‚� .f / lies in !k

0;l 0

z , i.e.,
ordz.‚� .f // � 0. For the second assertion, it suffices to show further that if �0 D � , then
ordz.‚� .f // > 0 if and only if either p j k� or ordz.f / > 0.

Let us revert to the notation of the proof of Proposition 8.1.1, so OYU ;z D Rp and x� 0
is a basis for the stalk of !�1� 0 at z. Let y� 0 be the dual basis for !� 0 , so that ykgl is a
basis for !k;lz over Rp (where as usual yk denotes

Q
� 0 y

k�0

� 0 ), and we have f D �f ykgl

for some �f 2 Rp. In terms of the basis ��U .y� 0/ for ��U!� 0;z , the fundamental Hasse
invariant h� 0 is given by t� 0��U .y� 0/, so that h�k��U .g

�lf / D t�k�f in the total fraction
ring of Tp, over which we deduce that

‚Ig
� .f / D KSIg

� .t
k d.t�k�f //�

�
U .Ha� ykgl /:

The formulas tp
Fr�1 ı�

D r� t� in Tp imply that r� 0 dt� 0 D�t� 0 dr� 0 in�1
Tp=E

, and it follows
that

‚� .f / D KS� .d�f � �f rkd.r�k//Ha� ykgl

D KS�

�
d�f C �f

X
� 02†

k� 0
dr� 0

r� 0

�
Ha� ykgl (8.2)

(locally at z). Since Ha� D r�ykHa� , we conclude that

ordz.‚� .f // D ordz

�
r�KS� .d�f /C k��f KS� .dr� /C

X
� 0¤�

k� 0r��f
KS� .dr� 0/

r� 0

�
:

In particular, if � D �0, then we see immediately that ordz.‚� .f // � 0, with equality
if and only if ordz.k��f KS� .dr� // D 0, so in this case we are reduced to proving that
ordz.KS� .dr� // D 0. On the other hand, if � ¤ �0, then we are reduced to proving that
ordz.KS� .dr�0// > 0. Both cases are treated by the lemma below.

The following is essentially the unramified case of [1, Prop. 12.34], which we prove
using a computation of Koblitz [48] (as presented in [39]) instead of the theory of displays.

Lemma 8.2.3. Let z be a generic point of ZU;�0 and let r be a generator for the maximal
ideal of OYU ;z . Then ordz.KS� .dr// D 0 if and only if � D �0.

Proof. First note that since the projection
`
Y J;N ! Y U is étale, we may replace Y U by

Y J;N and ZU;�0 by Z�0 in the statement of the lemma. Note also that the conclusion of
the lemma is independent of the choice of uniformising parameter r , since if u 2O�

Y J;N ;z
,

then
KS� .d.ur// D uKS� .dr/C rKS� .du/:

We will prove that for every closed point x ofZ�0 , there is a choice of parameter r , regular
at x, such that the fibre of KS� .dr/ at x vanishes if and only if � ¤ �0. By the formula
above, the equivalence then holds for all r regular at x, hence for all x at which any given
r is regular, and this implies the lemma.
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Let R D yOY J;N ;x , A the pull-back to SpecR of the universal HBAV over YJ;N and
M D H 1

DR.A=R/. Letting
r WM ! �1R=E ˝R M

denote the Gauss–Manin connection and � WM !M the morphism induced by the abso-
lute Frobenius morphism on A, we are in the situation of [39, A2.1].6 We then have
LDH 0.A;�1

A=R
/ andN DH 1.A;OA/, and theOF -action on A yields decompositions

L D
L
L� ; M D

L
M� and N D

L
N�

into free R-modules indexed by � 2 †. The Hasse–Witt endomorphism of [39, (A2.1.1)]
decomposes as the sum of Frobenius semi-linear morphisms NFr�1 ı� ! N� such that,
after choosing a generator for J=pJ and applying the isomorphisms Lie.A/˝OF J 'N ,
the induced morphism N

˝p

Fr�1 ı�
! N� corresponds to the completion at x of the partial

Hasse invariant HaN;J;� . The general properties of the construction of the Gauss–Manin
connection ensure its compatibility with the OF -action, so that it decomposes as a direct
sum of connections r� on M� . Furthermore, the morphism [39, (A2.1.2)] induced by r
is the completion at x of the reduction mod � of (6.1), and hence the induced morphismL

�

HomR.^
2
RM� ; L

˝R2
� / D

L
�

HomR.N� ; L� /! �1R=E

is the completion at x of the Kodaira–Spencer isomorphism on Y J;N .
Following [39], we let Ri D R=miC1

R (the cases of interest being i D 0; 1), and sim-
ilarly use subscript i for reductions mod miC1 of R-modules, morphisms and matrices.
We now choose a basis forM1 as in [39, (A2.1.6)] as follows: First choose a basis forM0

consisting of vectors e�;0 2 L�;0, f�;0 2M�;0 for � 2 †. Then

�0.eFr�1 ı�;0/ D 0 and �0.fFr�1 ı�;0/ D c�e�;0 C d�f�;0

for some c� ; d� 2 R0 not both zero. Replacing f�;0 by e�;0 C f�;0 whenever c� D 0, we
may assume c� ¤ 0, and then replacing e�;0 by c�1� e�;0, we may assume c� D 1 for all � .
Now lift each pair .e�;0;f�;0/ to a basis .e� ;f 0� / ofM�;1 with e� 2L�;1 and let f� DP.f 0� /
where P is defined in [39, (A2.1.3)]. Since r respects the decomposition M D

L
M� ,

so does P , and hence f� 2 M�;1. Moreover, f� � f 0� mod mR, so in the matrix
�
0 B1
0 H1

�
of [39, (A2.1.7)] representing � on M1 with respect to the basis ..e� /; .f� //,

� the reduction B0 of B1 is defined by b�;� 0 D ı�;Fr ı� 0 ;

� the matrix H1 represents the Hasse–Witt endomorphism N1 ! N1 with respect to
the basis induced by .f� /, so h�;� 0 D 0 if � 0 ¤ Fr�1 ı� and h�;Fr�1 ı� D r� , where r�
represents the pull-back of HaJ;N;� to R1 with respect to the basis induced by the map
sending fFr�1 ı� to f� .

6The notations A and F in [39], being in other use here, have been replaced by R and �.
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In particular, B0 is invertible, and [39, Proposition A2.1.8] implies that the matrix

K0 D .H0 �H1/B
�1
0

with entries in mR=m
2
R ' �

1
R=E
˝R R0 is diagonal with .�; �/-entry �dr� . Note that

the map L0! .mR=m
2
R/˝R0 N0 is the fibre of (6.1) at x, and is represented byK0 with

respect to the bases .e�;0/ of L0 and .f�;0 mod L0/ of N0. It follows that the fibre at x of
the Kodaira–Spencer isomorphism is the mapL

�

HomR0.N�;0; L�;0/ ' HomR0˝OF .N0; L0/! �1R=E ˝R R0

under which the basis vector in the � -component induced by f�;0 7! e�;0 corresponds
to �dr� . Note that r�0 is the image in mR=m

2
R of a uniformising parameter for Z�0 in a

neighbourhood of x, and the fibre at x of KS� sends dr�0 to 0 if and only if � ¤ �0, so
this completes the proof of the lemma.

It is straightforward to check that the maps ‚� are compatible with the maps
ŒU1gU2� for sufficiently small U1; U2 and g 2 GL2.A1F / such that g�1U1g � U2 and
gp 2 GL2.OF;p/. Taking limits over open compact subgroups U therefore gives

Corollary 8.2.4. For any weight .k; l/, ‚� defines a map

Mk;l .E/!Mk0;l 0.E/

commuting with the action of all g 2 GL2.A1F / such that gp 2 GL2.OF;p/. In particular,
for any open compact subgroup U of GL2.A1F / containing GL2.OF;p/, ‚� defines a
map

Mk;l .U IE/!Mk0;l 0.U IE/

commuting with the operators Tv and Sv for all v − p such that GL2.OF;v/ � U .

9. q-expansions

We review the definition and properties of q-expansions, including the effect on them of
Hecke and partial ‚-operators, and we generalise a result of Katz on the kernel of ‚.
See [18] for a further generalisation to the case where p is ramified in F .

9.1. Definition and explicit descriptions

Suppose as usual that U is a sufficiently small open compact subgroup of GL2. yOF /
containing GL2. yOF;p/, with k; l 2Z† andR a Noetherian O-algebra such that �kC2l D 1
inR for all � 2O�F \U . Recall from §6.4 thatXU is the minimal compactification of YU ,
and a cusp ofXU is a connected component ofXU � YU . When it is clear and convenient,
we will suppress the subscriptR from base-changes of morphisms to which schemes have
been extended, writing just j for example for the inclusion YU;R ,! XU;R.
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Definition 9.1.1. For each cusp C of XU , we letQk;l
C;R denote the completion of j�L

k;l
U;R

at CR, and for f 2 Mk;l .U IR/, we define the q-expansion of f at C to be its image
in Qk;l

C;R.

We now proceed to describe Qk;l
C;R more explicitly. (See [18, Sections 7.1–2] for a

more general and detailed analysis.) We first recall (e.g. from [11]) the description in the
context of XJ;N , supposing that N � 3 and �N .Q/ � O. The cusps QC of XJ;N are in
bijection with equivalence classes of data:

� fractional ideals a, b of OF ;

� an exact sequence of OF -modules 0! .ad/�1 ! H ! b! 0;

� an isomorphism J
�
�! ab�1;

� an isomorphism .OF =NOF /
2 ��! H=NH .

By the Koecher Principle (as in the discussion preceding [53, Prop. 6.11]; see [49,
Thm. 2.5] for a statement in the required generality), we have ��L

k;l;tor
J;N;R D

Qj�L
k;l
J;N;R,

where � W X tor
J;N ! XJ;N is the projection from a toroidal compactification of YJ;N , and

L
k;l;tor
J;N is the canonical extension of L

k;l
J;N to a line bundle over X tor

J;N associated to the
semiabelian scheme Ator extending the universal abelian scheme A over YJ;N . Since �
is projective, the Formal Functions Theorem identifies the completion Qk;l

QC;R
of the sheaf

Qj�L
k;l
J;N;R at QCR with the set of global sections of the completion of the coherent sheaf

L
k;l;tor
J;N;R at the fibre of � over QCR.

The construction of the toroidal compactification identifies the completion of X tor
J;N

at the fibre over QC with the quotient yS=UN , where yS is the formal scheme denoted
SN .¹�

QC
˛ º/
^ in [11, 3.4.2] (for a choice of polyhedral cone decomposition ¹� QC˛ º), but we

define the action of ˛ 2 UN D ker.O�F ! .OF =N/
�/ as being induced by multiplication

by ˛2. We therefore obtain an identification of the R-algebra Q0;0
QC;R

with

yS QC;R D .RŒŒq
m��m2.N�1ab/C[¹0º

/UN

where ˛ 2 UN acts via qm 7! q˛
2m on power series, under which QC corresponds to the

closed subscheme of Spec yS QC defined by
P
rmq

m 7! r0. Furthermore, the pull-back of
Ator to yS is the Tate semi-HBAV Ta;b associated to the quotient .Gm ˝ .ad/�1/=qb (by
Mumford’s construction). The canonical trivialisations

Lie.Ta;b= yS/ ' .ad/�1 ˝O yS ' Hom.a;O yS /;

Lie.T _a;b=
yS/ ' .bd/�1 ˝O yS ' Hom.b;O yS /

then give a trivialisation of the pull-back of L
k;l;tor
J;N;R to yS , and hence an identification

Q
k;l
QC;R
D .Dk;l

˝O RŒŒq
m��m2.N�1ab/C[¹0º

/UN ;

where
Dk;l

D
N
�

�
.a˝O/˝k�� ˝O .Jd�1 ˝O/˝l��

�
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and ˛ 2 UN acts as ˛k on Dk;l . Note that Dk;l is free of rank 1 over O, and letting b be
a basis, we have

Q
k;l
QC;R
D

° X
m2.N�1ab/C[¹0º

.b ˝ rm/q
m
ˇ̌̌
r˛2m D ˛

krm for all ˛ 2 UN
±
:

We will also write D
k;l

for Dk;l ˝O E.
If we fix the data of a, b and ab�1 ' J , then the corresponding cusps of XJ;N are in

bijection with PN nGL2.OF =N/, where

PN D

²�
˛�1 �

0 ˛

�
mod N

ˇ̌̌̌
˛ 2 O�F

³
:

Here we have chosen isomorphisms

s W OF =NOF ' N
�1b=b and t W OF =NOF ' �N ˝ .ad/�1

to define a level N structure � on Ta;b by �.x; y/ D t .y/qs.x/, and then associated the
coset PNg to the cusp of XJ;N defined by Ta;b with level N structure � ı rg�1 . Under
this bijection, the (right) action of GU;N is defined by

PNg � .�; u/ D PN

�
��1 0

0 1

�
gu:

The stabiliser in GU;N of (the cusp corresponding to) PNg is therefore the image of the
group ²

.�; u/ 2 O�F;C � U

ˇ̌̌̌
gug�1 �

�
�˛�1 �

0 ˛

�
mod N for some ˛ 2 O�F

³
:

We find that the (left) action on Qk;l
QC;R

of such an element .�; u/, with

gug�1 D

�
�˛�1 ��˛�1x

0 ˛

�
mod N;

is defined by ˛k�l on Dk;l andX
rmq

m
7!

X
�.xm/rmq

˛2��1m

on RŒŒqm��m2.N�1ab/C[¹0º
, where � W N�1ab=ab ! �N is the composite of the OF -

linear isomorphism N�1ab=ab! d�1 ˝ �N induced by t ı s�1 with trF=Q ˝ 1. The
module Qk;l

C;R (over ySC;R D Q
0;0
C;R) is then given by the invariants in Qk;l

QC;R
under the

action of the above stabiliser. In particular, we note the following two special cases:

Proposition 9.1.2. Suppose that �kC2l D 1 in R for all � 2 O�F such that �� 1mod n,
and let b be a generator of Dk;l .
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� If U D U.n/, then

Q
k;l
C;R '

° X
m2.n�1ab/C[¹0º

.b ˝ rm/q
m
ˇ̌̌
r�m D �

�lrm for all � 2 Un;C

±
:

� If U D U1.n/ and g D 1, then

Q
k;l
C;R D

° X
m2.ab/C[¹0º

.b ˝ rm/q
m
ˇ̌̌
r�m D �

�lrm for all � 2 O�F;C
±
:

Note that the isomorphism (in the case of U D U.n/) depends on the choice of
representative g. Note also that the description of Qk;l

C;R is compatible in the obvious
senses with the morphisms induced by base-changes R ! R0, and inclusions U 0 � U
(for cuspsC 0 of XU 0 mapping to C ).

9.2. The q-expansion principle

The q-expansion at C of a form f 2Mk;l .U IR/ vanishes if and only if (the extension to
XU;R of) f vanishes on a neighbourhood of CR, which is equivalent to the vanishing of f
on all connected components of XU;R intersecting CR. (Note that if SpecR is connected,
then there is a unique component containing CR.) Recall from §2.6 thatZU is the scheme
representing the set of components of YU and hence XU , so we have the following:

Lemma 9.2.1. If � is any set of cusps ofXU such that
`
C2� C ! ZU is surjective, then

the q-expansion map
Mk;l .U IR/!

L
C2�

Q
k;l
C;R

is injective.

If U D U1.n/, then det.U / D yO�F , so ZU is in bijection with the strict class group
of F . For each representative J , we choose b D J�1, a D OF , and � consisting of a
single C at infinity (i.e. as in the second part of Proposition 9.1.2) on each component
associated to a fixed t W OF =NOF ' �N ˝ d�1 (independent of J ) and s W OF =NOF '
.NJ /�1=J�1 (of which C is independent). Using the isomorphism Dk;l ' O obtained
from the inclusion Jd�1�F for each J , we obtain an injective q-expansion map (defined
for arbitrary n)

Mk;l .U1.n/IR/!
L
J

° X
m2J�1

C
[¹0º

rmq
m
ˇ̌̌
r�m D �

�lrm for all � 2 O�F;C
±
: (9.1)

9.3. q-expansions of partial Hasse invariants

Let us now return to the case of arbitrary (sufficiently small) U , take R D E and consider
the q-expansions of the partial Hasse invariants Ha� . Since the pull-back Ver�Ta;b

of the
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relative Verschiebung on the Tate semi-HBAV Ta;b (see §9.1) is induced by the canonical
isomorphism L

�

.a˝E/� !
L
�

.a˝E/
˝p

Fr�1 ı�
;

we see that the q-expansion of Ha� at any cusp is the constant 1, or more precisely �� ˝ 1
where �� 2D

kHa� ;0 is defined by the canonical isomorphism .a˝E/� ! .a˝E/
˝p

Fr�1 ı�
.

Furthermore, the same is true for the q-expansions of G� 2 M0;kHa�
.U I E/ (with

D
kHa� ;0 replaced by D

0;kHa� and a by Jd�1), where G� is obtained by descent from
the canonical trivialisations defined in §3.4.

9.4. ‚-operators on q-expansions

We continue to assume R D E. We now describe the effect of ‚-operators on q-expan-
sions. We first assume U D U.n/ for some n sufficiently small that �l D 1 mod p for all
� 2 Un;C. By Proposition 9.1.2, we can identify Q

k;l

C D Q
k;l
C;E with

D
k;l
˝E ySC;E D

° X
m2.n�1ab/C[¹0º

.b ˝ rm/q
m
ˇ̌̌
r�m D rm for all � 2 Un;C

±
;

where b is any basis for D
k;l

. In particular, note that Q
k;l

C is free over ySC;E for all k; l .
We now appeal to formula (8.2), and observe that it is compatible with the analogous

formula defining a mapQ
k;l

C !Q
k0;l 0

C , where KS� is replaced by the completion of j�KS�
atC DCE . Moreover, the formula is valid for any choices of bases y� 0 for the completions
of j�!� 0 (which are invertible thanks to our choice of U ). In particular, we can choose
the y� 0 of the form a� 0 ˝ 1 where the a� 0 are bases for .a˝ E/� 0 such that �� 0 ˝ a� 0 D
a
˝p

Fr�1 ı� 0
for all � 0. This gives ykgl D b ˝ 1 for some basis b of D

k;l
, and in view of the

q-expansions of the partial Hasse invariants, r� 0 D 1 for all � 0. Thus if f has q-expansionP
.b˝ rm/q

m at C , then we are reduced to computing the image of �f D
P
rmq

m under
the composite

ySC;E
d
�! .�1

XU =E
/^
C
! .j��

1

YU =E
/^
C
! Q

.2;�1/�
C ; (9.2)

where .2;�1/� D .k0; l 0/ � .k; l/ � .kHa� ; 0/ and the last map is induced by j�KS� .
A computation on the toroidal compactification identifies .j��1

YU =E
/^
C

with

n�1ab˝ ySC;E

(in view of our assumption that U D U.n/ for sufficiently small n) and the composite of
the first two maps of (9.2) with qm 7! m˝ qm. Moreover, identifying Q

.2;�1/�
C with

D
.2;�1/�

˝E ySC;E D .dab˝O E/� ˝E ySC;E ;
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[41, (1.1.20)] gives that the last map of (9.2) is the inverse of the isomorphism induced by
the inclusion dab! n�1ab, followed by projection to the � -component. Therefore the
q-expansion of ‚� .f / at C is given byX

.���.m/b ˝ rm/q
m:

In view of the compatibility of q-expansions with the morphisms induced by inclusions
U 0 � U , this formula is in fact valid for all sufficiently small U . We have thus proved

Proposition 9.4.1. If the q-expansion at C of f 2 Mk;l .U IE/ is
P
.b ˝ rm/q

m, then
the q-expansion at C of ‚� .f / is

P
.���.m/b ˝ rm/q

m.

Recall from Lemma 9.2.1 that a form is determined by its q-expansions. Using also
that ���.m/D .Fr�1 ı�.m//p , we deduce the following (see §9.4 for the definition ofG� ):

Corollary 9.4.2. For all �; � 0 2 † and f 2Mk;l .U IE/, we have the relations

� ‚�‚� 0.f / D ‚� 0‚� .f /, and

� G�‚
p

Fr�1 ı�
.f / D Hap

Fr�1 ı�
Ha� ‚� .f /.

9.5. Hecke operators on q-expansions

We now describe the effect of the Hecke operators Tv on q-expansions in the case of U D
U1.n/. For f 2Mk;l .U1.n/IR/ and m 2 J�1C [ ¹0º, we write rJm.f / for the coefficient
of qm in the J -component of its q-expansion as in (9.1).

Proposition 9.5.1. If f 2Mk;l .U1.n/IR/, v − np and m 2 J�1C [ ¹0º, then

rJm.Tvf / D ˇ
l
1r
J1
ˇ1m

.f /C NmF=Q.v/ˇ
l
2r
J2
ˇ2m

.Svf /;

where the Ji and ˇi 2 FC are such that vJ D ˇ1J1 and v�1J D ˇ2J2 .and we interpret
rˇ2m as 0 if ˇ2m 62 J�12 /.

Proof. This is a standard computation which we briefly indicate how to carry out in our
context. Let U D U1.n/, g D

�
1 0
0 $v

�
, denote the rational prime in $v by r , and choose

a sufficiently large N prime to pr . We may extend scalars so as to assume �Nr .Q/ � O.
Note that

UgU D U

�
$v 0

0 1

�
U D

a
i2P1.OF =$v/

giU;

with gi 2 GL2.OF;$v / defined by
�
$v Œi�
0 1

�
if i 2 OF =$v , where Œi � is the Teichmüller

(or indeed any) lift of i , and g1 D
�
0 1
$v 0

�
. To define the maps ŒU 0giU � WMk;l .U IR/!

Mk;l .U
0IR/ (where U 0 D U.rN / for example), we may take N1 D rN , N2 D N and

˛ D 1 in the notation of §4.
Recall that the J -component of the q-expansion of Tvf is given by its image inQk;l

C;R

where the cusp C of XU is the image of a cusp QC of XJ;rN associated to the Tate semi-
HBAV Ta;b with a D OF , b D J�1, canonical polarisation data (i.e., associated to the
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identity ab�1 D J ), and level structure defined by �.x; y/ D t .y/qs.x/ for some choice
of isomorphisms s W OF =rNOF ' .rNJ /�1=J�1 and t W OF =rNOF ' �rN ˝ d�1.

Suppose first that i 2 OF =$v . Choosing ˇ D ˇ1 in the definition of Q�gi W YJ;rN !
YJ1;N and extending to minimal compactifications, we find that Q�gi . QC/ D QC1 where QC1
is the cusp of XJ1;N associated to TOF ;J�11 with canonical polarisation data and level N

structure defined by .x;y/ 7! t .ry/qˇ1rs.x/. Moreover, the induced morphism yS QC1!
yS QC

on completions is defined by qm 7! �i .ˇ
�1
1 m/qˇ

�1
1
m, with �i running through the dis-

tinct homomorphisms .vNJ /�1=.NJ /�1! �r as i runs through the distinct elements of
OF =$v , and the pull-back to yS of the isogeny denoted � in §4 is just the natural projec-
tion TOF ;J�1 ! Q�

�
gi
TOF ;J�11

induced by the identity on Gm ˝ d�1. Taking into account
the normalisation by kdet.g/ik D NmF=Q.v/

�1, we conclude that ŒU 0giU � is compatible
with the morphism Q

k;l
QC1;R
! Q

k;l
QC;R

on q-expansions defined byX
m2.NJ1/

�1
C
[¹0º

.b ˝ rm/q
m
7! NmF=Q.v/

�1
X

m2.vNJ/�1
C
[¹0º

.ˇl1b ˝ �i .m/rˇ1m/q
m:

As for i D1, note that ŒU 0g1U �D ŒU 0hU �Sv , where hD
�
0 $�1v
1 0

�
. Choosing ˛D r

and ˇ D r2ˇ2 in the definition of Q�h W YJ;rN ! YJ2;N and extending to minimal compact-
ifications, we find that Q�h. QC/D QC2 where QC2 is the cusp of XJ2;N associated to TOF ;J�12
with canonical polarisation data and level N structure defined by .x; y/ 7! t .ry/qˇ2rs.x/.
Moreover, the induced morphism yS QC2 !

yS QC on completions is defined by qm 7! qˇ
�1
2
m

and the pull-back of � to yS is the map TOF ;J�1 ! Q�
�
h
TOF ;J�12

induced by multiplication
by r on Gm ˝ d�1. Taking into account the normalisation by kdet.h/k D NmF=Q.v/, we
conclude that ŒU 0hU � is compatible with the morphismQ

k;l
QC2;R
!Q

k;l
QC;R

on q-expansions
defined by X

m2.NJ2/
�1
C
[¹0º

.b ˝ rm/q
m
7! NmF=Q.v/

X
m2v.NJ/�1

C
[¹0º

.ˇl2b ˝ rˇ2m/q
m:

Summing over i then gives the desired formula.

9.6. Hecke operators at primes dividing the level

We shall also make use of the operator Tv D
�
U
�
$v 0
0 1

�
U
�

onMk;l .U IR/ for U D U1.n/
and v jn. Note that the operators Tv on Mk;l .U1.n/IR/ for all v − p commute with each
other, as well as with the Sv for v − pn. The effect of Tv on q-expansions for v j n is
computed exactly as in the proof of Proposition 9.5.1 except for the absence of the coset
indexed by i D1:

Proposition 9.6.1. If f 2Mk;l .U1.n/IR/, v jn and m 2 J�1C [ ¹0º, then

rJm.Tvf / D ˇ
l
1r
J1
ˇ1m

.f /;

where the J1 and ˇ1 2 FC are such that vJ D ˇ1J1.
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9.7. Hecke operators at primes dividing p

We also need the operators Tv for v jp in the caseRDE, l� D 0, k� � 2 for all � ; we recall
the definition. Again let J;J1;ˇ1 (in FC) be such that vJ Dˇ1J1. LetA1DAJ1;N denote
the universal HBAV over Y J1;N . Letting H denote the kernel of VerA1 W A

.p/
1 ! A1, we

may decomposeH D
Q
wjpHw where eachHw is a free rank 1 .OF =w/-module scheme

over Y J1;N and set A01 D A
.p/
1 =H 0v where H 0v D

Q
w¤v Hw . The OF -action on A.p/1 ,

polarisation pˇ�11 �.p/ and level N structure p�1�.p/ induce ones on A01 making it a J -
polarised HBAV over Y J1;N , corresponding to a finite, flat morphism

Q� W Y J1;N ! Y J;N

of degree NmF=Q.v/. Taking the union over J1, the resulting morphism descends, for
sufficiently small U � U.N/, to a finite, flat endomorphism of Y U which we denote
by �.

To define Tv , recall that the Kodaira–Spencer isomorphism (6.2) induces L
2;�1

U 'KU ,
where KU is the dualising sheaf on Y U , and hence an isomorphism

L
k;0

U 'KU ˝O
YU

L
k�2;1

U :

Letting s WA! Y J;N and s1 WA1! Y J1;N denote the structure morphisms for the univer-
sal HBAV’s, the isogenies � WA01!A1 induced by VerA1 yield morphisms s1;��1

A1=Y J1;N

! Q��s��
1

A=Y J;N
, which in turn induce morphisms L

k�2;0

J1;N
! Q��L

k�2;0

J;N (using that k� �2
for all � ) whose union over J1 descends to

L
k�2;0

U ! ��L
k�2;0

U : (9.3)

Making use of the canonical trivialisations L
0;1

J;N ' NmF=Q.Jd�1/ ˝ OY J;N and

L
0;1

J1;N
' NmF=Q.J1d

�1/˝OY J1;N
, we define L

0;1

J1;N

�
�! Q��L

0;1

J;N by multiplication by

NmF=Q.JJ
�1
1 /. (Note that this is not the morphism induced by � , which is in fact 0.) The

union over J1 then descends to an isomorphism L
0;1

U

�
�! ��L

0;1

U , which we tensor with

(9.3) to obtain a morphism L
k�2;1

U ! ��L
k�2;1

U . We then define Tv as the composite

H 0.Y U ;KU ˝O
YU

L
k�2;1

U /! H 0.Y U ;KU ˝O
YU

��L
k�2;1

U /

�
�! H 0.Y U ; ��KU ˝O

YU
L
k�2;1

U /! H 0.Y U ;KU ˝O
YU

L
k�2;1

U /;

where the first map is given by the one just defined, the second is the canonical isomor-
phism, and the third is induced by the trace map ��KU !KU .

Proposition 9.7.1. Suppose that v j p, l D 0 and k� � 2 for all � 2 †. If f 2
Mk;l .U1.n/IE/ and m 2 J�1C [ ¹0º, then

rJm.Tvf / D r
J1
ˇ1m

.f /;

where the J1 and ˇ1 2 FC are such that vJ D ˇ1J1.
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Proof. Let C be a cusp at infinity on XU where U D U1.n/, so that C is the image of a
cusp QC ofXJ;N associated to the Tate semi-HBAV Ta;b with aDOF , bD J�1, canonical
polarisation data and level structure �.x; y/ D t .y/qs.x/ for some choice of s and t . The
morphisms Q� extend uniquely to morphismsXJ1;N ! XJ;N , for which one finds that the
fibre over QCE is supported at QC1;E , where QC1 is the cusp ofXJ1;N associated to TOF ;J�11 ,

with canonical polarisation data and level structure �.x; y/ D t .y/qs1.x/ for some choice
of s1.

Moreover, the corresponding map yS QC;E ! yS QC1;E is defined by qm 7! qˇ1m, and the

pull-back of the isogeny � to yS1;E is the canonical projection Q��TOF ;J�1;E!TOF ;J�11 ;E

induced by the identity on Gm ˝ d�1 (where yS1 D SN .¹�
QC1
˛1 º/

^ is again as in [11, 3.4.2]
for a suitable cone decomposition ¹� QC˛ º). In particular, it follows that the morphism (9.3)
is compatible with the canonical trivialisations over yS1;E , so the resulting map

Q
k�2;1
C1;E

! ySC1;E ˝ ySC;E
Q
k�2;1
C;E

is induced by multiplication by NmF=Q.JJ
�1
1 /.

Identifying the pull-back of j�KU to yS with NmF=Q.J /
�1˝O yS , and similarly for yS1

with C and J replaced by C1 and J1, we find that the trace ��KU ! KU extends
(over XU ) to the map whose pull-back to ySE is defined by

b ˝ qm 7!

´
NmF=Q.J1J

�1/b ˝ qˇ
�1
1
m if m 2 vJ�11 ,

0 otherwise.

It follows from [41, (1.1.20)] that the same holds for the corresponding map ��L
2;�1

U

!L
2;�1

U , so this formula describes the resulting mapQ2;�1
C1;E

!Q
2;�1
C;E , giving the propo-

sition.

One easily sees directly from the definitions that the Tv for v jp on Mk;0.U1.n/IE/

commute with the Sv for v − pn (assuming k� � 2 for all � ), and it follows from Propo-
sitions 9.5.1, 9.6.1 and 9.7.1 that they commute with each other as well as with the Tv for
all v − p. (In fact, one can check directly from the definitions that the Tv commute with
each other and the action of the group ¹g 2 GL2.A1F / j gp 2 GL2.OF;p/º on Mk;0.E/.)

9.8. Partial Frobenius operators

We also define operators ˆv for v j p in the case R D E, l D 0, generalising the clas-
sical V -operator. We maintain the notation from the definition of Tv in §9.7, except that
we no longer assume k� � 2 for all � . Writing s01 W A

0
1 ! Y J1;N and Q��s��1

A=Y J;N
'

.s01/
��1

A0
1
=Y J1;N

D
L
!0� , we find the isogenies A.p/1 ! A01! A1 induce isomorphisms

Q��!� ' !
0
� '

´
!
˝p

Fr�1 ı�
if � 2 †v;

!� if � 62 †v ,
(9.4)
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on Y J1;N whose unions over J1 descend to Y U . For k 2 Z†, define k0 by k0� D pkFr ı� if
� 2 †v and k0� D k� if � 62 †v , and ˆv WMk;0.U IE/!Mk0;0.U IE/ as the composite

Mk;0.U IE/DH
0.Y U ;L

k;0

U /!H 0.Y U ; �
�L

k;0

U /!H 0.Y U ;L
k0;0

U /DMk0;0.U IE/;

where the first map is pull-back and the second is induced by the above isomorphisms.
It is clear from the definition that ˆv is injective, and straightforward to check the

operatorsˆv commute with each other and the action of ¹g2GL2.A1F / j gp2GL2.OF;p/º
onMk;0.E/ andMk0;0.E/. In particular,ˆv commutes with the operators Tw for allw −p
and Sw for all w − np. Its effect on q-expansions is given by the following:

Proposition 9.8.1. Suppose that v j p and l D 0. If f 2 Mk;l .U1.n/I E/ and m 2

J�1C [ ¹0º, then
rJm.ˆvf / D r

J2
ˇ2m

.f /;

where the J2 and ˇ2 2 FC are such that v�1J D ˇ2J2 .interpreting rˇ2m as 0 if
ˇ2m 62 J

�1
2 , i.e., m 62 vJ�1/.

Proof. The completion of � at the cusps is already computed in the course of the proof of
Proposition 9.7.1. One also finds that the pull-backs of the isomorphisms of (9.4) to yS1;E
are compatible with the canonical trivialisations of the push-forwards of the cotangent
bundles of the Tate semi-HBAVs TOF ;J�1;E and TOF ;J�11 ;E . It follows that the map

Q
k;0
C;E !

ySC1;E ˝ ySC;E
Q
k;0
C;E ' Q

k0;0
C1;E

(9.5)

induced by ˆv is defined by qm 7! qˇ1m. The desired formula follows on relabelling J
as J2 and J1 as J , and taking ˇ2 D ˇ�11 .

The proposition gives an alternative proof (for U D U1.n/) that theˆv commute with
each other and with the Tw for all w − p (after checking that ˆv commutes with Sw and
applying Proposition 9.5.1 for w − np, and Proposition 9.6.1 for w j n). Note however
that ˆv does not commute with Tv (when the latter is defined, i.e., k� � 2 for all � ).

Note that it is immediate from Proposition 9.4.1 that the kernel of the operator ‚�
depends only on the prime v such that � 2 †v . Moreover, if �.f / D k (in the notation
of §5), then Theorem 8.2.2 implies that k� is divisible by p for all � 2 †v . We will show
in Theorem 9.8.2 that (assuming k is of this form and l D 0) this kernel is in fact the
image of ˆv , generalising a result of Katz in [40, Section II].

We need to introduce one more operator: we define k' by k'� D kFr�1 ı� and we let
' WMk;0.U IE/!Mk' ;0.U IE/ be the composite

H 0.Y U ;L
k;0

U /! H 0.Y U ;Fr�E L
k;0

U /! H 0.Y U ;L
k' ;0

U /;

where the first map is pull-back by the automorphism induced by FrE on Y U and the
second is given by the canonical isomorphisms Fr�E !� ' !Fr ı� . (Note that we could
similarly define ' W Mk;l .U IE/ ! Mk' ;l' .U IE/.) Its effect on q-expansions of f 2
Mk;0.U1.n/IE/ is given by rJm.'f / D FrE .rJm.f // D .r

J
m.f //

p .
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Theorem 9.8.2. Suppose that k 2 Z†, n is an ideal of OF prime to p, v is a prime
dividing p and � 2 †v . Then the image of

ˆv WMk;0.U1.n/IE/!Mk0;0.U1.n/IE/

is the kernel of ‚� .

Proof. From Proposition 9.4.1 we see that f 2Mk0;0.U1.n/IE/ is in the kernel of ‚� if
and only if rJm.f / D 0 for all m; J such that m 62 vJ�1C It is therefore immediate from
Proposition 9.8.1 that image.ˆv/ � ker.‚� /.

For the opposite inclusion, first note that we can assume n is sufficiently small. For

each cusp C 2 � , let NC denote the stalk .j�L
k;0

U /C , where as usual j is the inclusion
Y U ! XU and C D CE . Similarly let

N 0C D .j�L
k0;0

U /C1 D .j���L
k0;0

U /C

and consider the RC WD OXU ;C -linear map �C W NC ! N 0C of finitely generated RC -
modules induced by the morphisms in the definition of ˆv . Letting FU denote the sheaf
of total fractions on Y U , we similarly have a map

ẑ
v W H

0.Y U ;L
k;0

U ˝O
YU

FU /! H 0.Y U ;L
k0;0

U ˝O
YU

FU /;

and thus a commutative diagram of injective maps

Mk;0.U1.n/IE/ //

��

L
C2� NC

//

��

H 0.Y U ;L
k;0

U ˝O
YU

FU /

��

Mk0;0.U1.n/IE/ //
L
C2� N

0
C

// H 0.Y U ;L
k0;0

U ˝O
YU

FU /

where the horizontal maps are the natural inclusions.
The completion y�C of �C is precisely the ySC -linear map Qk;0

C
! Q

k0;0

C1
of (9.5)

(where ySC acts on the target via the map to ySC1 induced by �). If f 2 ker.‚� /, then

r
J1
m .f / D 0 for all m 62 vJ�11 , so the q-expansion of f at C1 is in the image of y�C

for each C 2 � . Since ySC is faithfully flat over RC , it follows that f is in the image

of �C for each C 2 � , so there exists g 2
L
C NC �H

0.Y U ;L
k;0

U ˝O
YU

FU / such that
ẑ
v.g/ D f .

It remains to prove that g 2Mk;0.U1.n/IE/, Since Y U is smooth and L
k;0

U is invert-
ible, it suffices to prove that ordz.g/ � 0 for all prime divisors z on Y U . For this, we note
that the map ' similarly extends to a map z', and one checks that

z' ı
Y
wjp

ẑ
w W H

0.Y U ;L
k;0

U ˝O
YU

FU /! H 0.Y U ;L
pk;0

U ˝O
YU

FU /
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is simply the map g 7! gp . Therefore

gp D
�
z' ı

Y
w¤v

ẑ
w

�
.f / D

�
' ı

Y
w¤v

ˆw

�
.f / 2Mpk;0.U1.n/IE/;

so that p ordz.g/ D ordz.gp/ � 0, and hence ordz.g/ � 0.

Remark 9.8.3. One can also check that the relation image.ˆv/D ker.‚� / holds for arbi-
trary U using the same argument as in the proof of the theorem and a straightforward
generalisation of the formula in Proposition 9.8.1 (see the next section for similar compu-
tations of the effect of operators on q-expansions at more general cusps).

10. Normalised eigenforms

We will prove that if � is irreducible and geometrically modular of weight .k; l/, then in
fact � is associated to an eigenform f 2Mk;l .U1.n/IE/ for some n prime to p, allowing
us to pin down q-expansions of forms giving rise to �. We will also use partial‚-operators
to study the behaviour of minimal weights as l varies, and prove that if an eigenform is
ordinary at a prime over v, then so is the associated Galois representation.

10.1. Preliminaries

First note that, by definition, if � is geometrically modular of weight .k; l/, then � is
associated to an eigenform f 2 Mk;l .U.n/IE/ for some n prime to p. One approach to
replacing U.n/ by U1.n0/ for some n0 would be to use the spaceMk;l .E/ to associate to �
a representation of GL2.Fv/ for each v jn. One then chooses an irreducible subrepresen-
tation �v , whose existence is given by [60, II, 5.10], and shows, using the irreducibility
of �, that �v does not factor through det. It then follows from [59] that �v has a vector
invariant under U1.vcv / for some exponent cv , and one can take n0 D

Q
c v

cv . We shall
instead give a more constructive argument that develops some tools we will need anyway.
In particular, we define certain twisting operators on forms of level U.n/.

We let U D U.n/ and index the components of YU by pairs .J; w/ where J , as
usual, runs through strict ideal class representatives, and w runs through a set W �
.OF =NOF /

� of representatives for .OF =n/�=O�F;C. More precisely, choose as before
isomorphisms s WOF =NOF ' .NJ /�1=J�1 (for each J ) and t WOF =NOF '�N ˝d�1.
Then s determines an isomorphism J=NJ ' OF =NOF whose composite with t defines
a component of YJ;N , hence of YU , and we associate to .J; w/ the component so defined
with s replaced byws. One easily checks that this defines a bijection betweenZU .O/ and
the set of such pairs. Moreover, there is a unique cusp on each component ofXU mapping
to a cusp at1 onXU1.n/, namely the one associated to the Tate semi-HBAV TOF ;J�1 with
canonical polarisation and level N structure .x; y/ 7! t .y/qws.x/. For f 2 Mk;l .U IR/

andm 2 .n�1J /C [ ¹0º, we write rJ;wm .f / for the corresponding q-expansion coefficient
of f .
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A computation similar to the proof of Proposition 9.5.1 shows that the effect of Tv on
q-expansions of forms in Mk;l .U IR/ is given by the formula

rJ;wm .Tvf / D ˇ
l
1r
J1;w1
ˇ1m

.f /C NmF=Q.v/ˇ
l
2r
J2;w2
ˇ2m

.Svf / (10.1)

for m 2 .nJ /�1C [ ¹0º, where the Ji , ˇi are as before, with wi 2 W satisfying

ˇ1$
�1
v ws.1/ � w1s1.1/ mod n.NJ1/

�1;

ˇ2$vws.1/ � w2s2.1/ mod n.NJ2/
�1;

where we view ˇ1$
�1
v as inducing an isomorphism J�1 yOF ' J�11

yOF , hence
.NJ /�1=J�1 ' .NJ�11 /=J�11 , and similarly ˇ2$v as inducing .NJ /�1=J�1 '

.NJ2/
�1=J�12 . We note the following consequence:

Lemma 10.1.1. If f 2Mk;l .U.n/IE/ is an eigenform for the operators Tv and Sv for all
but finitely many v, and the associated Galois representation �f is absolutely irreducible,
then rJ;w0 D 0 for all pairs .J; w/.

Proof.7 If v is trivial in the strict class group of conductor np, then it follows from the def-
initions that Sv acts trivially on Mk;l .U IE/. Moreover, in formula (10.1) for such v, we
have J DJ1DJ2,wDw1Dw2, ˇ1�ˇ2� 1mod pOF;p and NmF=Q.v/� 1mod p, so
that rJ;w0 .Tvf / D 2r

J;w
0 .f /. Therefore if rJ;w0 .f / ¤ 0 for some .J;w/, then �f .Frobv/

has characteristic polynomial .X � 1/2 for such v. By the Chebotarev Density Theorem
(and class field theory) it follows that �f .g/ has characteristic polynomial .X � 1/2 for all
g 2 GK , where K is the strict ray class field over F of conductor np, so by the Brauer–
Nesbitt Theorem, �f jGK has trivial semisimplification. Since K is abelian over F , this
contradicts the absolute irreducibility of �f .

We continue to assume U D U.n/ and define an action of the group .OF =n/� on
Mk;l .U IR/ via its isomorphism with the subgroup of GL2.OF =n/ consisting of matri-
ces of the form

�
a 0
0 1

�
. Thus a 2 .OF =n/� acts on Mk;l .U IR/ by the operator ŒUgU �

for any g 2 GL2. yOF / congruent to
�
a 0
0 1

�
mod n; we denote the operator by hai. It is

straightforward to check that its effect on q-expansions is given by the formula

rJ;wm .haif / D �lrJ;w
0

�m .f /; (10.2)

where � 2 O�F;C and w0 2 W are such that �w � aw0 mod n.
We also define the operator Tv D

�
U
�
$v 0
0 1

�
U
�

on Mk;l .U IR/ for v jn and a choice
of uniformiser $v for Fv . Another computation similar to Proposition 9.5.1 (or more
precisely, Proposition 9.6.1) shows that its effect on q-expansions is given by

rJ;wm .Tvf / D ˇ
l
1r
J1;w1
ˇ1m

.f / (10.3)

7Alternatively, this can be proved by revisiting the construction in Theorem 6.1.1 and observing
that if rJ;w0 ¤ 0 for some .J; w/, then the lift Qf is non-cuspidal. One then deduces that the Galois
representation � Qf is reducible, and hence so is �f (possibly after extending scalars in the case
p D 2).
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with notation as in (10.1). Note that Tv depends on the choice of $v: replacing $v

by u$v for u 2 O�F;v replaces Tv with h�.u/iTv where � is the natural map O�F;v !
.OF =n/

�. We see directly from the definitions that the operators Tv for v j n commute
with the Tv and Sv for v − pn (and each other), as well as the action of .OF =n/�.

Suppose that � W .OF =n/� ! R� is a character of conductor m j n. Choose an ele-
ment c 2 OF;n D

Q
vjn OF;v generating nm�1OF;n, and define a twisting operator on

Mk;l .U IR/ by the formula

‚� D
X

b2.OF =m/�

�.b/�1ŒUgbU � D
X

b2.OF =m/�

�.b/�1gb; (10.4)

where gb �
�
1 bc
0 1

�
mod n. The operator ‚� commutes with the operators Tv and Sv for

v − np, and it is straightforward to check that

hai ı‚� D �.a/‚� ı hai: (10.5)

(Note also the dependence on c: replacing c by uc for u 2 O�F;n replaces‚� by �.u/‚� .)
One finds the effect on q-expansions is given by

rJ;wm .‚�.f // D GJ .�; w
�1cm/rJ;wm .f /; (10.6)

where GJ .�; m/ D
P
b2.OF =m/�

�.b/�1�.�bm/ for m 2 .mJ /�1C [ ¹0º. (Recall that �
is the homomorphism .NJ /�1=J�1 ! �N induced by the trace and our choices of s
and t ; see the discussion before Proposition 9.1.2.) Standard results on Gauss sums show
that GJ .�; am/ D �.a/GJ .�; m/ for all a 2 OF , m 2 .mJ /�1, where � is viewed as
a function OF ! R by setting �.a/ D 0 for a not prime to m. One deduces that if m
generates .mJ /�1=J�1, then

GJ .�;m/GJ .�
�1;�m/ D NmF=Q.m/

(in particular, GJ .�;m/ 2 R�), and otherwise GJ .�;m/ D 0.

10.2. Eigenforms of level U1.n/

Lemma 10.2.1. If � WGF !GL2.Fp/ is irreducible and geometrically modular of weight
.k; l/, then � arises from an eigenform of weight .k; l/ and level U1.n/ for some n prime
to p; i.e., there exist n prime to p, a field E and an eigenform f 2 Mk;l .U1.n/IE/ for
Sv and Tv for all v − np such that � ' �f .

Proof. By assumption, there exist n (prime to p), E and f 2 Mk;l .U.n/IE/, an eigen-
form for all Sv and Tv with v − np, such that � ' �f . Since the action of .OF =n/�

commutes with the operators Sv and Tv , we can further assume that f is an eigenform
for this action, i.e., there is a character � W .OF =n/� ! E� (enlarging E if necessary)
such that haif D �.a/f for all a 2 .OF =n/�.

By Lemmas 9.2.1 and 10.1.1, we must have rJ;wm .f /¤ 0 for some J , some (hence all
by (10.2)) w 2W and somem 2 .nJ /�1C (i.e.,m¤ 0). Letting ev D ordv.mnJ / for v jn



F. Diamond, S. Sasaki 3512

and f 0 D
Q
vjn T

ev
v f , formula (10.3) implies that rJ

0;w0

m0 .f 0/ ¤ 0 for some .J 0; w0/ and
m0 2 .nJ 0/�1C with m0nJ 0 prime to n (choose J 0 equivalent to

Q
vjn v

�evJ and let m0 DQ
vjn ˇ

�ev
1;v m). Replacing f by f 0, we now have haif D �.a/f for all a 2 .OF =n/�, and

r
J;w
m .f / ¤ 0 for some .J; w/ and m 2 .nJ /�1C generating .nJ /�1=J�1.

Now replace f by ‚��1.f / where ‚��1 is the twisting operator associated to ��1

as defined in (10.4). Since cm generates .mJ /�1=J�1, we have GJ .��1; cm/ ¤ 0, so
formula (10.6) shows that f ¤ 0. By formula (10.5), f is invariant under the action of
.OF =n/

�, hence under the action of the open compact subgroup

U 0 D

²�
a b

c d

�
2 U1.n/

ˇ̌̌̌
b 2 n yOF

³
:

Now let

g D
Y
vjn

�
$
�ev
v 0

0 1

�
where ev D ordv.n/:

Then g�1U1.n2/g � U 0, so the lemma follows with f replaced by ŒU1.n2/gU 0�f and n

replaced by n2.

10.3. Twisting eigenforms

Suppose now that k; l; l 0 2 Z†, and that m; n are ideals of OF with m j n and n prime
to p, and let Vm � yO

�
F denote the kernel of the natural projection to .OF =m/�.

Definition 10.3.1. We say a character

� W ¹a 2 .A1F /
�
j ap 2 O

�
F;pº=Vm ! E�

is a character of weight l 0 if �.˛/ D ˛l
0

for all ˛ 2 F �C \O
�
F;p .

Suppose that f 2Mk;l .U1.n/IE/ and � is a character of weight l 0 and conductor m.
Recall from §4.6 that we can associate to � a form e� 2 M0;l 0.U.m/IE/, and hence a
form e� ˝ f 2 Mk;lCl 0.U.n/IE/. Choosing c D .$

ev�dv
v /v where dv D ordvm and

ev D ordvn, and applying the following (normalised) composite of operators from the
proof of Lemma 10.2.1:

NmF=Q.n/
�1ŒU1.n

2/gU 0� ı‚��1 ı
Y
vjn

T evv

to e� ˝ f then yields a form in Mk;lCl 0.U1.n
2/IE/ which we denote f 0

�
. It is straight-

forward to check that in fact

f 0� D e� ˝
X

b2.OF =m/�

�.b/

�
1 Qbc0

0 1

�
f 2Mk;lCl 0.U1.mn/IE/;

where Qb is any lift of b to O�F;n and c0 D .$�dvv /v .
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We now relate the q-expansions of f and f 0
�
. Firstly, the form e� has constant q-

expansions satisfying the formula

�.a/r
J0;w0
0 .e�/ D kak

�1r
J1;w1
0

��
a 0

0 1

�
e�

�
D ˇ

`

1r
J1;w1
0 .e�/

for a 2 .A1F /
�, ˇ1 2 F �C , w0; w1 2 W such that ap 2 O�F;p , ˇ1J1 D .a/J and

ˇ1a
�1w0s0.1/ � w1s1.1/ mod m.NJ1/

�1:

Assume for simplicity that 1 2 W , OF is chosen as the representative for the trivial ideal
class, s0.1/ D N�1 for J0 D OF , and e� is normalised so that rOF ;10 .e�/ D 1. We then
have

r
J;w
0 .e�/ D �.tw

�1/;

where t is chosen so that J D .t/ and t�1 � s.1/ mod m.NJ /�1. Applying (10.3) and
(10.6) with l replaced by l C l 0, and

rJm.ŒU1.n
2/gU 0�f / D NmF=Q.n/ˇ

lCl 0

2 r
J2;w2
ˇ2m

.f /

for f 2Mk;lCl 0.U
0IE/ (with g and U 0 as in the proof of Lemma 10.2.1),m 2 J�1C [ ¹0º,

n�1J D ˇ2J2 and .ˇ2
Q
vjn$

ev
v /s.1/ � w2s2.1/ mod mNJ�12 then gives the formula8

rJm.f
0
� / D �.t/GJ .�

�1; c0m/rJm.f /:

Let ��1m denote the character of .OF =m/� induced by �, extended to a map yOF !
OF =m! E by setting ��1m .a/ D 0 if .a/ is not prime m. We then have

GJ .�
�1; c0m/ D GOF .�

�1; c0tm/ D ��1m .tm/GOF .�
�1; c/;

so setting
f� D GOF .�

�1; c0/�1f 0� (10.7)

gives f� 2Mk;lCl 0.U1.mn2/IE/ satisfying

rJm.f�/ D �.t/�
�1
m .tm/rJm.f /: (10.8)

Note that this is independent of the choice of t such that J D .t/. Furthermore, if we
choose t so that tp D 1, then �.t/ D � 0.t/ where � 0 W A�F =F

�F �1;CVmp ! E� is the
character in the proof of Theorem 6.1.1. (Recall that � 0 is defined by � 0.˛za/ D �.a/a�l

0

p

for ˛ 2 F �, z 2 F �1;C and a 2 .A1F /
� with ap 2 O�F;p .) Since � 0.m/ D 1, we then have

�.t/��1m .tm/ D

´
� 0..tm/.m// if .tm/ is prime to m,

0 otherwise,

where .tm/.m/ denotes the projection of tm to the components prime to m.
We record the above construction:

8This also follows more directly from the alternative description of f 0
�

and a formula analogous
to (10.6).
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Lemma 10.3.2. If f 2 Mk;l .U1.n/IE/ and � is a character of weight l 0 and conductor
m, then f� 2 Mk;lCl 0.U1.nm2/IE/ has q-expansion coefficients defined by (10.8). In
particular, if rJm.f / ¤ 0 for some m 2 J�1C with mJ prime to m, then f� ¤ 0, in which
case if f is an eigenform, then so is f� , and �f� ' ��0 ˝ �f .

10.4. ‚-operators on eigenforms

Recall from Corollary 8.2.4 that ‚� defines a map

Mk;l .U1.n/IE/!Mk0;l 0.U1.n/IE/;

where k0 and l 0 are defined in Definition 8.2.1 (in particular l 0� 0 D l� � ı�;� 0 ). Moreover,
‚� commutes with the operators Tv (for all v − p) and Sv (for all v − np).

Lemma 10.4.1. With notation as in Lemma 10.2.1, we can take the eigenform f in the
conclusion so that ‚� .f / ¤ 0 for all � 2 †.

Proof. Let v be a prime dividing p, and suppose that � 2 †v . Let f be an eigenform
in Mk;l .U1.n/IE/ giving rise to �, and let m; J be such that rJm.f / ¤ 0 (so m 2 J�1C /.
We wish to prove that we can choose f with rJm0.f / ¤ 0 for some m0 62 vJ�1C , so that
f 62 ker.‚� /.

By Chevalley’s Theorem, we can (enlarging E if necessary) choose a character � of
weight �l and conductor m for some m prime to pmJ . Thus f� 2 Mk;0.U1.n

0/IE/

where n0 D nm2, rJm.f�/ ¤ 0, and f� is an eigenform giving rise to �0 D ��0 ˝ �.
For eigenforms g 2 Mk;0.U1.n

0/IE/ giving rise to �0, define ıv.g/ to be the least
d � 0 such that rJm.g/ ¤ 0 for some m; J such that m 62 vdJ�1. Thus ıv.g/ D 0 if
and only if g 62 ker.‚� /. We claim that if ıv.g/ > 0, then �0 arises from some h with
ıv.h/ D ıv.g/ � 1; moreover, if rJm.g/ D 0 for all mJ not prime to m, then the same is
true for h.

To prove the claim, recall that if g 2 ker.‚� / and k0 D �.g/, then p jk0� for all � 2†v .
(Recall that �.g/ is defined in §5.2 and �.g/ 2 Z�0 by [19].) Writing g D g0

Q
� 02†Han

0
�

� 0

for some g0 2Mk0;0.U1.n
0/IE/ and n0 2 Z†�0, we have g0 2 ker.‚� /. By Theorem 9.8.2,

we have g0 D ˆv.g00/ for some g00 2Mk00;0.U1.n
0/IE/ where k00� 0 D k

0
� 0 for � 0 62 †v , and

k00� 0 D p
�1k0

Fr�1 ı� 0
for � 0 2 †v . Now

h WD g00
Y
� 02†v

Hak
00
�

� 0

Y
� 02†

Han
0
�

� 0

is an eigenform in Mk;0.U1.n
0/IE/ giving rise to �0, and Proposition 9.8.1 immediately

gives that ıv.h/ D ıv.g/ � 1, and if rJm.g/ D 0 for all mJ not prime to m, then the same
is true for h.

Starting with f� and applying the claim inductively, we conclude that �0 arises from
an eigenform g 2 Mk;0.U1.n

0/IE/ such that rJm.g/ ¤ 0 for some m; J with mJ prime
to vm. Therefore g��1 is an eigenform inMk;l .U1.n

0m2/IE/ giving rise to �, and g��1 62
ker.‚� /.
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An elementary linear algebra argument then shows that, after possibly further shrink-
ing n and enlarging E, there is an eigenform f which satisfies the conclusion simultane-
ously for all � 2 †.

We now have the following immediate consequences of Theorem 8.2.2:

Theorem 10.4.2. Suppose that � is irreducible and geometrically modular of weight
.k; l/. Then � is geometrically modular of weight .k0; l 0/, and furthermore of weight
.k0 � kHa� ; l

0/ if p j k� .where k0 is as in Definition 8.2.1/.

Corollary 10.4.3. Suppose that � is irreducible and l; l 0 2 Z† with l 0� D l� � ı�;� 0 .
Suppose further that there exist k D kmin.�; l/ and kmin.�; l

0/ as in part (1) of Conjec-
ture 7.3.1. Then

kmin.�; l
0/ �Ha

´
k0 if p − k� ;
k0 � kHa� if p j k� :

Remark 10.4.4. We remark that we expect equality to hold in the corollary in the case
that p − k� . We caution however that the analogous strengthening of Theorem 8.2.2 is
false: i.e., it is possible for ‚� .f / to be divisible by Ha� 0 for some � 0 ¤ � even if p − k�
and f is not divisible by Ha� 0 .

Corollary 10.4.5. Suppose that � is irreducible and geometrically modular of some
weight .k0; l0/. Then for every l 2 Z†, there exist k 2 Z† such that � is geometrically
modular of weight .k; l/.

Proof. Note that if � is geometrically modular of some weight .k0; l0/, then multiplying
by the constant section e1 of weight .0; n.p � 1//, we can replace l0 by l0 C n.p � 1/
for any n 2 Z and hence assume l0;� � l� for all � 2 †. The corollary then follows from
Theorem 10.4.2 by induction on

P
� .l0;� � l� /.

10.5. Normalised eigenforms

We continue to assume for simplicity that J D OF is chosen as an ideal class representa-
tive.

Definition 10.5.1. Suppose that .k; l/ is an algebraic weight (i.e., k� � 2 for all � 2 †).
We say that f 2Mk;l .U1.n/IE/ is a normalised eigenform if

� r
OF
1 .f / D 1;

� f is an eigenform for Tv for all v − p, and for Sv for all v − np;

� f� 2Mk;0.U1.nm2/IE 0/ is an eigenform for Tv for all v jp and all characters

� W ¹a 2 .A1F /
�
j ap 2 O

�
F;pº=Vm ! .E 0/�

of weight �l , conductor m prime to p, and values in extensions E 0 of E.
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It is straightforward to check that if f� is an eigenform for Tv (where v jp and � has
weight �l and conductor prime to p), then so is f�1;�2 for any characters �1; �2 such that
�1�2 D � (where the �i have conductors mi prime to p and weights �li such that l D
l1 C l2). In particular, it follows that if f is a normalised eigenform in Mk;l .U1.n/IE/,
then f�1 is a normalised eigenform in Mk;lCl1.U1.nm2

1/IE/ (enlarging E if necessary).
We have the following strengthening of Lemma 10.4.1 for algebraic weights:

Proposition 10.5.2. If � is irreducible and geometrically modular of weight .k; l/ with
k� � 2 for all � , then � arises from a normalised eigenform of weight .k; l/ and level
U1.n/ for some n prime to p.

Proof. Suppose first that l D 0. Then Lemma 10.2.1 implies that � arises from an eigen-
form f 2 Mk;0.U1.n/IE/ for some n prime to p (and some E). Recall that in this case
(l D 0 and all k� � 2), we have defined Hecke operators Tv for all primes v j np, com-
muting with each other and with the operators Tv and Sv for v − np, so we may further
assume that f is an eigenform of Tv for all v and of Sv for all v − np. It suffices to prove
that rOF1 .f / ¤ 0.

Suppose that rOF1 .f / D 0; we will show that f D 0, yielding a contradiction. Recall
from Lemma 10.1.1 that the absolute irreducibility of � ' �f implies that rJ0 .f / D 0

for all J . We will prove that rJm.f / D 0 for all J and m 2 J�1C by induction on n D
NmF=Q.mJ /.

If n D 1, then mJ D OF , so J D OF , m 2 O�F;C, and rOFm .f / D r
OF
1 .f / D 0.

Now suppose that n > 1 and rJm.f / D 0 for all m; J with NmF=Q.mJ / < n, and let
m1, J1 be such that NmF=Q.m1J1/D n. Let v be any prime dividingm1J1. If v2 −m1J1
or v jnp, then Propositions 9.5.1, 9.6.1 and 9.7.1 give

rJ1m1.f / D r
J
m.Tvf / D avr

J
m.f /;

where m1J1 D vmJ and av is the eigenvalue of Tv on f . We have rJm.f / D 0 by the
induction hypothesis, and hence rJ1m1.f / D 0. If v2 jm1J1 and v − np, then Proposi-
tion 9.5.1 gives

rJ1m1.f / D r
J
m.Tvf / � NmF=Q.v/r

J2
m2
.Svf / D avr

J
m.f / � dv NmF=Q.v/r

J2
m2
.f /;

wherem1J1 D vmJ D v2m2J2 and av (resp. dv) is the eigenvalue of Tv (resp. Sv) on f .
By the induction hypothesis, we have rJm.f / D r

J2
m2.f / D 0, so again rJ1m1.f / D 0. This

completes the proof of the proposition in the case l D 0.
Now consider the case of arbitrary l . Let m (prime to p) be such that there is a char-

acter
� W ¹a 2 .A1F /

�
j ap 2 O

�
F;pº=Vm ! E�

of conductor m satisfying �.˛/ D ˛�l for all ˛ 2 F �C \O
�
F;p . Then ��0 ˝ � is geomet-

rically modular of weight .k; 0/, and therefore arises from a normalised eigenform f 2

Mk;0.U1.n/IE/ for some n prime to p. Furthermore, we may assume m jn (for example
by replacing n by mn). Then f��1 is a normalised eigenform inMk;l .U1.mn/IE/ giving
rise to �.
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10.6. Stabilised eigenforms

We assume for the rest of the section that the weight .k; l/ is algebraic.

Definition 10.6.1. We say that a normalised eigenform f 2Mk;l .U1.n/IE/ is stabilised
if rJm.f / D 0 for all .m; J / such that m 2 J�1C and mJ is not prime to n. Note that this
is equivalent to the condition that Tvf D 0 for all v jn.

Lemma 10.6.2. If � arises from a normalised eigenform inMk;l .U1.m/IE/, and n �m

is an ideal prime to p, then � arises from a normalised eigenform in Mk;l .U1.n/IE/

.enlarging E if necessary/. Moreover, if m and n satisfy

� ordv.nm�1/ � 1 for all v jm,

� ordv.nm�1/ ¤ 1 for all v − m,

then � arises from a stabilised eigenform in Mk;l .U1.n/IE/.

Proof. The first assertion immediately reduces to the case nDmv where v is a prime not
dividing mp. Suppose that f 2 Mk;l .U1.m/IE/ is a normalised eigenform giving rise
to �, and let ˛ 2E (enlargingE is necessary) be a root ofX2 � avX C dv NmF=Q.v/, the
characteristic polynomial of �.Frobv/, so av (resp. dv) is the eigenvalue of Tv (resp. Sv)
on f . A standard calculation then shows that

f 0 D f � NmF=Q.v/
�1

�
$�1v 0

0 1

�
f̨

is a normalised eigenform in Mk;l .U1.n/IE/. Moreover, f 0 has the same eigenvalues
as f , except that Tvf 0 D .av � ˛/f 0, and therefore �f 0 ' �f .

In view of the first assertion, the second immediately reduces to the case nDm
Q
vjm v.

So suppose that f 2Mk;l .U1.m/IE/ is a normalised eigenform giving rise to �, and for
each v jm, let ˇv be the eigenvalue of Tv on f . A similar standard calculation then shows
that

f 0 D
Y
vjm

.1 � NmF=Q.v/
�1

�
$�1v 0

0 1
/ˇv

�
f

is a normalised eigenform in Mk;l .U1.n/IE/. Moreover, f 0 has the same eigenvalues
as f , except that Tvf 0 D 0 for all v jn. Therefore f 0 is stabilised and gives rise to �.

Remark 10.6.3. A more careful analysis easily shows that the first assertion of the lemma
requires at most a quadratic extension ofE, and the second holds over the original fieldE.

Definition 10.6.4. We say that a stabilised eigenform f 2 Mk;l .U1.n/IE/ is strongly
stabilised if rJm.f / D 0 for all .m; J / such that m 2 J�1C [ ¹0º and mJ is not prime
to p.9

9Note that our conventions allow a stabilised eigenform to have rJ0 .f /¤ 0 in the case nDOF ,
but a strongly stabilised eigenform necessarily has rJ0 .f / D 0.
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Thus a stabilised eigenform is strongly stabilised if and only if Tvf� D 0 for all v jp
and characters � of weight �l . (Note that given m 2 J�1C [ ¹0º, we can always choose �
of weight �l and conductor prime to mJ unless m D 0 and �l ¤ 1 for some � 2 O�F;C,
in which case we automatically have rJm.f / D 0.)

Lemma 10.6.5. There is at most one strongly stabilised eigenform f 2Mk;l .U1.n/IE/

giving rise to �.

Proof. If � arises from f , then Tvf D avf and Svf D dvf for all v − np, where
av D tr.�.Frobv// and dv D NmF=Q.v/

�1det.�.Frobv//.
Suppose then that f and f 0 are strongly stabilised eigenforms giving rise to �, and let

f 00 D f � f 0. It suffices to prove that rJm.f
00/ D 0 for all .m; J / with m 2 J�1C [ ¹0º.

Since f and f 0 are strongly stabilised, we have rJm.f
00/ D 0 whenever mJ is not prime

to np, so we can assume mJ is prime to np. We then proceed as in the proof of Proposi-
tion 10.5.2 by induction on n D NmF=Q.mJ /.

If nD 1, thenmJ DOF , so J DOF ,m 2O�F;C, and rOFm .f 00/Dm�lr
OF
1 .f 00/D 0

since rOF1 .f / D r
OF
1 .f 0/ D 1.

Now suppose that n > 1 and rJm.f
00/ D 0 for allm;J with NmF=Q.mJ / < n, and let

m1, J1 be such that m1J1 is prime to np and NmF=Q.m1J1/ D n. Let v be any prime
dividing m1J1. If v2 − m1J1, then Proposition 9.5.1 gives

rJ1m1.f
00/ D m�l1 m

lavr
J
m.f

00/;

where m1J1 D vmJ . so the induction hypothesis implies that rJ1m1.f
00/ D 0. If v − np,

then we get instead

rJ1m1.f
00/ D m�l1 m

lavr
J
m.f

00/ �m�l1 m
l
2dv NmF=Q.v/r

J2
m2
.f 00/;

wherem1J1 D vmJ D v2m2J2, and again the induction hypothesis implies that rJ1m1.f
00/

D 0.

Remark 10.6.6. Note that if f is a normalised (resp. stabilised, strongly stabilised)
eigenform, then the same is true for both Ha� f and ‚�f for any � (assuming k� � 3 if
� ¤ Fr ı� in the case of Ha� f ).

Remark 10.6.7. If � is geometrically modular of weight .k; l/, then it does not neces-
sarily arise from a strongly stabilised eigenform of weight .k; l/ (for any level n); for
example, there may be a prime v j p such that rJm.f / ¤ 0 whenever mJ D v. We do
however have the following two ways of establishing the existence of strongly stabilised
eigenforms. One is to apply partial‚-operators to a stabilised eigenform (hence changing
the weight); the other is to use Theorem 10.7.1 below, or more precisely its corollary.

10.7. Ordinariness

The forthcoming Theorem 10.7.1 can be viewed as stating that if an eigenform is ordinary
in a suitable sense, then so is the associated Galois representation. For the proof, we need
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to verify certain compatibility properties for the operators Tv for v j p (assuming k is
algebraic and l D 0), which we shall do using their effect on q-expansions at more general
cusps than the ones used above.

Fix a set ¹aº of ideal class representatives and a set ¹gº of coset representatives for
PnnSL2.OF =n/. For consistency with previous computations, choose aDOF and gD 1
for the trivial classes. Also fix choices of t W OF =NOF ' �N ˝ .ad/�1 for each a (inde-
pendent of J ) and s W OF =NOF ' .NJ /�1a=J�1a for each a; J . The cusps of XU for
U D U.n/ are then in bijection with the quadruples .J;a;w; g/, where the corresponding
cusp is the one associated to the Tate semi-HBAV Ta;b, where b D aJ�1, with canonical
polarisation and level structure �w ı rg�1 , where �w.x; y/ D t .y/qws.x/. Then for v jp,
we find (by the same proof as for Proposition 9.7.1) that the effect on q-expansions of the
action of Tv on Mk;0.U IE/ is given by

rCm .Tvf / D r
C1
ˇ1m

.f /; (10.9)

where the q-expansion coefficients lie in D
k;0

, and if C is the cusp corresponding to
.J; a; w; g/, then C1 corresponds to .J1; a; w1; g/ for J1; w1; ˇ1 2 FC such that vJ D
ˇ1J1 and ˇ1$�1v ws.1/�w1s1.1/modN�1nb1 (where b1 D aJ�11 and s1 is the chosen
isomorphism).

Finally, we need to consider the action of Tv on Mk;0.U
0IL/ for v jp, where U 0 D

U \ U1.p/ and k 2 Z�2. Note that this may be defined in the usual way as the operator�
U 0
�
$v 0
0 1

�
U 0
�

on forms in characteristic zero, making it compatible with the action of
Tv on the space Ak;0.U 0/ of automorphic forms. Recall from §6.4 that XU 0 denotes the
minimal compactification of YU 0 , and that its cusps are in bijection with triples .C; f; P /
where C is a cusp of XU , f is an ideal such that pOF � f � OF and P is a generator
of b=bf , and the corresponding cusp may be identified with the O-scheme Spec O0f rep-
resenting generators of �p ˝ f.ad/�1=p.ad/�1 (where a and b are as in the description
of C ). We only need to consider those cusps for which f D OF ; for each cusp C of XU ,
we write C 0 for the unique such cusp of XU 0 lying over it. We assume L contains the pth
roots of unity, so that the components of C 0L are copies of SpecL in bijection with the
generators �p of �p.L/˝ .ad/�1. We may then compute the effect of Tv on the comple-
tion at each component of C 0L exactly as in Proposition 9.6.1 (see also (10.3)) to conclude
that if f 2Mk;0.U

0IL/, then

rC
0

m .Tvf / D r
C 0
1

ˇ1m
.f /; (10.10)

where the notation is as in (10.9), except that the q-expansion coefficients lie in the fibre
of j 0�L

k;0
U 0 at C 0L, which we may identify with

L
�p
.Dk;0 ˝O L/ (where �p runs over

generators of �p.L/˝ .ad/�1).

Theorem 10.7.1. Suppose that k 2 Z† with k� � 2 for all � , U is an open compact
subgroup of GL2. yOF / containing GL2.OF;p/, Q is a finite set of primes containing
all v j p and all v such that GL2.OF;v/ 6� U , and v0 is a prime over p. Suppose that
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f 2Mk;0.U IE/ is an eigenform for Tv and Sv for all v 62Q and Tv0f D av0f for some
av0 ¤ 0. Then . possibly after enlarging E and semisimplifying �f /

�f jGFv0
'

�
�1 �

0 �2

�
;

where �1 is an unramified character, �1.Frobv0/ D av0 , and �2jIFv0 D
Q
�2†v0

�
1�k�
� .

Proof. We may assume that U D U.n/ for some sufficiently small n prime to p and that
O is sufficiently large; in particular, we assume �Np.Q/ � O for some N 2 n.

Recall that the proof of Theorem 6.1.1 in §6.5 yields injections

Mk;�1.U IE/!Mk0;�1.U
0
W E/!MmC2;�1.U

0
IO/˝O E;

which are compatible with Tv and Sv for v − np, where U D U.n/, U 0 D U.n/\U1.p/,
k0 is nearly parallel and m is a (sufficiently large) positive integer. Tensoring with the
(pull-backs of the) canonical section e1 2 H 0.YU ;L

0;1
U /, we may replace l D �1 by

l D 0. Since the first injection is defined by multiplication by partial Hasse invariants,
which have q-expansions equal to 1 at every cusp, we see from (10.9) that it is also
compatible with Tv for v j p. We may therefore replace k by k0 and assume that k is
nearly parallel.

Recall that for a cusp C ofXU , we let C 0 denote the unique cusp ofXU 0 with f DOF .
For O-algebrasR, letQmC2;0

C 0;R denote the completion atC 0R of j 0�.KU 0;R˝OYU 0;R
L
m;1
U 0;R/

(in the notation of §6, and as usual omitting subscripts if R D O and using � in the case
R D E). From the description of j 0�KU 0 in §6.5, we see that QmC2;0

C 0;R is canonically
isomorphic to

DmC2;0
˝O Hom ySC;R.

ySC 0;R; ySC;R/ ' HomO.O
0
OF
;DmC2;0/˝O

ySC;R

as a module over ySC 0;R ' O0OF ˝O
ySC;R.

Letting � denote the set of cusps of XU , we have natural q-expansion maps

MmC2;0.U
0
IR/!

L
C2�

Q
mC2;0
C 0;R ;

which are injective if R D L (and hence R D O) since
`
C2� C

0
L includes cusps on

every connected component of XU 0;L. We define zMmC2;0.U
0IO/ to be the preimage ofL

C2� Q
mC2;0
C 0 inMmC2;0.U

0IL/ under the q-expansion map to
L
C2� Q

mC2;0
C 0;L . We thus

have an inclusion MmC2;0.U
0IO/ � zMmC2;0.U

0IO/ with finite index, so in particular
zMmC2;0.U

0IO/ is finitely generated over O.
We see directly from the definition that, for v − pn, the Hecke operators Tv and Sv on

MmC2;0.U
0IO/ also act on the modules QmC2;0

C 0 compatibly with the q-expansion map,
from which it follows that the operators preserve zMmC2;0.U

0IO/. Furthermore, from
(10.10) and the fact that the isomorphism

Q
mC2;0
C 0;L ' DmC2;0

˝O
ySC 0;L
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induced by the Kodaira–Spencer isomorphism KU 0;L ' L
2;�1
U 0;L is the same as the one

induced by the canonical isomorphisms

HomO.O
0
OF
; L/ '

L
�p

L ' O0OF ˝O L;

we see that zMmC2;0.U
0I O/ is also stable under Tv for v j p, with the action on

q-expansions being defined by the same formula, but with coefficients in the fibre
HomO.O

0
OF
;DmC2;0/ (and a reconciliation of the duplicate use of m).

Now consider the commutative diagram

Mk;0.U IE/

��

// MmC2;0.U
0IO/˝O E // zMmC2;0.U

0IO/˝O E

��L
C2� Q

k;0

C
//
L
C2� Q

mC2;0

C
0

L
C2� Q

mC2;0
C 0 ˝O Eoo

(10.11)

The proof of Theorem 6.1.1 shows that the first map on the bottom row is injective and
the second is an isomorphism. Since the left vertical arrow is injective by the q-expansion
principle, it follows that the top composite is also injective. Furthermore, the right vertical
arrow is injective since zMmC2;0.U

0IO/!
L
C2� Q

mC2;0
C 0 is injective with torsion-free

cokernel (by construction).
We already saw in the proof of Theorem 6.1.1 that the map

Mk;0.U IE/!MmC2;0.U
0
IO/˝O E

is compatible with the operators Tv and Sv for v − pn, and it follows that the same holds
for the composite on the top row of (10.11). We claim that this composite is also compati-
ble with the operators Tv for v jp. To see this, note that we have actions of these operators
on
L
C2� Q

k;0

C
and

L
C2� Q

mC2;0

C
0 '

L
C2� Q

mC2;0
C 0 ˝O E which are compatible with

the vertical maps of (10.11). Since these maps are injective, the claim will follow from
the compatibility of the bottom row of (10.11) with these operators. The desired compat-
ibility then follows from the fact that the first map on the bottom row is induced by the
OS -dual of the pull-back to S D Spec ySC �C of the isomorphism ��i�OY�

U
'
L
� L

�;0

U

constructed in the proof of Theorem 6.1.1, which is given with respect to the canonical
trivialisations over S by an isomorphism

O0OF ˝O E '
L
�

D
�;0
:

We have now shown that the top row of (10.11) defines an injective homomorphism

Mk;0.U IE/! zMmC2;0.U
0
IO/˝O E;

compatible with the operators Tv for v − n and Sv for v − np. It is therefore a homo-
morphism of T -modules, where T is the (commutative) O-algebra of endomorphisms
of zMmC2;0.U

0IO/ generated by Tv0 and the operators Tv and Sv for v 62 Q. The same
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(standard) argument as at the end of the proof of Theorem 6.1.1 now shows that (after
enlarging O, L and E if necessary), there is an eigenform Qf 2 MmC2;0.U

0IL/ for the
operators T 2 T such that the eigenvalues are lifts of the corresponding ones for f . In
particular, � Qf and �f have isomorphic semisimplifications, and Tv0 Qf D Qav0 Qf for some
Qav0 2 O�.

We now deduce that �f jGFv0 has the desired form from the analogous fact for the
characteristic zero modular Galois representation � Qf , which is a special case of local-
global compatibility at v0 for the corresponding automorphic and Galois representations.
More precisely, suppose first that Qf is cuspidal and view it as a vector fixed by U 0 in

the associated automorphic representation …, so Qav0 is an eigenvalue for Tv0 on …
U 0v0
v0 ,

where …v0 is the local factor of … at v0 and U 0v0 D U1.v0/ \ GL2.OFv0 /. We may
assume for simplicity that m > 0, so that …v0 must be a principal series representa-
tion10 of the form I. 1j � j

1=2;  2j � j
1=2/ where  1;  2 are characters F �v0 ! Q

�
such

that  1 is unramified with  1.$v0/ D Qav0 (and  2 is at most tamely ramified with
 2.$v0/NmF=Q.v0/

�m�1 2O�). The main theorem of [57] (adapted to our conventions)
then implies that � Qf jGFv0 is potentially crystalline with labelled Hodge–Tate weights
.mC 1; 0/ and associated Weil–Deligne representation  1 ˚  2 (writing  i also for the
representations of WFv0 to which they correspond by local class field theory). A standard
exercise in p-adic Hodge theory then shows that � Qf jGFv0 must be of the form�

z�1 �

0 z�2

�
for some z�1; z�2 W GFv0 ! L� with z�1 unramified and z�1.Frobv0/ D Qav0 (and z�2�mC1cyc
at most tamely ramified). The theorem then follows in this case from the fact that �f is
(up to semisimplification) the reduction mod � of � Qf , together with the description of
det.�f / in Remark 6.5.1.

Suppose on the other hand that Qf is not cuspidal, in which case its eigenvalues for Tv
and Sv for v 62Q are the same as those of an Eisenstein series associated to a pair of Hecke
characters  1;  2 such that  1.x/ D 1 and  2.x/ D x�m�1 for x 2 F �1;C. Moreover
Qav0 D  i .$v0/ for some i such that  i is unramified at v0, and we must have i D 1 since
Qav0 2 O�. In this case the (semisimplification of the) associated Galois representation � Qf
is z�1 ˚ z�2, where z�1 (resp. z�2�mC1cyc ) is the character associated to  1 (resp.  2j � jmC1)
by class field theory. The theorem thus follows as before on reduction mod � .

Corollary 10.7.2. Let f 2 Mk;l .U1.n/IE/ be a normalised eigenform and v0 a prime
of F over p. If Tv0f� ¤ 0 for some character � of weight �l , then .possibly after enlarg-
ing E and semisimplifying �f /

�f jGFv0
'

�
�1 �

0 �2

�
10PermittingmD 0 would allow the possibility that…v0 be an unramified twist of the Steinberg

representation, which could anyway have been treated similarly.
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for some characters �1;�2 WGFv0 !E� such that �1jIFv0 D
Q
�2†v0

�
�l�
� and �2jIFv0 DQ

�2†v0
�
1�k��l�
� .

Proof. Since �f� ' �f ˝ ��0 and ��0 jIFv0 D
Q
�2†v0

�
l�
� , we may reduce to the case l D 0

and f D f� , which is immediate from Theorem 10.7.1.

11. The inert quadratic case

We now specialise to the inert quadratic case, with a focus on non-algebraic weights, and
in particular the case of “partial weight 1” since it exhibits phenomena not present in the
classical case. We provide evidence and an approach to Conjectures 7.3.1 and 7.3.2 by
deducing results in this setting from ones in the case of algebraic weights.

11.1. Notation

For the rest of the paper, we let F be a real quadratic field in which p is inert, and we
let p D pOF and K D Fp, so K is the unramified quadratic extension of Qp . Fix an
embedding �0 W F ! Qp and write † D ¹�0; �1º. We identify † with †K and hence
with the set of embeddings OF =pOF ! Fp . We shall write weights k 2 Z† in the form
.k0; k1/ where ki D k�i for i D 0; 1. Recall that our conventions for Hodge–Tate types
and weights of crystalline lifts of two-dimensional representations are given in §7.2.

11.2. p-adic Hodge theory lemmas

Let � W GK ! F
�

p be a character such that �jIK D �
i
�0

with 1 � i � p � 1. Then the Fp-
vector spaceH 1.GK ;Fp.�// is two-dimensional, and we recall from [5, §3] the definition
of a certain one-dimensional subspace. Note that �jIK D �

i�1
�0
�
p
�1 , so � has a crystalline

lift z� W GK ! O� with Hodge–Tate type .1 � i;�p/ 2 Z† (where O is assumed to be
sufficiently large that � takes values in E�). Such lifts are unique up to twist by unrami-
fied characters with trivial reduction, and we choose11 the one such that if g corresponds
via local class field theory to p 2 K�, then z�.g/ is the Teichmüller lift of �.g/. A stan-
dard argument shows that the space H 1

f
.GK ; L.z�// classifying crystalline extensions is

one-dimensional over L, with pre-image Vz� � H 1.GK ;O.z�// free of rank 1 over O.
We then define V� D Vz� ˝O Fp . Similarly, � has a crystalline lift z�0 W GK ! O� with
Hodge–Tate type .�i; 0/, unique up to unramified twist, and we choose the one sending g
(corresponding to p) to the Teichmüller lift of �.g/. We again find that H 1

f
.GK ; L.z�

0//

is one-dimensional, with pre-image Vz�0 � H 1.GK ;O.z�// free of rank 1 over O, and we
define V 0� D Vz�0 ˝O Fp .

11By [12, Remark 7.13], or more generally [34, proof of Thm. 9.1], the subspace V� turns out to
be independent of the choice of unramified twist, but we fix it for clarity and consistency with [5].
Similarly the proof of Lemma 11.2.1 below shows the same holds for V 0�.
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Lemma 11.2.1. With the above notation, V� D V 0�.

Proof. We use the description of V� obtained in [12] together with a similar analysis
of V 0�. All references in this proof are to [12].

In the notation of [12], the .�; �/-module corresponding to E.�/ (the one-dimen-
sional E-vector space E.�/ equipped with GK-action by �) has the form MC Ec with

Ec D .p � 1 � i; p � 1/;

and Proposition 5.11 (for p > 2), Proposition 6.11 (for p D 2) and Theorem 7.12 show
that V� is the subspace corresponding to the span of the class ŒB0� 2 Ext1.ME0;MC Ec/.

We may analyze V 0� similarly as follows. We can write the .�;�/-module correspond-
ing toE.��1/ in the formMAEa where EaD .i; 0/ andAD C�1, and consider the subspace
of bounded extensions

Ext1bdd.MAEa;ME0/ � Ext1.MAEa;ME0/

defined exactly in Definition 5.1 (dropping the assumption that one of ai or bi is non-zero
for each i ). As in §5.1, we have an isomorphism

� W Ext1.MAEa;ME0/ ' Ext1.ME0;MC Ec/:

A straightforward adaptation of part (2) of the proof of Proposition 5.1112 then shows that
the image of Ext1bdd.MAEa;ME0/ under � is again spanned by ŒB0�.

By the same argument as in the proof of Theorem 7.8 (with the appeal to Lemma 7.6
replaced by a direct application of Proposition 7.4), one finds that V 0� is contained in (the
extension of scalars to Fp of) the image of Ext1bdd.MAEa; ME0/. Therefore V 0� � V�, and
equality follows on comparing dimensions.

Remark 11.2.2. In [62, Chapter 5], Wiersema gives an alternative proof of the preced-
ing lemma by first generalising methods and results of [34, 35] to the setting of two-
dimensional crystalline representations of GK whose � -labelled weights w1;� , w2;� need
not be distinct. One can then appeal to those results instead of the ones in [12] (see [62,
Lemma 5.3.2]). Similarly the following lemma can be proved using those results instead
of Fontaine–Laffaille theory (see [62, Lemma 5.4.7]).

Lemma 11.2.3. Suppose that 2 � k0 � p. A representation � W GK ! GL2.Fp/ has a
crystalline lift of weight ..k0; 1/; .0; 0// if and only if either

� � '
� �1 �
0 �2

�
with �1 unramified, �2jIK D �

1�k0
�0 and associated extension class in

V�1��12
, or

� � ' IndGKGK0 � where K 0 is the unramified quadratic extension of K and �jIK0 D �
1�k0
� 0
0

for some extension � 00 of �0 to the residue field of K 0.

12Strictly speaking, this is Proposition 6.11 in the case p D 2, but the proof there is omitted since
it is essentially the same as that of Proposition 5.11, using the cocycles constructed in §6.3.
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Proof. For the “if” direction, in the first case, let z�1 be an unramified lift of �1 and
let z�2 D z�1.z�0/�1, where � D �1�

�1
2 . By Lemma 11.2.1 and the definition of V 0�, the

representation ��12 ˝ � is isomorphic to the reduction of an OŒGK �-module T associated
to an extension class

0! O.z�0/! T ! O ! 0

such that T ˝O L is crystalline. It follows that � has a crystalline lift T ˝O L.z�2/ with
�0-labelled weights .k0 � 1; 0/ and �1-labelled weights .0; 0/, as required.

In the second case, note that the character � has a crystalline lift z� of Hodge–Tate type
.k0 � 1; 0; 0; 0/ (where the first coordinate corresponds to � 00 2 †K0 ), so that IndGKGK0

z� is
a crystalline lift of � with the required labelled weights.

The other direction can be proved as follows using Fontaine–Laffaille theory. We fol-
low the notation of [28]; in particular, see §0.9 for the definition of the category MFf;p

0

tor ,
but we take (their) E to be Qp and consider objects with an action of (our) E. The results
of [28, §§7–8] imply that there is an object M of the category MFf;p

0

tor and an embedding
E ! End.M/ (for large enough E) such that

� ' HomE .US.M/;Fp/

as representations ofGK ; moreover, decomposingM DM0˚M1 (according to the idem-
potents of OK ˝E corresponding to �0; �1), each component is two-dimensional over E
and

FiljM D

8̂̂<̂
:̂
M if j � 0;

Ex0 if 0 < j < k0,

0 if j � k0,

for some non-zero x0 2M0.
We claim that bases .xi ; yi / for Mi over E can be chosen so that Fil1M D Ex0

as above and the OK ˝ E-linear morphisms �j W Fr� FiljM ! M are defined so that
�k0�1x0 D x1, �0y0 D y1, and one of the following holds:

� �0x1 D ax0 C by0, �0y1 D cy0 for some a; c 2 E�, b 2 ¹0; 1º,

� �0x1 D y0, �0y1 D ax0 for some a 2 E�.

Indeed, choose any basis x0 for Fil1M and let x1 D �k0�1x0. If �0x1 2 Fil1M , then
we are in the first case with b D 0. Otherwise let z0 D �0x1, y1 D �0z0, write �0y1 D
˛x0 C ˇz0 for some ˛;ˇ 2 E, and note that ˛ ¤ 0. If ˇ D 0, then let y0 D z0, giving the
second case; otherwise let y0 D z0 C ˇ�1˛x0, giving the first case with b D 1.

In the first case, M is reducible (as an object of MFf;p
0

tor with E-action), fit-
ting in an exact sequence 0 ! M 0 ! M ! M 00 ! 0, where M 0 D Ey0 ˚ Ey1.
It follows that � has the form

� �1 �
0 �2

�
where �1 (resp. �2) is obtained by apply-

ing the functor HomE .US.�/; Fp/ to M 0 (resp. M 00). Moreover, �1 (resp. �2) has
a crystalline lift of Hodge–Tate type .0; 0/ (resp. .k0 � 1; 0/) and the subspace of
H 1.GK ;Fp.�1��12 // obtained from such extensions is one-dimensional. Therefore �1 is
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unramified, �2jIK D �
1�k0
�0 , and since the subspace must contain V 0

�1�
�1
2

D V�1��12
, these

subspaces in fact coincide, so � has the required form.
In the second case, consider � jGK0 , which (in view of the compatibility noted at the

end of §3 of [28]) is isomorphic to HomE .U0S.M
0/;Fp/, where M 0 DM ˝OK OK0 and

U0S is the Fontaine–Laffaille functor on the category MFf;p
0

tor defined with K replaced
by K 0. Assuming E is chosen sufficiently large (in particular containing the residue field
of K 0), we may decompose M 0 D

L
M 0i according to the embeddings � 0i D Fri ı� 00 for

i D 0; 1; 2; 3, where � 00 is a choice of extension of �0. Writing x0i ; x
0
iC2 (resp. y0i ; y

0
iC2)

for the image of xi ˝ 1 (resp. yi ˝ 1) in the corresponding component, observe that M 0

decomposes as

.Ex00 ˚Ey
0
1 ˚Ey

0
2 ˚Ex

0
3/˚ .Ey

0
0 ˚Ex

0
1 ˚Ex

0
2 ˚Ey

0
3/:

It follows that � jGK0 ' � ˚ �
0 where the character � has a crystalline lift of Hodge–Tate

type .k0 � 1; 0; 0; 0/, so that �jIK0 D �
1�k0
� 0
0

(note that similarly � 0 D �1�k0
� 0
2

) and � has the
required form.

Remark 11.2.4. For completeness, note that � has a crystalline lift of weight
..1; 1/; .0; 0// if and only if it is unramified.

Remark 11.2.5. The non-semisimple representations of GK occurring in the statement
of the lemma are precisely those which are gently (but not tamely) ramified in the termi-
nology of [17, §3.3]. This is a special case of [17, Conjecture 7.2], proved in [7].

Lemma 11.2.6. Suppose that 2 � k0 � p. A representation � W GK ! GL2.Fp/ has a
crystalline lift of weight ..k0; 1/; .0; 0// if and only if all of the following hold:

(1) � has a crystalline lift of weight ..k0 � 1; p C 1/; .0; 0// if k0 > 2, and of weight
..p C 1; p/; .0; 0// if k0 D 2;

(2) � has a crystalline lift of weight ..k0 C 1; p C 1/; .�1; 0//;

(3) � is not of the form
� �1 �
0 �2

�
where �1jIK D ��0 .

Proof. We firstly prove the “only if” direction. Suppose that � has a crystalline lift of
weight ..k0; 1/; .0; 0//.

First consider the case that � is reducible, so by Lemma 11.2.3, it is an unramified
twist of a representation of the form

� 1 �

0 ��1

�
with �jIK D �

k0�1
�0 and the associated exten-

sion class in V�.
For (1), note that �jIK D �

k0�2
�0 �

p
�1 (resp. �p�0�

p�1
�1 ) if k0 > 2 (resp. k0 D 2), so that

� has a crystalline lift z�00 of Hodge–Tate type .2 � k0;�p/ (resp. .�p; 1 � p/). Since
H 1
f
.GK ; L.z�

00// D H 1.GK ; L.z�
00// and the map H 1.GK ;O.z�

00//! H 1.GK ; E.�// is
surjective, it follows as in the proof of Lemma 11.2.3 that � has a crystalline lift of the
required weight.

For (2), we instead write �jIK D �
k0
�0 �
�p
�1 and use the lift z� in the definition of V�.

Since the extension class associated to � lies in V�, it follows that � has a crystalline lift
with �0-labelled weights .k0; 0/ and �1-labelled weights .0;�p/. Twisting by a crystalline
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character of Hodge–Tate type .�1; p/ and trivial reduction, we conclude that � has a
crystalline lift of the required weight.

Finally, (3) is clear since ��0 is not �1�k0�0 or the trivial character.
Now suppose that � is irreducible, so � ' IndGKGK0 � where �jIK0 D �

1�k0
� 0
0

for some
extension � 00 of �0. Writing �jI 0

K
D �

2�k0
� 0
0

�
�p

� 0
3

(resp. ��p
� 0
2

�
1�p

� 0
3

) if k0 > 2 (resp. k0 D 2),
we see that � has a lift Q� of Hodge–Tate type .k0 � 2; 0; 0; p/ (resp. .0; 0; p; p � 1/), and
IndGKGK0

Q� is a crystalline lift of � of the required weight for 1).

For (2), we proceed similarly by writing �jIK0 D �
1�k0
� 0
0

�
�p

� 0
1

�� 0
2

to see that � has a
crystalline lift of Hodge–Tate type .k0 � 1; p; �1; 0/ whose induction to GK has the
required weight.

Finally, (3) is clear since � is irreducible.
We now prove the “if direction". Suppose that (1)–(3) all hold. We will use the results

of [34] and their extension to p D 2 in [61], which show that if � has a crystalline lift of
weight .k; l/ with 2 � k� � pC 1 for all � , then � is of the form prescribed in [5] for the
corresponding Serre weight (i.e., W cris.�/ � W explicit.�/) in the terminology of [35], but
note that the conventions for Hodge–Tate weights in [34, 35] are opposite to ours).

First suppose that � is reducible and write � '
� �1 �
0 �2

�
. From condition (1) and

[34, Thm. 9.1] (extended to p D 2 in [61]), it follows that if k0 > 2, then � is isomorphic
to the reduction of a lattice in a crystalline representation of the form�

z�1 �

0 z�2

�
;

where z�1 and z�2 are of Hodge–Tate types .k0 � 2; p/ and .0; 0/ (in either order) or
of Hodge–Tate types .k0 � 2; 0/ and .0; p/ (again in either order). Furthermore, in the
first case, if z�1 has Hodge–Tate type .k0 � 2; p/, then the representation is necessarily
decomposable, so we may exchange z�1 and z�2. We therefore conclude that � jIK is of the
form �

1 �

0 �
1�k0
�0

�
;

�
��1�0 �

0 �
2�k0
�0

�
or

�
�
2�k0
�0 �

0 ��1�0

�
:

If k0 D 2, then the same reasoning shows that � jIK is of the form�
1 �

0 ��1�0

�
;

�
�
p�1
�0 �

0 �
�p
�0

�
or

�
�
�p
�0 �

0 �
p�1
�0

�
:

Similarly, from condition (2), we find that � jIK is of the form�
��0 �

0 �
�k0
�0

�
;

�
1 �

0 �
1�k0
�0

�
or

�
�
1�k0
�0 �

0 1

�
:

Moreover, in the second case, the associated extension class lies in V� (where we
exchange �1 and �2 if necessary if � splits, and use the fact that V� is independent of the
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choice of unramified twist in its definition). That � has the required form is then imme-
diate on comparing the possibilities resulting from (1) and (2), taking (3) into account in
the case k0 D p D 2, and applying Lemma 11.2.3.

Finally, suppose that � is irreducible. Then condition (1) and [34, Thm. 10.1]
(extended to p D 2) imply that � ' IndGKGK0 � for some � with �jIK0 of the form

�
2�k0
� 0
0

�
�p
�3 D �

1�k0
� 0
0

(if the balanced subset J in [34, Thm. 10.1] is ¹� 00; �
0
3º or its

complement) or �2�k0
� 0
0

�
�p

� 0
1

D �
2�k0�p

2

� 0
0

(if J D ¹� 00; �
0
1º or its complement), with the

latter possibility replaced by �p�p
2�p3

� 0
0

if k0 D 2. Similarly condition (2) implies that

� ' IndGKGK0 �
0 for some � 0 with � 0jI 0

K
of the form �

1�k0
� 0
0

or �p
2�k0

� 0
0

. Since neither �p
2�k0

� 0
0

nor its conjugate �1�p
2k0

� 0
0

agrees with any of the possibilities resulting from condi-

tion (1), we deduce that �jI 0
K
D �

1�k0
� 0
0

, and the desired conclusion again follows from
Lemma 11.2.3.

Remark 11.2.7. Note that we only needed to use condition (3) in the case k0 D p D 2,
so it is otherwise implied by (1) and (2).

11.3. Weight shifting

We now prove an analogue of Lemma 11.2.6 in the context of geometric modularity.
(See [62, Chapter 4] for generalisations to the setting of arbitrary totally real F in which
p is unramified.)

Lemma 11.3.1. Suppose that 2 � k0 � p and that � W GF ! GL2.Fp/ is irreducible. If
� is geometrically modular of weight ..k0; 1/; .0; 0//, then

(1) � is geometrically modular of weight ..k0 � 1;pC 1/; .0; 0// if k0 > 2, and of weight
..p C 1; p/; .0; 0// if k0 D 2, and

(2) � is geometrically modular of weight ..k0 C 1; p C 1/; .�1; 0//.

Moreover, the converse holds if we assume in addition that

(3) �jGK is not of the form
� �1 �
0 �2

�
where �1jIK D ��0 .

Proof. Suppose first that � is geometrically modular of weight ..k0; 1/; .0; 0//, i.e. � is
equivalent to �f for some eigenform f 2 M.k0;1/;.0;0/.U IE/. Multiplying f by Ha�0
(resp. Ha�0 Ha�1 ) if k0 > 2 (resp. k0 D 2) yields an eigenform giving rise to � of the
weight required for (1). Conclusion (2) is immediate from Theorem 10.4.2.

Conversely, suppose (1)–(3) all hold. First consider the case k0 > 2. By Proposi-
tion 10.5.2, hypotheses 1) and 2) imply that � arises from normalised eigenforms in
M.k0�1;pC1/;.0;0/.U1.m1/IE/ and M.k0C1;pC1/;.�1;0/.U1.m2/IE/ for some ideals m1,
m2 prime to p (and sufficiently large E). We may then choose n satisfying the con-
ditions in Lemma 10.6.2 with m D mi for i D 1; 2 (for example take n D m2

1m
2
2) to

deduce that � arises from stabilised eigenforms in f1 2M.k0�1;pC1/;.0;0/.U1.n/IE/ and
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f2 2M.k0C1;pC1/;.�1;0/.U1.n/IE/. By Proposition 9.4.1,‚�0.f1/ is a strongly stabilised
eigenform in M.k0;2pC1/;.�1;0/.U1.n/IE/. By Corollary 10.7.2 and hypothesis (3), so is
Ha�0 f2. Lemma 10.6.5 then implies that ‚�0.f1/ D Ha�0 f2, and now it follows from
Theorem 8.2.2 that f1 D Ha�0 f for some f 2M.k0;1/;.0;0/.U1.n/IE/, so � is geometri-
cally modular of weight ..k0; 1/; .0; 0//.

The case k0 D 2 is similar, but instead one has f1 2 M.pC1;p/;.0;0/.U1.n/IE/, and
obtains f 2M.pC2;0/;.0;0/.U1.n/IE/. Theorem 1.1 of [19] now implies that f is divisible
by Ha�1 , so that � is geometrically modular of weight ..2; 1/; .0; 0//.

11.4. Geometric modularity in partial weight 1

Theorem 11.4.1. Suppose that 2 � k0 � p and that � W GF ! GL2.Fp/ is irreducible
and modular. Suppose that [5, Conjecture 3.14] and Conjecture 7.5.2 hold for �. Then �
is geometrically modular of weight ..k0; 1/; .0; 0// if and only if �jGK has a crystalline
lift of weight ..k0; 1/; .0; 0//.

Proof. Suppose first that �jGK has a crystalline lift of weight ..k0; 1/; .0; 0//. Then
Lemma 11.2.6 implies that �jGK has crystalline lifts of weight ..k0 � 1; p C 1/; .0; 0//
(resp. ..p C 1; p/; .0; 0//) if k0 > 2 (resp. k0 D 2) and ..k0 C 1; p C 1/; .�1; 0//, and
that �jGK has no subrepresentation on which IK acts as ��0 . Conjecture 3.14 of [5] then
implies that � is algebraically modular of the two indicated weights, and then Conjec-
ture 7.5.2 implies it is geometrically modular of those weights. It then follows from
Lemma 11.3.1 that � is geometrically modular of weight ..k0; 1/; .0; 0//.

Now suppose that � is geometrically modular of weight ..k0; 1/; .0; 0//. Reversing the
argument above then shows that �jGK has crystalline lifts of weight ..k0�1;pC1/; .0;0//
(resp. ..p C 1; p/; .0; 0//) if k0 > 2 (resp. k0 D 2) and ..k0 C 1; p C 1/; .�1; 0//. If
p > 2, then as noted in Remark 11.2.7, this already implies that �jGK has a crystalline lift
of weight ..k0; 1/; .0; 0//. To conclude, we can assume k0 D p D 2, and we just need to
rule out the possibility that �jGK '

� �1 �
0 �2

�
where �1jIK D ��0 . We do this by an ad hoc

argument.
It is more convenient to work with �0 D � ˝ ��0 , where � is a character of weight

.1; 0/. Then �0 is geometrically modular of weight ..2; 1/; .1; 0//, Conjecture 7.5.2 holds
as well for �0, and we assume for the sake of contradiction that �0jGK has an unramified
subrepresentation. We let v0 D 2OF .

By Lemma 10.2.1, � arises from an eigenform f0 2M.2;1/;.1;0/.U1.m1/IE/ for some
m1 andE. Moreover, by Lemma 10.4.1, we can assume that‚�1.f0/¤ 0, i.e. rJm.f0/¤ 0
for some m; J such that m 62 2J�1. The same argument as in the proof of Proposi-
tion 10.5.2 then shows that we may assume f0 satisfies the first two conditions in the
definition of a normalised eigenform. (With regard to the third condition, note that we
have not defined Tv0 in this context.) Therefore ‚�0.f0/ is a normalised eigenform in
M.3;3/;.0;0/.U1.m1/IE/; note that it is an eigenform for Tv0 since rJm.‚�1.f0// D 0 if
m 2 2J�1. By Theorem 8.2.2, we have �.‚�0.f0// �Ha .4; 1/ (where the notation is as
in §5), and [19, Thm. 1.1] then implies that �.‚�0.f0// �Ha .2; 2/. We may therefore
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write ‚�0.f0/ D Ha�0 Ha�1 f1 for a normalised eigenform f1 2M.2;2/;.0;0/.U1.m1/IE/

with rJm.f1/ D 0 for all m 2 2J�1.
We have shown in particular that �0 is geometrically modular of weight ..2; 2/; .0; 0//,

hence algebraically modular of weight ..2; 2/; .0; 0// by our supposition of Conjec-
ture 7.5.2. Therefore (for example by [5, Prop. 2.5]), �0 ' � Qf for a characteristic zero

eigenform Qf of weight ..2; 2/; .0; 0//; we may further assume that Qf is a newform in
M.2;2/;.0;0/.U1.m2/IO/ for some m2, enlarging L if necessary, so it is a normalised
eigenform for Tv for all primes v, and for Sv for all v − m2. By local-global compatibil-
ity, � Qf jGK is crystalline with �i -labelled weights .1; 0/ for i D 0; 1, and the characteristic

polynomial of �2 on Dcris.� Qf jGK / is X2 � QaX C 4 Qd where Qa is the eigenvalue of Tv0
on Qf and Qd 2 O� is the eigenvalue of Sv0 . Using for example that � Qf jGK is dual to a
representation arising from a 2-divisible group over OK , we see from the form of �0jGK
that

� Qf jGK '

�
z�1 �

0 z�2

�
with z�1 unramified and z�1.Frobv0/ D Qa 2 O� (and �cyc z�2 is unramified with
�cyc z�2.Frobv0/ D Qa

�1 Qd ). The reduction of Qf is thus a normalised eigenform f2 2

M.2;2/;.0;0/.U1.m2/IE/ giving rise to �0, with the property that the eigenvalue of Tv0
on f2 is non-zero.

As in the proof of Lemma 11.3.1, we can choose n so that the conditions in
Lemma 10.6.2 are satisfied for m1 and m2, and the proof of the lemma then yields eigen-
forms g1; g2 2 M.2;2/;.0;0/.U1.n/IE/ such that g1 is strongly stabilised, whereas g2 is
stabilised and satisfies Tv0g2 D ag2 for some a 2 E�. Now consider the form f3 D

a�1.g2 � g1/; its q-expansion coefficients are given by rJm.f3/ D 0 unless m 2 2J�1C , in
which case rJm.f3/ D r

J
m=2

.g2/. In particular, f3 2 ker.‚�0/, so f3 D ˆv0.g3/ for some
g3 2M.1;1/;.0;0/.U1.n/IE/. By Proposition 9.8.1, we have rJm.g3/D r

J
m.g2/ for allm;J ,

so g2 D Ha�0 Ha�1 g3.
Furthermore, note that �.g3/ D .1; 1/; otherwise [19, Corollary 1.2] would force

�.g3/ D .0; 0/, making g3 locally constant and contradicting the irreducibility of �. Now
consider ‚�1.g3/ 2 M.3;2/;.0;�1/.U1.n/IE/. By Theorem 8.2.2, ‚�1.g3/ is not divisi-
ble by Ha�1 . We claim that ‚�1.g3/ is not divisible by Ha�0 either. Indeed, if it were,
then we would have �.‚�1.g3// �Ha .4; 0/, and [19, Thm. 1.1] would imply divisibil-
ity by Ha�1 . Therefore Theorem 8.2.2 implies that ‚�0‚�1.g3/ is not divisible by Ha�0
(and in fact a similar argument gives �.‚�0‚�1.g3// D .4; 4/). Note that ‚�0‚�1.g3/ 2
M.4;4/;.�1;�1/.U1.n/IE/ is a strongly stabilised eigenform giving rise to �. However so is
e1Ha2�0 Ha2�1 g1, where e1 is the constant section inM.0;0/;.�1;�1/.U1.n/IE/with value 1.
We therefore conclude that ‚�0‚�1.g3/ D e1 Ha2�0 Ha2�1 g1 is divisible by Ha�0 , yielding
the desired contradiction.

Remark 11.4.2. Note that the theorem holds just as well for weights of the form
..k0; 1/; l/ and ..1; k0/; l/ for any l 2 Z†.
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Recall from Proposition 7.5.4 that one direction of Conjecture 7.5.2 holds if k is pari-
tious in the sense of Definition 3.2.1. Recall also that [5, Conjecture 3.14] has been proved
under mild technical hypotheses by Gee and collaborators (see especially [33, 34]), with
an alternative to part due to Newton [50]. In particular, it holds under the assumptions
that p > 2, �jGF.�p/ is irreducible, and if p D 5, then �jGF.�5/ does not have projective
image isomorphic to A5 ' PSL2.F5/. It might be possible to treat this exceptional case
with p D 5 using the same methods along with [3, Thm. 3.2.1], but we only need to do
this in a particular instance in order to obtain one direction of Theorem 11.4.1 for odd k0
unconditionally.

Theorem 11.4.3. Suppose that 3 � k0 � p, k0 is odd and � W GF ! GL2.Fp/ is irre-
ducible and modular. If �jGK has a crystalline lift of weight ..k0; 1/; .0; 0//, then � is
geometrically modular of weight ..k0; 1/; .0; 0//.

Proof. We first show that the local condition at p implies that �jGF.�p/ is irreducible.
Indeed, if it is not, then � is induced from GF 0 for a quadratic extension F 0=F which is
ramified at p, and hence �jGK is induced from GK0 for a ramified quadratic extension
K 0=K. This in turns implies that �jIK ' �1 ˚ �2 for some characters �1; �2 such that
�1�

�1
2 is quadratic. However, the explicit description of the possibilities for �jIK from

Lemma 11.2.3 shows that �1��12 would have the form �
˙.k0�1/
�0 or �˙.k0�1/.p

2�1/

� 0
0

, which

gives a contradiction since such a character has order .p2 � 1/=i or .p2 C 1/=i for some
i � p � 1.

We may therefore apply [35, Thm. A] to conclude that � is algebraically modular of
weights ..k0 � 1;pC 1/; .0;0// and ..k0C 1;pC 1/; .�1;0//, unless pD 5 and �jGF.�5/
has projective image isomorphic to PSL2.F5/. Aside from this exceptional case, it follows
from Proposition 7.5.4 that � is geometrically modular of weights ..k0 � 1;pC 1/; .0; 0//
and ..k0 C 1;pC 1/; .�1; 0//, and then from Lemma 11.3.1 that � is geometrically mod-
ular of weight ..k0; 1/; .0; 0//.

Suppose then that p D 5 and �jGF.�5/ has projective image isomorphic to PSL2.F5/,
so that of � is isomorphic to PSL2.F5/ or PGL2.F5/. Again using the explicit descriptions
in Lemma 11.2.3, we see this is only possible if k0 D 5 and �jGK ' �1 ˚ �2 where �1 is
unramified and �2jIK D �

�4
�0

has order 6. In this case the conjectural set of Serre weights
for �_ D HomF5.�;F5/ (with the notation of §7) is

¹V.4;6/;.0;0/; V.2;2/;.�1;0/; V.6;6/;.�1;0/; V.6;4/;.4;0/º:

In particular, if � is a character of weight .1;0/, then .�˝ ��0/_jGK has a Barsotti–Tate lift
(necessarily non-ordinary), and the argument of [30, §3.1] (using the method of Khare–
Wintenberger [43]) then shows that .� ˝ ��0/_ is modular of weight V.2;2/;.0;0/, from
which it follows that � is algebraically modular of weight ..2; 2/; .�1; 0//.

Similarly �_jGK has a potentially Barsotti–Tate lift of type Œ�2�0�
4
�1
�˚ 1, so the same

argument (but now using [3, Thm. 3.2.1] for the existence of ordinary lifts) shows that
�_ is modular of some weight in the set of Jordan–Hölder constituents IndGL2.OF =p/

B  
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where

: 

��
a b

0 d

��
D �0.a/

2�1.a/
4;

namely ¹V.4;6/;.0;0/; V.3;5/;.3;0/; V.4;2/;.2;4/º. Therefore � is algebraically modular of
weight ..4; 6/; .0; 0//, ..3; 5/; .3; 0// or ..4; 2/; .2; 4//. Since �jGK has no crystalline
lifts of weight ..3; 5/; .3; 0// or ..4; 2/; .2; 4// (by [34, Thm. 2.12], but in fact already
by [28]), these possibilities are ruled out by local-global compatibility and the discussion
before Proposition 7.5.4. Therefore � is algebraically modular of weight ..4; 6/; .0; 0//.

We have now shown that � is algebraically modular of weights ..4; 6/; .0; 0// and
..2; 2/; .�1; 0//, so also geometrically modular of these weights by Proposition 7.5.4.
Therefore � is also geometrically modular of weight ..6; 6/; .�1; 0//, and it follows from
Lemma 11.3.1 that � is geometrically modular of weight ..5; 1/; .0; 0//, as required.

Remark 11.4.4. Again the theorem holds also for weights of the form ..k0; 1/; l/ and
..1; k0/; l/ for any l 2 Z†.

Remark 11.4.5. We remark that the assumption that F is unramified at p ensures that
the conditions at p D 5 in the modularity lifting theorems of [3, 29, 47] are satisfied. If
p D 5 is ramified in F , then a more exceptional case can arise, and is treated in work of
Khare and Thorne [45].

11.5. An example

Consider the Galois representation defined in [17, §9, Example IIIb1], so F D Q.
p
5/,

p D 3 and � W GF ! GL2.F9/ is absolutely irreducible and has the property that �jGK '��1 �
0 �0

�
where �i jIK D ��i for appropriately chosen �i WOF =p' F9. Setting �D �1��10 ,

we have �jIK D �
�2
�0

, and the discussion in [17] shows that the associated extension class
lies in the line V� of Lemma 11.2.1. It follows that � has a crystalline lift of weight
..3; 1/; .0;�1//.

The modularity of � is strongly indicated by the data exhibited in [17, §10.4]. In
particular, it follows from the explicit computations described there that there is an eigen-
form f 2M.2;4/;.0;�1/.U1.n/IF9/ with n D .10

p
5/ whose eigenvalue for Tv coincides

with tr�.Frobv/ for all v − 30 such that NmF=Q.v/ < 100, and whose eigenvalue for
Sv is 1 D NmF=Q.v/

�1 det �.Frobv/ for all v − 30. We assume for the rest of the dis-
cussion that it is indeed the case that �f ' �. It then follows from Theorem 11.4.1 that
� is geometrically modular of weight ..3; 1/; .0;�1//, i.e., � ' �g for some eigenform
g 2M.3;1/;.0;�1/.U1.n/IF9/

Consider also the form g� for a character � of conductor .
p
5/ and weight .0; 2/,

in the sense of Definition 10.3.1. (There are two such characters, both of order 4, dif-
fering by the quadratic character corresponding to the extension F.�5/.) Then we have
g� 2M.3;1/;.0;1/.U1.n/IF9/, and as the weight ..3; 1/; .0; 1// is paritious (in the sense of
Definition 3.2.1), it is natural to ask whether g� lifts to a characteristic zero eigenform of
partial weight 1.



A Serre weight conjecture for geometric Hilbert modular forms 3533

Acknowledgments. We are grateful to Payman Kassaei for many valuable discussions related to this
work. We also thank Fabrizio Andreatta, Eyal Goren, Kai-Wen Lan and David Savitt for helpful
correspondence, and Robin Bartlett, Toby Gee, David Helm and Vytautas Paškūnas for useful con-
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