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Abstract. For each simply connected, simple complex group G we show that the direct sum of
all vector bundles of conformal blocks on the moduli stack M̄g,n of stable marked curves carries
the structure of a flat sheaf of commutative algebras. The fiber of this sheaf over a smooth marked
curve (C, Ep) agrees with the Cox ring of the moduli of quasi-parabolic principal G-bundles on
(C, Ep). We use the factorization rules on conformal blocks to produce flat degenerations of these
algebras. In the SL2(C) case, these degenerations result in toric varieties which appear in the theory
of phylogenetic statistical varieties, and the study of integrable systems in the moduli of rank 2
vector bundles. We conclude with a combinatorial proof that the Cox ring of the moduli stack of
quasi-parabolic principal SL2(C)-bundles over a generic curve is generated by conformal blocks of
levels 1 and 2 with relations generated in degrees 2, 3, and 4.
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1. Introduction

Let (C, Ep) be a smooth, complex, projective curve with distinct marked points Ep =
{p1, . . . , pn} ⊂ C, and letG be a simple, simply connected complex group. We fix a Borel
subgroup B and choose a parabolic3i containing B for each pi . A quasi-parabolic prin-
cipalG-bundle on C of type E3 = {31, . . . , 3n} is a principalG-bundle E→ C together
with a choice of a point ρi in the fiber over pi of the associated bundle E ×G (G/3i)
(equivalently, a choice of right3i-orbit in the fiber of E over pi). We study the Cox ring,
or total coordinate ring, of the moduli stack MC, Ep( E3) of these objects.
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The Cox ring associated to this moduli problem is the direct sum of all the spaces of
global sections of line bundles on the stack taken over the torsion free part of the Picard
group. The group Pic(MC, Ep( E3)) is computed by Laszlo and Sorger [LS97], who show it
is a free Abelian group:

Pic(MC, Ep( E3)) = X (31)× · · · × X (3n)× Z. (1)

Here X (3i) is the group of characters of the parabolic subgroup 3i ⊂ G. A celebrated
result of Faltings [Fal94], Kumar, Narasimhan and Ramanathan [KNR94], Beauville, Las-
zlo and Sorger [BL94], [BLS98], [Sor99], and Pauly [Pau96] identifies global sections of
line bundles on MC, Ep( E3) with the spaces of conformal blocks from the Wess–Zumino–
Novikov–Witten (WZNW) model of conformal theory. For a fixed curve (C, Ep), there
is one such space V†

C, Ep
(Eλ,L) for each choice of dominant weights λi ∈ X (3i) and a

non-negative integer L ∈ Z≥0:

H 0(MC, Ep( E3),L(Eλ,L)) = V†
C, Ep
(Eλ,L). (2)

The Cox ring of MC, Ep( E3) is therefore the sum of all the spaces of conformal blocks
with compatible parabolic data:

Cox(MC, Ep( E3)) =
⊕
Eλ,L

H 0(MC, Ep( E3),L(Eλ,L)) =
⊕
Eλ,L

V†
C, Ep
(Eλ,L). (3)

The main theorem of this paper produces a family of flat degenerations of
Cox(MC, Ep( E3)) from the combinatorial properties of the WZNW theory. We state this
theorem for 3i = B ⊂ G a Borel subgroup, denoted MC, Ep(G), as all other cases are
implied by this case. In what follows, 0 is a graph with non-leaf vertex set V (0) and edge
set E(0).

Theorem 1.1. For (C, Ep) a marked stable curve, there is a flat degeneration of
Cox(MC, Ep(G)) for every trivalent graph 0 with first Betti number g = genus(C) and
n = | Ep| leaves:

Cox(MC, Ep(G))⇒
[ ⊗
v∈V (0)

Cox(M0,3(G))
]T0
. (4)

Here T0 is a product of |E(0)| − n tori T × C∗, where T ⊂ G is a maximal torus.

For a description of the action of T0 on
⊗

v∈V (0) Cox(M0,3(G)) see Section 3. The-
orem 1.1 is a “ringification” of the factorization rules for conformal blocks (see Sec-
tion 3); and in keeping with the flavor of factorization, many algebraic properties of the
Cox ring of MC, Ep(G) can be understood in terms of the 3-pointed, genus 0 case. For
example, in the SL2(C) case (discussed in more detail below), Theorem 1.1 is used to
show that Cox(MC, Ep(SL2(C)) is generically finitely generated (Theorems 1.3 and 1.5).
Furthermore, it can be shown that Cox(MC, Ep(SL2(C)) is a Gorenstein algebra using an
argument along the lines of [Man13, Theorem 7.3].
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Let RC, Ep(Eλ,L) =
⊕

N≥0H
0(MC, Ep(N E3),NL(Eλ,L)) =

⊕
N≥0 V

†
C, Ep
(NEλ,NL) de-

note the projective coordinate ring corresponding to the line bundle L(Eλ,L) on MC, Ep( E3);
note that this is a graded subalgebra of Cox(MC, Ep( E3)). The corresponding coarse moduli
space Proj(RC, Ep(Eλ,L)) is denotedMC, Ep(Eλ,L). The celebrated Verlinde formula [Ver88],
[Fal94], [Bea96] calculates the dimension of the spaceH 0(MC, Ep( E3),L(Eλ,L)) of global
sections. We view Theorem 1.1 as a first step toward developing a polyhedral rule for
computing the Verlinde formula, which should correspond to toric degenerations of the
coarse moduli MC, Ep(Eλ,L).

A toric degeneration of an algebra is a flat family of algebras over some base, with
a special fiber equal to the semigroup algebra of a normal affine semigroup. Presenta-
tion results, and certain algebraic properties (e.g. Gorenstein, Koszul), can be easier to
prove on an algebra with a toric degeneration, as these properties are controllable under
flat degeneration and are more readily established by combinatorial means on the special
fiber of the degeneration. Theorem 1.1 reduces the problem to finding such a degener-
ation for RC, Ep(Eλ,L) or Cox(MC, Ep(G)) to finding a degeneration for Cox(M0,3(G))

which respects the multigrading by dominant weights. When G = SL2(C), the algebra
Cox(M0,3(SL2(C))) is already an affine semigroup algebra, so in this case our degenera-
tions are toric. The relevant affine semigroup algebras are the graded algebras associated
to the following polytopes.

Definition 1.2. For 0 a trivalent graph, let P0 be the polytope of weightings w :
E(0)→ R≥0 which satisfy the following properties at each internal vertex v ∈ V (0).

(1) The sum of the three weights incident on a vertex is w1(v)+ w2(v)+ w3(v) ≤ 2.
(2) These three weights satisfy the triangle inequalities, |w1(v) − w3(v)| ≤ w2(v) ≤

w1(v)+ w3(v).

Also see [Buc12] for a description of these polytopes. We consider the P0 and their
Minkowski sums with respect to the lattice L0 ⊂ RE(0) defined by the condition that all
edges are weighted with integers, and w1(v)+w2(v)+w3(v) ∈ 2Z for all v ∈ V (0). An
affine semigroup is obtained from P0 by considering the lattice points in the Minkowski
sums L◦P0 = {u1 + · · · + uL | ui ∈ P0}. The union S(P0) =

∐
L≥0 L◦P0 ∩ L0 is

naturally graded, and it is easy to see that if u1 ∈ L◦P0 and u2 ∈ K◦P0 , then u1 + u2 ∈

(L + K)◦P0 , where the operation + is sum of integer valued functions on E(0). Let
C[P0] be the affine semigroup algebra obtained from the graded affine semigroup S(P0);
note that C[P0] comes with a distinguished basis in bijection with the graded set of lattice
points. We show the following in Section 5.

Theorem 1.3. Let (C, Ep) be an n-marked smooth, projective curve of genus g, and 0 a
trivalent graph with first Betti number g and n leaves. There is a flat degeneration

Cox(MC, Ep(SL2(C)))⇒ C[P0]. (5)

Recall that dominant weights of SL2(C) are non-negative integers, therefore we may
associate a projective coordinate ring of the moduli of quasi-parabolic principal SL2(C)-
bundles RC, Ep(Er, L) to the data (Er, L) ∈ Zn+1

≥0 . As a corollary of Theorem 1.3 we also
obtain explicit toric degenerations of spaces MC, Ep(Er, L) = Proj(RC, Ep(Er, L)).
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Definition 1.4. let P0(Er, L) be the polytope obtained as the fiber over Er for the map
L◦P0 → Rn, computed by forgetting all weights except those on the leaf-edges.

Let C[P0(Er, L)] be the affine semigroup defined by the polytope P0(Er, L). For G =
SL2(C), (C, Ep) a marked smooth projective curve, and 0 a trivalent graph with compa-
tible information. There is a flat degeneration

RC, Ep(Er, L))⇒ C[P0(Er, L)]. (6)

Theorem 1.3 is utilized in [Man10b] and [Man12] to prove that the projective coordi-
nate ring of the square of any effective line bundle on the moduli stack MC, Ep(SL2(C))
is generated by its degree 1 elements, and is a Koszul algebra for generic (C, Ep). This
result follows from the analysis of P0(Er, L) for particular well-chosen trivalent graphs.
We follow a similar strategy here; by studying a particular polytope P0g,n , we prove the
following.

Theorem 1.5. For generic (C, Ep), the algebra Cox(MC, Ep(SL2(C))) is generated by
conformal blocks of level L = 1, 2. The corresponding ideal of relations is generated
in levels 2, 3, 4.

We prove Theorem 1.5 by establishing these properties for the algebra C[P0g,n ] in Sec-
tion 5; the theorem then holds for Cox(MC, Ep(SL2(C))) because of general properties
of flat families of algebras. In particular, the degrees of generators and relations needed
to present a particular algebra in a flat family bound such degrees generically; for more
discussion on this point see [Man12, Theorem 1.11].

Theorem 1.5 is a simultaneous generalization of theorems of Castravet and Tevelev
[CT06], Sturmfels and Xu [SX10], and Abe [Abe10]. Castravet and Tevelev, along with
Sturmfels and Xu, treat the case g = 0, and show that L = 1 conformal blocks generate
with quadratic relations by utilizing a theorem of Bauer [Bau91] and results of Buczyńska
and Wiśniewski [BW07] discussed below. Abe treats the case n = 0, and shows that
L = 1 conformal blocks generate by combining a proof that L = 1, 2 suffice with a result
of Beauville [Bea91] which establishes that the L = 1 component generates L = 2.

Theorem 1.5 should be of interest in the emerging field of Newton–Okounkov bodies
[KK12], [LM09], [HK12]. We show in Proposition 5.4 that the polytope P0 is a Newton–
Okounkov body of the scheme Proj(VC, Ep(SL2(C))), when (C, Ep) is a stable curve of
type 0.

1.1. Organization and methods

Theorem 1.1 is a consequence of the commutative algebra analogues of classical results
from the theory of conformal blocks proved in [TUY89]. In what follows, M̄g,n denotes
the Deligne–Mumford stack of stable n-pointed curves of genus g (see [DM69]).

(1) (Flatness) The spaces V†
C, Ep
(Eλ,L) fit together into a vector bundle V†(Eλ,L)

over M̄g,n.
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(2) (Factorization) For C̃ the partial normalization of a stable curve C at a double
point q, there is an isomorphism of vector spaces

V†
C, Ep
(Eλ,L)

∼=
←−

⊕
α∈1L

V†
C̃, Ep,q1,q2

(Eλ, α, α∗, L);

here the point q1 is always assigned the dual weight α∗ to the weight α assigned to
its partner q2 (see Figure 1).

q1

q2

p1 p2 p3 p1
p2 p3

Fig. 1. Normalization of a triple marked stable genus 2 curve.

In Section 2 we build a multiplication operation on the direct sum V†(G) =⊕
Eλ,L V

†(Eλ,L) from elements of Kac–Moody representation theory. The following is
a consequence of this construction.

Proposition 1.6. For any simple Lie algebra g with associated simple, simply connected
reductive group G, the direct sum of vector bundles

V†(G) =
⊕
Eλ,L

V†(Eλ,L) (7)

has the structure of a flat sheaf of algebras on M̄g,n. Over a smooth marked curve (C, Ep),
multiplication on this sheaf agrees with multiplication of global sections on the corre-
sponding line bundles over the moduli MC, Ep(G):

V†
C, Ep
(G) ∼= Cox(MC, Ep(G)). (8)

We call V†
C, Ep
(G) the algebra of conformal blocks over (C, Ep). The global object V†(G)

relates the Cox ring of MC, Ep(G) to the algebra of conformal blocks for a non-smooth,
stable curve by a flat family.

Recall that M̄g,n is stratified by the stability type of the curves (C, Ep); this is the
source of the graph combinatorics in Theorem 1.1. The strata of M̄g,n are indexed by
connected graphs 0 with n labeled leaves. Each internal vertex of the graph is labeled
with a number gi , thought of as the “internal genus” of that vertex (see Figure 2). The
genus g of the whole graph is computed by summing these numbers and adding the first
Betti number of 0. An internal vertex corresponds to a smooth component in the normal-
ization of a representative curve of the stratum, and leaves correspond to marked points.
The lowest strata of M̄g,n are isolated points indexed precisely by trivalent graphs. In
Section 3, we utilize the factorization rules of conformal blocks to degenerate the algebra
over non-smooth, stable curves.
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Fig. 2. The graph of a stable curve type.

Proposition 1.7. Let (C, Ep) be a stable curve of stability type 0, with smooth normal-
ization (C̃, Ep, Eq1, Eq2). There is a flat degeneration

V†
C, Ep
(G)⇒ [V†

C̃, Ep,Eq1,Eq2
(G)]T0 . (9)

Here T0 = (T × C∗)|E(0)|−| Ep|, where T ⊂ G is a maximal torus.

Taken together, Propositions 1.6 and 1.7 prove Theorem 1.1.

1.2. The relationship with configuration spaces

There is a natural map relating the space of conformal blocks with labels Eλ to the space
of g-invariants in V (Eλ∗) = V (λ∗1)⊗ · · · ⊗ V (λ

∗
n). This is called the correlation map (see

the book of Ueno [Uen97] for more information on its properties):

FC, Ep : V†
C, Ep
(Eλ,L)→ HomC(V (Eλ)/gV (Eλ),C) ∼= V (Eλ∗)g. (10)

When the genus of the curve C is 0, the map FC, Ep is injective, allowing us to make cer-
tain aspects of conformal blocks more concrete by relating them to vector spaces from
classical representation theory. Let U ⊂ G be the maximal unipotent subgroup contained
in B, and let An be the algebra of invariants in the tensor product C[G/U ]⊗n with re-
spect to the left diagonal action by G. The space of invariants V (Eλ∗)g is a subspace
of An and is also the space of global sections of a line bundle L(Eλ) on the space of con-
figurations MEλ (see Subsection 4.3). Furthermore, the projective coordinate ring AEλ =⊕

N≥0H
0(MEλ,L(Eλ)

⊗N ) is always a subalgebra of An. In Sections 2 and 4 we show that
the correlation map can be enhanced to a map of algebras FC, Ep : V†

C, Ep
(G)→ Ân, where

Ân is a certain Rees algebra of An (see Section 4). This relationship then passes to a
graded inclusion RC, Ep(Eλ,L) ⊂ AEλ. In Section 4 we then relate the degenerations con-
structed in Theorem 1.1 to degenerations of configuration spaces constructed in [Man10a]
and [Man14, Proposition 4.9].

Theorem 1.8. Let (C, Ep) be a marked, stable, genus 0 curve of type T . Then the degen-
eration from Theorem 1.7 on V†

C, Ep
(G) extends to a degeneration on Ân corresponding

to T under the correlation morphism FC, Ep. Furthermore, the induced degeneration of
RC, Ep(Eλ,L) extends to a degeneration on AEλ.
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For g = sl2(C), the algebra An is the projective coordinate ring of the Grassmannian
variety Gr2(Cn). In [SS04], Speyer and Sturmfels describe the tropical variety T n,2 of
Gr2(Cn) with respect to the embedding in P(

n
2)−1 given by the Plücker generators of its

coordinate ring. They show that T n,2 has a maximal face for each trivalent tree with n
ordered leaves. As T n,2 is a subfan of the Gröbner fan of Gr2(Cn), each point w ∈ T n,2

defines an initial ideal Iw of the ideal of relations on the Plücker generators. The de-
generation of An associated to a trivalent tree T with n ordered leaves constructed in
Theorem 1.8 is then presented by an initial ideal Iw from the associated face of T n,2

(see [HMM11], [HMSV09]). These degenerations are used by Howard, Millson, Snow-
den, and Vakil [HMSV09] to study the moduli space MEr of weighted Er-weighted ordered
point arrangements on P1, for Er ∈ Zn

≥0. The appearance of trees T in the context of
degenerations of MEr , and Sturmfels and Xu’s work on MP1, Ep(SL2(C)) led Millson to
conjecture the following [Mil09].

Conjecture 1.9 (Millson). For a curve C of genus 0 and a trivalent tree T with n leaves,
consider the degeneration of the ring AEr induced by the construction by Speyer and
Sturmfels associated to the tree T . Then the induced degeneration on RC, Ep(Er, L) is iso-
morphic to C[PT (Er, L)].

The following is a consequence of Theorem 1.8.

Corollary 1.10. For a curve C of genus 0 and a trivalent tree T with n leaves, the in-
duced degeneration on RC, Ep(Er, L) above is isomorphic to C[PT (Er, L)] when (C, Ep) is
the stable curve of type T .

1.3. Phylogenetics and conformal blocks

Along with their relationship to SL2(C) conformal blocks, the affine semigroup alge-
bras C[P0] make an appearance in mathematical biology. The scheme Proj(C[P0]) is
a statistical model based on the Jukes–Cantor binary model of phylogenetics [BW07],
[Buc12], [BBKM13], [SX10]. In [Buc12] and [BW07], Buczyńska and Wiśniewski show
geometrically that the Hilbert functions of the algebras C[P0] only depend on the num-
ber of leaves and the first Betti number of 0. The visually appealing method employed
by Buczyńska and Wiśniewski to obtain this result is to construct pairwise deformations
between algebras associated to combinatorial alterations of the underyling graphs (see
Figure 3). In a sense, Theorem 1.3 “fills in” this picture over M̄g,n.

The commutative algebra C[P0] is also studied by Buczyńska, Buczyński, Kubjas,
and Michałek [BBKM13], who prove the following theorem.

Theorem 1.11 (BBKM). Let 0 be a graph with first Betti number g and n leaves. Then
C[P0] is generated in degree ≤ g + 1. There exist graphs where this bound is attained.

Although this was not the focus of their work, note that the result in [BBKM13] and
Theorem 1.3 imply that Cox(MC, Ep(SL2(C))) is generated by conformal blocks of level
≤ g + 1 for (C, Ep) generic, and Theorem 1.5 shows that this bound can be lowered
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Fig. 3. Combinatorial alterations between trees with five ordered leaves.

to 2. The [BBKM13] result also shows that the special fibers V†
C, Ep
(SL2(C)) for (C, Ep) of

trivalent graph type 0 can all be generated in degree ≤ g + 1.
The connection between phylogenetics and moduli of principal SL2(C)-bundles was

first made in the g = 0 case in [SX10]. Sturmfels and Xu show that the binomial ideal
defining C[PT ] for T a tree coincides with an initial ideal of an ideal presenting the alge-
bra Cox(MC, Ep(SL2(C))). We note that this connection can also be made directly through
the combinatorics of sl2(C) conformal blocks. In particular, the quantum Clebsch–Gordan
rule (see Section 5) and the factorization rules (see Section 3) establish directly that the
lattice points of the polytope P0(Er, L) count the dimension of the space V†

C, Ep
(Er, L) when

the genus of C is β1(0) and | Ep| is the number of leaves of 0.

1.4. Remarks on integrable systems in the moduli of principal bundles

The polytopes P0 and P0(Er, L) appear in work of Hurtubise and Jeffrey [HJ00] and Jef-
frey and Weitsman [JW92], on the integrable systems in the moduli of bundles associated
to the Goldman flows on those spaces. In particular, in [HJ00], Hurtubise and Jeffrey note
that the presence of a dense, open integrable system in the moduli space with momentum
image P0 almost gives a proof of the Verlinde formula. They reason that if the moduli
space were toric, then the Verlinde formula could be computed by counting the lattice
points in P0 , which coincides with the expected dimension. Theorem 1.3 enhances this
picture by showing that the toric variety associated to P0 is a flat degeneration of the mod-
uli space. It would be interesting to relate the degeneration constructed in Theorem 1.3
and the integrable system studied in [HJ00] along the lines of work of Kaveh and Harada
[HK12] (see also Subsection 5.2).

1.5. Notation

Here we collect some frequently used notation.

G a simple, simply connected affine group over C
g the Lie algebra of G
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λ ∈ 1 a dominant weight of g in a Weyl chamber
V (λ) the irreducible representation of g associated to λ
ĝ the affine Kac–Moody algebra of g
H(λ, L) the integrable highest weight representation of ĝ associated to λ,L
(C, Ep) a curve with marked points
V†
C, Ep

(Eλ,L) the space of conformal blocks associated to the data C, Ep, Eλ,L

V†
C, Ep

(G) the algebra of conformal blocks on [C, Ep ] for the group G
MC, Ep(G) the moduli stack of quasi-parabolic principal G-bundles on [C, Ep ]
MC, Ep(Eλ,L) the moduli space of semistable parabolic G-bundles on [C, Ep ]
M̄g,n the moduli stack of stable curves of genus g with n marked points
0 a graph
E(0) the edges of 0
V (0) the non-leaf vertices of 0

2. The sheaf of conformal blocks

In this section we construct the multiplication operation on the sheaf of conformal blocks,
and show that its specialization at a smooth marked curve (C, Ep) is equal to multiplication
of global sections of line bundles on the moduli MC, Ep(G). We thank Eduard Looijenga
for the remarks he provided on his construction of the sheaf V†(Eλ,L) of conformal blocks
on M̄g,n. For a simple Lie algebra g we fix a Cartan subalgebra, a system of positive roots,
and we let 1 denote the corresponding Weyl chamber.

2.1. Construction of the sheaf of conformal blocks

We refer the reader to the accounts of this construction in [Bea96], [Kum87], [KNR94],
[Loo], [SU99], [TUY89] and [Fak12]. Let θ be the longest root, with associated Cartan el-
ement θ∨; the level L alcove1L ⊂ 1 is the simplex defined by the condition λ(θ∨) ≤ L.
For each dominant weight λ ∈ 1L there is an integrable highest weight module H(λ, L)
of the affine Kac–Moody algebra ĝ (see [Bea96, 1.5]). Recall that ĝ contains a subalgebra
naturally isomorphic to g. The module H(λ, L) likewise contains a g-highest weight vec-
tor vλ which generates the irreducible g-representation V (λ).

The Kac–Moody algebra ĝ is a central extension of g ⊗ C((t)), where the addi-
tional central element acts on H(λ, L) with weight L. Let ĝn be the Lie algebra

∑n
i=1 ĝ

with central elements identified; this algebra acts on tensor products of integrable highest
weight modules with a common level: H(Eλ,L) = H(λ1, L)⊗· · ·⊗H(λn, L). For a con-
nected, stable curve (C, Ep), there is an associated Lie algebra ĝ[C, Ep ] = g⊗C[C \ { Ep}].
By fixing a local parameter ti at each marked point pi we obtain a map ĝ[C, Ep ] →⊕n

i=1 g ⊗ C((ti)) by power-series expansion. By the Residue Theorem (see [Bea96,
Part I]), this map extends to the central extension ĝn, so H(Eλ,L) can be considered as
a representation of ĝ[C, Ep ].

Now we sheafify this construction following [Loo] and [Fak12]. Let S be a smooth
affine variety over C. By a stable curve of genus g over S with n marked points we mean
a proper, flat map π : C → S with fibers equal to genus g curves with at worst double
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point singularities, and n pairwise non-intersecting sections p1, . . . , pn : S → C with
images contained in the smooth locus, such that C \

⋃
pi(S) is affine over S. We assume

we have specified isomorphisms ψi : ÔC,pi (S)→ H 0(S,OS)[[t]].
We require the following sheaves of Lie algebras over OS : ĝn(S) = ĝn⊗OS , g(S) =

g ⊗ OS , and ĝ(C, Ep) = g ⊗ π∗[OC\
⋃
pi (S))]. The algebra g(S) can be realized as a

Lie subalgebra of ĝ(C, Ep), and the fiber of ĝ(C, Ep) at s is equal to ĝ[π−1(s), Ep(s)].
Furthermore, by using the ψi , we realize ĝ(C, Ep) as a Lie subalgebra of ĝn(S). We also
require the sheafified highest weight representations HS(Eλ,L) = H(Eλ,L) ⊗ OS and
VS(Eλ) = V (Eλ)⊗OS . The sheaf HS(Eλ,L) is a ĝn(S)-module, and therefore also a ĝ(C, Ep)-
module, and the sheaf VS(Eλ) is likewise a g(S)-submodule of HS(Eλ,L).

For any Lie algebra g over C and representation M there is a space of invariants:

HomC(M/gM,C) ∼= (M∗)g. (11)

The same construction may be applied to sheaves of Lie algebras and representations over
a scheme S, with HomOS

(−,−) the sheaf of morphisms, and OS as a dualizing object.

Definition 2.1. The sheaf of vacua or conformal blocks, V†
C, Ep
(Eλ,L), is defined to be the

following sheaf of invariants:

V†
C, Ep
(Eλ,L) = HomOS

(
HS(Eλ,L)/ĝ(C, Ep)HS(Eλ,L),OS

)
. (12)

Note that V†
C, Ep
(Eλ,L) is naturally a subsheaf of the dual HS(Eλ,L)

∗. Taking a single fiber
π−1(s) of π we have the vector space of conformal blocks,

V†
π−1(s), Ep(s)

(Eλ,L) = HomC
(
H(Eλ,L)/ĝ[π−1(s), Ep(s)]H(Eλ,L),C

)
. (13)

Over a general smooth base scheme one can always choose the isomorphisms ψi
Zariski locally. Furthermore, a description of these sheaves can be given which does not
depend on the choice of the ψi (see [Loo] and [Bea96, 1.7]). The corresponding sheaves
V†(Eλ,L) on the moduli stack M̄g,n are proved to be locally free and coherent in [Uen97]
and [TUY89] (see also [Loo]).

2.2. Multiplication of conformal blocks

Now we define the multiplication operation on sheaves of conformal blocks. We let Cλ;γ :
V (λ + γ ) → V (λ) ⊗ V (γ ) be the g-intertwiner which sends the highest weight vector
vλ+γ to vλ ⊗ vγ . This operation also makes sense on integrable ĝ-representations, so by
abuse of notationCλ;γ : H(λ+γ, L+K)→ H(λ, L)⊗H(γ,K) is the map defined in the
same way (see [Kum87, 1.6]). Notice that these maps coincide under the restriction to the
subspace V (λ+γ ) ⊂ H(λ+γ, L+K). Furthermore, the inclusions i : V (λ)→ H(λ, L)
and g ⊂ ĝ[C, Ep ] induce the correlation maps F : V†

C, Ep
(Eλ,L) → [V (Eλ)]g. We let Ī

denote the natural inclusion Ī : V†
C, Ep
(Eλ,L) → HS(Eλ,L)

∗, and I denote the inclusion
I : [VS(Eλ)

∗
]
g(S)
→ VS(Eλ)

∗. As a consequence of these definitions the following diagram
commutes:
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V†
C, Ep
(Eλ,L)

Ī
−−−−→ HS(Eλ,L)

∗

F

x xEi∗
[VS(Eλ)

∗
]
g(S) I
−−−−→ VS(Eλ)

∗

The map C∗
Eλ; Eγ
: HS(Eλ,L)

∗
⊗OS

HS( Eγ ,K)
∗
→ HS(Eλ+ Eγ ,K+L)

∗ formed by dualizing
CEλ; Eγ is the global section multiplication operation on the projective coordinate rings of
Kac–Moody flag varieties by the Kac–Moody version of the Borel–Bott–Weil theorem
of Kumar [Kum87]. As a consequence, this map defines a commutative and associative
multiplication on the direct sum of the HS(Eλ,L)

∗, and restricts to such an operation on
the sheaves of vacua. We define C∗

Eλ; Eγ
: [VS(Eλ)]

g(S)
⊗ [VS( Eγ )]

g(S)
→ [VS(Eλ + Eγ )]

g(S)

using the same recipe. The following lemma is then immediate.

Lemma 2.2. The multiplication maps C∗
Eλ; Eγ

commute with the correlation map F .

When the genus g is 0, the map F is a monomorphism by an observation of Tsuchiya,
Ueno and Yamada [TUY89]. Everything here commutes with specialization, so we also
obtain the following diagram:

V†
π−1(s), Ep(s)

(Eλ,L)⊗ V†
π−1(s), Ep(s)

( Eγ ,K)
C∗
Eλ; Eγ
//

F⊗F

��

V†
π−1(s), Ep(s)

(Eλ+ Eγ , L+K)

F

��

[V (Eλ)∗]g ⊗ [V ( Eγ )∗]g
C∗
Eλ; Eγ

// [V ( Eγ + Eλ)∗]g

This multiplication operation also works well with the alternative constructions of the
spaces of conformal blocks given in [Bea96]. We fix an n+1-marked curve (C, Ep, q). By
identifying highest weight vectors, we get the following diagram of g-representations:

V (0)⊗H(Eλ,L)→ H(0, L)⊗H(Eλ,L)← H(0, L)⊗ V (Eλ).

The space on the left is a ĝ[C, Ep ]-representation, the middle is a ĝ[C, Ep, q]-representa-
tion, and the space on the right is a ĝ[C, q]-representation where the action on V (λi) is
by evaluation at pi . The following is a ringification of a result which appears in [Bea96].

Proposition 2.3. Let C be a stable curve. The following are isomorphisms of algebras
over C: ⊕

Eλ,L

V†
C, Ep
(Eλ,L)→

⊕
Eλ,L

V†
C, Ep,q

(0, Eλ,L)←
⊕
Eλ,L

[H(0, L)⊗ V (Eλ)]g[C,q].

Proof. By a theorem in [Bea96] the morphism on the right is an isomorphism of vector
spaces, and by vacuum propagation (see [TUY89], [SU99], [Bea96] and [NT05]) the
morphism on the left is also an isomorphism of vector spaces. Both maps are defined
by identifying highest weight vectors, then dualizing; this gives a diagram of rings, with
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graded components,

[V (0)⊗H(Eλ)]∗← [H(0, L)⊗H(Eλ,L)]∗→ [H(0, L)⊗ V (Eλ)]∗.
Taking Lie algebra invariants picks out subspaces which are preserved by multiplication.

ut

Beauville’s result gives the identification V†
C, Ep
(Eλ,L) = [H(0, L)∗ ⊗ V (Eλ)∗]ĝ[C,q] (see

also [LS97]).

2.3. Moduli of quasi-parabolic principal bundles

For what follows we refer the reader to the work of Kumar, Kumar–Narasimhan–Rama-
nathan, Laszlo–Sorger, and Pauly [Kum87], [KNR94], [LS97], [Sor99], [Pau96]. The the-
orem below can be found in [KNR94], [LS97] and in [Sor99] for the exceptional groups.

Theorem 2.4. The moduli stack MC, Ep( E3) of quasi-parabolic G-bundles on C smooth,
with parabolic structure E3 at the marked points, carries a line bundle L(Eλ,L), where
λi is a dominant weight in the face of 1 associated to 3i . The global sections of this line
bundle are identified with a space of conformal blocks:

H 0(MC, Ep( E3),L(Eλ,L)) ∼= [H(0, L)∗ ⊗ V (Eλ∗)]g[C,q]. (14)

The stack MC, Ep( E3) is obtained as a quotient of the ind-variety Q × G/31 × · · · ×

G/3n by the ind-group G(C[C \ q]) for q ∈ C, where Q is the affine Grassmannian
variety. This space is constructed as a quotient Q = L(G)/L+(G), where L(G) is the
loop group of G. Let Ôq be the formal completion of the local ring at q, and let kq
be the quotient field of Ôq . Then L(G) = G(kq), and L+(G) = G(Ôq). The space
Q×G/31 × · · · ×G/3n carries line bundles L(L, Eλ) with global section spaces equal
to H(0, L)∗⊗V (Eλ∗). By the Borel–Bott–Weil theorem in the Kac–Moody setting proved
by Kumar [Kum87], multiplication of global sections is computed with the maps C∗

λ;γ

from the previous subsection.

Proposition 2.5. For (C, Ep) ∈Mg,n ⊂ M̄g,n there is a monomorphism of multigraded
rings

h E3 : Cox(MC, Ep( E3))→ V†
C, Ep
(G). (15)

The image of this monomorphism is the direct sum of the conformal blocks V†
C, Ep
(Eλ,L)

with λi a dominant weight in the face of 1 associated to 3i . This is an isomorphism
when all 3i are Borel subgroups.
Proof. As mentioned in the introduction, in [LS97] Laszlo and Sorger identify the Picard
group of MC, Ep( E3):

Pic(MC, Ep( E3)) = X (31)× · · · × X (3n)× Z, (16)

where X (3i) is the character group of 3i . For any line bundle L(Eλ,L) on MC, Ep( E3)

there is an isomorphism between the sections of L(Eλ,L) and theG(C[C \q])-equivariant
sections of the pullback bundle on Q × G/31 × · · · × G/3n by a standard theorem on
quotient stacks [LS97]. By Borel–Bott–Weil (standard and Kac–Moody versions), such
a line bundle is effective only if each λi is dominant and L is non-negative. In this case
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we have concluded above that the global sections are spaces of conformal blocks and
that the multiplication operation on the section spaces is computed by the multiplication
operation in V†

C, Ep
(G). ut

3. Filtrations of the algebra of conformal blocks

In the previous section we built the flat sheaf V†(G) of algebras. This allows us to re-
late Cox(MC, Ep( E3)) to the algebra V†

C′,Eq
(G) for (C′, Eq) a singular curve. In this sec-

tion we use the factorization map of Tsuchiya–Ueno–Yamada to define a degeneration
V†
C, Ep
(G)⇒ [

⊗
v∈V (0) V

†
0,3(G)]

T0 for a singular curve (C, Ep) of type 0, and prove The-
orem 1.1. We begin with a discussion of the factorization isomorphism. For each dominant
weight λ ∈ 1 and its dual λ∗, and a choice of highest weight vector vλ ∈ V (λ) and lowest
weight vector v̂λ∗ ∈ V (λ∗), let Fλ : V (λ) ⊗ V (λ∗)→ C be the unique equivariant map
such that Fλ(vλ ⊗ v̂λ∗) = 1. The map Fλ gives an isomorphism

HomC(V (λ), V (λ)) ∼= V (λ)⊗ V (λ
∗), (17)

where
∑
i xi ⊗ yi acts on v ∈ V (λ) as

∑
i xi ⊗ Fλ(yi ⊗ v). Let Oλ,λ∗ ∈ V (λ)⊗ V (λ∗)

represent the identity under this isomorphism. This element defines a g-linear map

V (Eλ)
ρα
−→ V (Eλ)⊗ V (α)⊗ V (α∗),

which sends X to X⊗Oα,α∗ . The map ρα also makes sense for integrable highest weight
representations of ĝ, and we can define ρα : H(Eλ,L) → H(Eλ, α, α∗, L) = H(Eλ,L) ⊗
H(α, α∗, L).

We fix a stable curve C, with singular point q ∈ C, and we let C̃ be the partial nor-
malization of C at q with two new marked points q1, q2 ∈ C̃. The modules H(Eλ,L) and
H(Eλ, α, α∗, L) are viewed as representations of ĝ[C, Ep ] and ĝ[C̃, Ep, q1, q2], respectively.
Taking dual spaces, and then invariants by these Lie algebras, yields the following map,
which is shown to be injective in [TUY89]:

V†
C, Ep
(Eλ,L)

ρ̂α
←− V†

C̃, Ep,q1,q2
(Eλ, α, α∗, L)

This operation can be performed with any finite number of nodal singular points Eq. Sum-
ming over all Eα ∈ 1mL gives the factorization isomorphism. As we show below, the
extra dominant weight data Eα ∈ 1mL brought out by factorization defines a filtration
on V†

C, Ep
(G).

Consider the tensor product decomposition

V (α)⊗ V (β) ∼=
⊕

W
η
α,β ⊗ V (η), (18)

where W η
α,β = Homg(V (η), V (α)⊗ V (β)). We have the following identities:

V (α)⊗ V (β)⊗ V (α∗)⊗ V (β∗) ∼= HomC(V (α)⊗ V (β), V (α)⊗ V (β))

∼= HomC
(⊕

W
η
α,β ⊗ V (η),

⊕
W
η
α,β ⊗ V (η)

)
∼=

[⊕
W
η
α,β ⊗ V (η)

]
⊗

[⊕
W
η∗

α∗,β∗ ⊗ V (η
∗)
]
. (19)
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For any two maps f⊗g ∈ W η
α,β⊗W

η∗

α∗,β∗ , the map Fα⊗Fβ◦(f⊗g) : V (η)⊗V (η∗)→ C
must be a multiple F ηα,β(f, g) of Fη. This assignment defines a bilinear map F ηα,β : W

η
α,β⊗

W
η∗

α∗,β∗ → C. We let I ηα,β represent the identity map under the induced isomorphism

W
η
α,β ⊗W

η∗

α∗,β∗ = Hom(W η
α,β ,W

η
α,β). By definition we have Fα ⊗ Fβ =

∑
F
η
α,β ⊗ Fη,

and therefore
Oα,α∗ ⊗Oβ,β∗ =

∑
I
η
α,β ⊗Oη,η∗ . (20)

We let fη : W
η
α,β ⊗ V (η) → V (α) ⊗ V (β) denote the inclusion defined by the direct

sum decomposition, with fη∗ : W
η∗

α∗,β∗ ⊗ V (η
∗) → V (α∗) ⊗ V (β∗) the corresponding

maps on the dual representations. By our choices above, we have fα+β = Cα;β , and
it is a straightforward calculation to verify that fα∗+β∗ = Cα∗;β∗ . We recall the Verma
ĝ-module V̄ (λ, L) from [Bea96, 1.6] and [Kum87, 1.5]. The fη give maps

W
η
α,β ⊗ V̄ (η,K + L)

f̄η
−→ H(α, L)⊗H(β,K),

and the identity (20) above implies that the following diagram commutes:

H(Eλ,L)⊗H( Eγ ,K)
ρα⊗ρβ

// [H(Eλ,L)⊗H(α, α∗,K)]⊗[H( Eγ ,K)⊗H(β, β∗, L)]

H(Eλ+ Eγ ,K+L)

CEλ; Eγ

OO

∑
η(I

η
α,β⊗ρη)

//
⊕

ηH(Eλ+ Eγ ,K+L)⊗W
η
α,β⊗W

η∗

α∗,β∗⊗V̄ (η,K+L)⊗V̄ (η
∗,K+L)

∑
η CEλ; Eγ⊗f̄η⊗f̄η∗

OO

(21)
Here the sum is over all dominant weights η which are smaller than α+β in the dominant
weight ordering. The bottom map sends a vector Y to

∑
Y ⊗ I

η
α,β ⊗Oη,η∗ , so we replace

f̄η ⊗ f̄η∗ with φη,η∗(X) = f̄η ⊗ f̄η∗(I
η
α,β ⊗X). For η = α + β, by definition,

f̄α+β ⊗ f̄α∗+β∗ = φα+β,α∗+β∗ = Cα,α∗;β,β∗ . (22)

Proposition 3.1. The following diagram commutes:

V†
C, Ep
(Eλ,L)⊗ V†

C, Ep
( Eγ ,K)

C∗
Eλ; Eγ

��

V†
C̃, Ep,q1,q2

(Eλ, α, α∗, L)⊗ V†
C̃, Ep,q1,q2

( Eγ , β, β∗,K)
ρ̂α⊗ρ̂β
oo

[
∑
η CEλ; Eγ⊗φη,η∗ ]

∗

��

V†
C, Ep
(Eλ+ Eγ , L+K)

⊕
η V

†
C̃, Ep,q1,q2

(Eλ+ Eγ , η, η∗, L+K)

∑
η ρ̂η

oo

Proof. We may dualize diagram (21) to obtain

[H(Eλ,L)]∗⊗[H( Eγ ,K)]∗

C∗
Eλ+Eγ

��

[H(Eλ,L)⊗H(α, α∗,K)]∗⊗[H( Eγ ,K)⊗H(β, β∗, L)]∗
ρ̂α⊗ρ̂β
oo

[
∑
η CEλ; Eγ⊗φη,η∗ ]

∗

��

[H(Eλ+ Eγ ,K+L)]∗
⊕

η[H(Eλ+ Eγ ,K+L)⊗V̄ (η,K+L)⊗V̄ (η∗,K+L)]∗
∑
η ρ̂η

oo
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We must determine what happens to the spaces of conformal blocks inside each of the
vector spaces in this diagram. Here C∗

Eλ+Eγ
maps V†

C, Ep
(Eλ,L)⊗V†

C, Ep
( Eγ ,K) to V†

C, Ep
(Eλ+ Eγ ,

K + L) and [
∑
η CEλ; Eγ ⊗ φη,η]

∗ maps V†
C̃, Ep,q1,q2

(Eλ, α, α∗,K) ⊗ V†
C, Ep,q1,q2

( Eγ , β, β∗, L)

to [H(Eλ+ Eγ , L+K)⊗ V̄ (η)⊗ V̄ (η∗)]g(C\ Ep,q1,q2), respectively, because both maps are
obtained by dualizing and taking invariants. Furthermore, the map ρ̂α ⊗ ρ̂β sends vectors
from V†

C̃, Ep,q1,q2
(Eλ, α, α∗,K)⊗ V†

C, Ep,q1,q2
( Eγ , β, β∗, L) into V†

C, Ep
(Eλ,L)⊗ V†

C, Ep
( Eγ ,K) by

the factorization theorem.
In order to analyze the bottom arrow of the diagram, we first consider the projection

map,
πη,K+L : V̄ (η,K + L)→ H(η,K + L) (23)

of highest weight ĝ-modules. The map [Id ⊗ πη,K+L ⊗ πη∗,K+L]∗ ◦ ρ̂η, which takes
[H(Eλ + Eγ ,K + L) ⊗ H(η,K + L) ⊗ H(η∗,K + L)]∗ to [H(Eλ + Eγ ,K + L)]∗, is by
definition equal to the map used in the proof of the factorization rules. This implies that it
takes the space V†

C̃, Ep,q1,q2
(Eλ+ Eγ , η, η∗, L+K) to V†

C, Ep
(Eλ+ Eγ , L+K). The picture is then

completed by a theorem of Beauville [Bea96, proof of Proposition 2.3], which asserts the
following equality for any smooth curve C̃, induced by the maps πη,K+L:

V
†
ĝ[C̃, Ep,Eq]

[H(Eα,L)⊗ V̄ ( Eβ,L)] ∼= V †
ĝ[C̃, Ep,Eq]

[H(Eα,L)⊗H( Eβ,L)]

= V†
C̃, Ep,Eq

(Eα, Eβ,L). (24)

ut

The diagram of Proposition 3.1 only represents the case of a curve with one singularity,
but the general case follows by the same methods. For any tensor product of elements
χ1 ⊗ χ2 ∈ V†

C̃, Ep,q1,q2
(Eλ, α, α∗, L)⊗ V†

C̃, Ep,q1,q2
( Eγ , β, β∗,K), the multiplication χ1 × χ2

can be expanded as follows:

χ1 × χ2 = C
∗

Eλ; Eγ
(ρ̂α(χ1)⊗ ρ̂β(χ2)) = ρ̂α+β ◦ C

∗

Eλ; Eγ ,α,β,α∗,β∗
(χ1 ⊗ χ2)+

∑
χη. (25)

Recall that there is a partial ordering ≺ on dominant weights such that λ ≺ γ if and only
if γ − λ is a sum of positive roots. The χη in the expansion of χ1 × χ2 are the summands
from components of the direct sum with η ≺ α + β as dominant weights, in particular
multiplication in V†

C, Ep
is multiplication in V†

C̃, Ep,q1,q2
(G) with additional “lower” terms.

We use this observation to build an algebra filtration on V†
C, Ep
(G). Recall that any coweight

θ in the dual Weyl chamber1∨ of1 has the property that θ(γ ) ≥ θ(λ) when λ ≺ γ , and
furthermore this inequality is strict when θ is taken from the interior of 1∨.

Definition 3.2. We define a coweighting of the normalized curve (C̃, Ep, Eq) to be an as-
signment of coweights from the dual Weyl chamber θ ∈ 1∨ to the new marked points Eq,
such that identified points q1, q2 are assigned dual coweights (see Figure 4). We define a
weighting of (C̃, Ep, Eq) analogously.
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θ1

θ9

θ6θ8

θ2θ5
θ7 θ3

θ4

Fig. 4. A coweighting.

Coweightings and coweightings of (C̃, Ep, Eq) can be visualized as assignments of
coweights to the non-leaf edges of the graph 0 which labels the stratum of M̄g,n con-
taining C. For any non-leaf edge e ∈ E(0) there are two points q1, q2 ∈ Eq, and therefore
two dual weights α, α∗ assigned to this edge. We can encode this data by specifying an
orientation q1 → q2 for each e ∈ E(0) and recording one of the weights; it is then
understood that the weight recorded is that on q1, and the weight on q2 is obtained by
duality. Now we can denote these objects by a pair (0, Eθ), where 0 is the graph with a
choice of orientation, and Eθ is an assignment of a single coweight (respectively weight) to
each non-leaf edge in 0. By extending the natural pairing between weights and coweights
bilinearly we can view coweightings of (C̃, Ep, Eq) as linear functions on weightings of
(C̃, Ep, Eq):

(0, Eθ) ◦ (0, Eα) =
∑

e∈Edge(0)

θe(αe). (26)

Now we describe a class of filtrations on the algebra of conformal blocks. Fix a
partial normalization (C̃, Ep, Eq) of (C, Ep), and choose once and for all an orientation
of the edges of the associated 0. Let V†

C, Ep
(Eλ,L)Eα ⊂ V†

C, Ep
(Eλ,L) denote the subspace

V†
C̃, Ep,Eq

(Eλ, Eα, Eα∗, L) obtained by factorization. Notice that there is a natural weighting

of (C̃, Ep, Eq) associated to each of these subspaces, namely (0, Eα). Now, by choosing a
coweighting (0, Eθ), and using the pairing above, we obtain a filtration F0,Eθ on V†

C, Ep
(G)

by giving χ ∈ V†
C, Ep
(Eλ,L)Eα filtration level (0, Eθ) ◦ (0, Eα).

By considering equation (25) above, we see that the product χ1 × χ2 and ρ̂α+β ◦
C∗
Eλ,α,α∗; Eγ ,β,β∗

(χ1 ⊗ χ2) always have the same filtration level, whereas the filtration level
of a lower summand χη is always less than or equal to this value. For coweightings where
all coweights have been chosen in the interior of the dual Weyl chamber of g, the terms
χη are always given a strictly smaller filtrational level than χ1 × χ2.

Proposition 3.3. The filtration F0,Eθ for (0, Eθ) respects multiplication on the ring
V†
C, Ep
(G). If the components of Eθ are strictly positive on all positive roots, then the im-

age of the associated graded multiplication map



The algebra of conformal blocks 2701

V†
C, Ep
(Eλ,L)Eα ⊗ V†

C, Ep
( Eγ ,K) Eβ

→ F≤Eθ(Eλ,Eα+ Eβ,Eα
∗
+ Eβ∗)

0,Eθ
(V†
C, Ep
(G))/F<Eθ(Eλ,Eα+ Eβ,Eα∗+ Eβ∗)

0,Eθ
(V†
C, Ep
(G)) (27)

can be canonically identified with V†
C, Ep
(Eλ+ Eγ ,K +L)

Eα+ Eβ .Moreover this map coincides

with multiplication in the algebra V†
C̃, Ep,Eq

(G).

Proof. This all follows from Proposition 3.1 above and the observation that χ1 × χ2 and
ρ̂
Eα+ Eβ ◦ C

∗

Eλ; Eγ ,Eα+ Eβ,Eα∗+ Eβ∗
(χ1 ⊗ χ2) always have the same filtration level. ut

Proposition 3.3 shows that if the coweighting (0, Eθ) is generic, the associated graded al-
gebra grF

0,Eθ
(V†
C, Ep
) is isomorphic to the subalgebra of V†

C̃, Ep,Eq
(G) formed by the conformal

block spaces V†
C̃, Ep,Eq

(Eλ, Eα, Eα∗, L)—namely those with dual dominant weights assigned to

paired points q1, q2 , and all levels L on different connected components of C̃ equal. This
subalgebra can be realized as the algebra of invariants with respect to a certain torus. For
each oriented edge e ∈ E(0) (respectively, ordered pair of points q1, q2 ∈ C̃ associated
to a normalized singularity) there is an action of a maximal torus T ⊂ G on V†

C̃, Ep,Eq
(G)

whose character on the subspace V†
C̃, Ep,Eq

(Eλ, Eα,L) is the difference α1−α
∗

2 , where αi is the

label of qi . Similarly, if C̃ has multiple connected components, there is an action of C∗ for
each edge e ∈ E(0) whose character is the difference between the levels on the spaces of
conformal blocks associated to the components connected by e. We let T0 be the product
of all such T × C∗. The algebra (V†

C̃, Ep,Eq
(G))T0 of invariants is then the required sum of

spaces of conformal blocks.
Next we show that the associated graded algebra grF

0,Eθ
(V†
C, Ep
) can be realized as a flat

degeneration of V†
C, Ep

. We may form the Reese algebra R(0,Eθ)[V
†
C, Ep
(G)] ⊂ V†

C, Ep
(G)[t],

defined as

R(0,Eθ)[V
†
C, Ep
(G)] =

⊕
N≥0

F≤N
0,Eθ
[V†
C, Ep
(G)]. (28)

The Reese algebra of a filtration is a standard construction in commutative algebra; it is
naturally a C[t]-algebra, where t acts by sending an element in filtration level N to its
identical copy in level N + 1. The following properties are standard (see e.g. [AB04]):

• R(0,Eθ)[V
†
C, Ep
(G)] is flat over C[t],

•
1
t
R(0,Eθ)[V

†
C, Ep
(G)] ∼= V†

C, Ep
(G)[t, 1/t],

• R(0,Eθ)[V
†
C, Ep
(G)]/t is the associated graded algebra (V†

C̃, Ep,Eq
(G))T0 .

This construction gives a flat degeneration with generic fiber V†
C, Ep
(G), and special fiber

equal to the subalgebra (V†
C̃, Ep,Eq

(G))T0 of V†
C̃, Ep,Eq

(G). This proves Theorems 1.7 and 1.1.
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Remark 3.4. The coordinate ring of the group G has the following decomposition into
isotypical G×G components (see [Gro97, Theorem 12.9]):

C[G] =
⊕
λ∈1

V (λ, λ∗). (29)

The maps φη,η∗ are the components of the dual of the multiplication map m : C[G] ⊗
C[G] → C[G] on this coordinate ring. Using Proposition 2.3 and a suitable modification
of diagram (21), we can construct an isomorphism of algebras out of the factorization
maps ρα : H(0, L)⊗ V (Eλ)→ H(0, L)⊗ V (Eλ, α, α∗):

ρ : H(0, L)⊗ V (Eλ)→
⊕
α∈1L

H(0, L)⊗ V (Eλ, α, α∗), (30)

ρ∗ : [C[Q] ⊗ C[G/U ]⊗n ⊗ C[G]]ĝ[C̃,p,q1,q2]

∼=
−→ [C[Q] ⊗ C[G/U ]⊗n]ĝ[C,p] = V†

C, Ep
(G). (31)

Here C[Q] =
⊕

L≥0 H(0, L)∗ is the total coordinate ring of the affine Grassmannian
variety, and C[G/U ] =

⊕
λ∈1 V (λ) is the coordinate ring of the quotient ofG by a max-

imal unipotent subgroup. Let G//U = Spec(C[G/U ]) be the GIT quotient of G by U ;
notice that the grading by dominant weight corresponds to a residual T -action on G//U .
The degeneration constructed in this section is then induced by the so-called horospher-
ical contraction of the group scheme G [Pop86]. This is a flat G × G degeneration of
G to the scheme [G//U × G//U ]/T , where the T -action is defined through the residual
T ×T -action onG//U×G//U so that V (λ)⊗V (λ∗) ⊂ C[G//U ]⊗C[G//U ] is invariant.

Remark 3.5. The association of a filtration (actually a valuation) on V†
C, Ep
(G) to a

coweighting (0, Eθ) suggests that coweightings should play a role in the tropical theory
of the moduli of principal bundles [Pay09].

Example 3.6. We compute an example for the curve in Figure 5. Explicitly we have

(V†
C̃′,Eq

(G))T = (V†
P1,q1,q2,q3

(G)⊗ V†
P1,q4,q5,q6

(G))T

=

⊕
L,α,β,γ

[V†
P1,q1,q2,q3

(α, α∗, β, L)⊗ V†
P1,q4,q5,q6

(β∗, γ, γ ∗, L)]. (32)

Fig. 5. Curve of genus 2, stable curve of genus 2 and disjoint union of two triple marked curves of
genus 0.

Multiplication is computed componentwise over the tensor product. In the case g =
sl2(C), this ring is the semigroup of weightings on the graph pictured in Figure 6, where
the middle edge is always weighted even and less than or equal to twice either of the loop
edges, and the sum of twice either loop edge and the middle edge is bounded by the level.
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Y Z
2X

Fig. 6. Weighted genus 2 graph.

4. Correlation and the genus 0 case

In this section we prove Theorem 1.8, which relates the degeneration on V†
C, Ep
(G) to a sim-

ilar construction on an algebra Ân which we now describe. Recall that An is the algebra
of left diagonalG-invariants in C[G/U ]⊗n, and letMn = Spec(An). The coordinate ring
ofG/U is known to be a multiplicity-free direct sum of the irreducible representations of
G (see e.g. [PV72]) with multiplication computed by the maps C∗

λ;γ
: V (λ∗)⊗V (γ ∗)→

V (λ∗ + γ ∗). It follows that the coordinate ring An of this space is the graded direct sum⊕
Eλ∈1n [V (

Eλ)]g. The algebra Ân is defined to be the following Rees algebra of An:

Ân =
⊕

Eλ∈1n, λi (θ
∨)≤L

[V (Eλ)]gtL. (33)

Now we may observe that there is a correlation map FC, Ep : V†
C, Ep
(G)→ Ân which is

a map of algebras by Lemma 2.2.

4.1. The correlation morphism

The invariant spaces [V (Eλ)]g also have a factorization property, so a simplified version of
the construction in Section 3 applies to the algebra An (see also [Man10a]).

Proposition 4.1. Let S1 ∪ S2 = [n] be a partition of n indices, and let T be the tree
with leaves in bijection with [n] and one interior edge defined by this partition. There is a
factorization isomorphism

∑
ρη :

⊕
η[V (
Eλ1, η)]

g
⊗ [V (η∗, Eλ2)]

g
→ [V (Eλ1, Eλ2)]

g. This

defines a filtration FT ,Eθ on Ân for each coweighting of the tree T . If the components of Eθ
are strictly positive on all positive roots, then the associated graded algebra is isomorphic
to [Â|S1| ⊗ Â|S2|]

T×C∗ .

Proof. Apply the steps of Section 3. ut

In Section 2 we showed that there is a 1-1 map FC, Ep : V†
C, Ep
(G) → Ân when C is a

genus 0 stable curve. Next we show that over a stable curve of type T , the correlation
morphism FC, Ep : V†

C, Ep
(G)→ Ân intertwines the factorization of conformal blocks with

the branching decomposition defined by T on Ân. Let (C, Ep1, Ep2) be a stable curve of
type T , with C̃ = C1 ∪ C2. We have a commuting square of g-representations

H(Eλ,L)
ρη
// H(Eλ1, η, L)⊗H(η∗, Eλ2, L)

V (Eλ)
ρη

//

i

OO

V (Eλ1, η)⊗ V (η
∗, Eλ2)

i⊗i

OO
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We may dualize this diagram, and take invariants with respect to the Lie algebras
ĝ[C, Ep1, Ep2] on the top left, ĝ[C1 \ Ep1]⊕ ĝ[C2 \ Ep2] on the top right, g on the bottom left,
and g⊕ g on the bottom right. The top morphism ρ̂η : [H(Eλ1, η, L)⊗H(η∗, Eλ2, L)]

∗
→

H(Eλ,L)∗ on the dual spaces takes the graded component V†
C1, Ep1,q1

(Eλ1, η, L) ⊗

V†
C2, Ep2,q2

(η∗, Eλ2, L) into V†
C, Ep1, Ep2

(Eλ,L) by the factorization rules. The bottom morphism

ρ̂η : [V (Eλ1, η) ⊗ V (η
∗, Eλ2)

∗
]
g
→ V (Eλ)∗ takes [V (Eλ1, η)] ⊗ [V (η

∗, Eλ2)]
g to [V (Eλ)]g

by Proposition 4.1. The fact that these invariant spaces are connected by the appropriate
morphisms, along with the commutativity of the dual diagram, implies that the following
diagram commutes:

V†
C, Ep1, Ep2

(Eλ,L)

FC, Ep1, Ep2
��

V†
C1, Ep1,q1

(Eλ1, η, L)⊗ V†
C2, Ep2,q2

(η∗, Eλ2, L)
ρ̂η
oo

FC1, Ep1,q1⊗FC2,q2 Ep2
��

[V (Eλ)∗]g [V (Eλ1, η)
∗
]
g
⊗ [V (η∗, Eλ2)

∗
]
gρ̂αoo

This shows that the direct sum decompositions of V†
C, Ep1, Ep2

(Eλ,L) and [V (Eλ)]g from the
factorization rules are compatible, and implies that the filtrations on the branching al-
gebras and the algebras of conformal blocks agree. Theorem 1.8 follows by induction.

Remark 4.2. Whenever C̃ is a disjoint unionC1∪C2, the diagram above commutes. This
implies that a version of Theorem 1.8 is true for general genus, except that the correlation
FC, Ep is no longer a monomorphism.

4.2. The case (0, 3)

For a genus 0, triple marked curve there is no moduli, M0,3 = {pt}, so the algebra of
conformal blocks is unique. In this case, conformal blocks have a purely representation-
theoretic description as a subspace of the space of invariants. See [TUY89] for the fol-
lowing.

Proposition 4.3. The space V†
0,3(λ, γ, µ,L) ⊂ [V (λ

∗) ⊗ V (γ ∗) ⊗ V (µ∗)]g has the
following description. Consider the factorizations of V (λ∗), V (γ ∗) and V (µ∗) as
sl2(C)-representations with respect to the longest root θ : sl2(C) → g: V (λ∗) =⊕
W(λ∗, i) ⊗ V (i), V (γ ∗) =

⊕
W(γ ∗, j) ⊗ V (j), V (µ∗) =

⊕
W(µ∗, k) ⊗ V (k).

Let W(λ∗, γ ∗, µ∗, L) be the subspace of V (λ∗) ⊗ V (γ ∗) ⊗ V (µ∗) of components
V (i)⊗ V (j)⊗ V (k) with i + j + k ≤ 2L. Then

V†
0,3(λ, γ, µ,L) = W(λ

∗, γ ∗, µ∗, L) ∩ [V (λ∗)⊗ V (γ ∗)⊗ V (µ∗)]g. (34)

Remark 4.4. The degeneration constructed in Section 3 could be completed to a toric
degeneration given any T 3-invariant toric degeneration of V†

0,3(G). A sufficient condition
for the existence of such a filtration would be the existence of a basis B(λ, γ, µ) of each
space [V (λ)⊗ V (γ )⊗ V (µ)]g with the following properties:

(1) The bases B(λ, γ, µ) have a “lower-triangular multiplication" property with respect
to the multiplication in A3.
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(2) The intersection B(λ, γ, µ) ∩ V†
0,3(λ, γ, µ,L) ⊂ [V (λ

∗) ⊗ V (γ ∗) ⊗ V (µ∗)]g is a
basis for each L.

Lusztig’s dual canonical basis satisfies the first property above, and the resulting degener-
ations are explored in [Man10a]. In [Man13] we use this technique to build toric degen-
erations of the algebra of conformal blocks when G = SL3(C).

4.3. Projective coordinate rings

Recall that the coordinate ring An is the multiplicity-free direct sum of the invariant spaces
V

†
g (V (Eλ)), and that this algebra is graded by the tuples of dominant weights Eλ ∈ 1n.

This grading corresponds to a right action of T n on Mn. We let MEλ be the GIT qoutient
of Mn by T n with respect to the character defined by the tuple Eλ; this is the space of
configurations associated to Eλ. The projective coordinate ring naturally associated to MEλ
by this construction is then the direct sum AEλ ⊂ An of the invariant spaces [V (KEλ∗)]g

for K ≥ 0.
All of the techniques we have used to study algebras of conformal blocks and branch-

ing algebras are carried out on graded pieces of these algebras. Because of this, much of
what we say can be extended to nice graded subalgebras; in particular these statements
apply to the projective coordinate ring of the coarse moduli spaces MC, Ep(Eλ,L). In partic-
ular, the correlation map FC, Ep : V†

C, Ep
(G)→ Ân induces a map on projective coordinate

rings:
F
Eλ,L
C, Ep
: RC, Ep(Eλ,L)→ AEλ. (35)

When g = 0, this map is a monomorphism, in which case we can deduce the following.

Proposition 4.5. For g = 0 and L� 0 the map F
Eλ,L
C, Ep

above is an isomorphism.

Proof. The algebra AEλ is finitely generated, say by the spaces [V (NiEλ∗)]g for i =
1, . . . , k. Each of these spaces is filtered by the spaces of conformal blocks V†

C, Ep
(Eλi, L).

It follows that if L is chosen to be sufficiently large, then V†
C, Ep
(Eλi, L) = [V (NiEλ

∗)]g, so

that RC, Ep(Eλ,L) ∼= AEλ. ut

Compare this proposition with [TW03, Remark 4.3]. The algebra RC, Ep(Eλ,L) is the pro-
jective coordinate ring of Mss

C, Ep
(Eλ,L), the coarse moduli space of semistable bundles,

where the semistability condition is determined by the data (Eλ,L). Degenerations asso-
ciated to labeled trees carry over to these algebras as well. This implies that for large L,
a toric degeneration of MEλ gives a toric degeneration of a ring of generalized theta func-
tions. Toric degenerations of AEλ can be constructed from a toric degeneration of An
[Man10a], [Man14].

5. The case g = sl2(C)

The results of this section should be of independent interest for readers interested in the
Z/2Z group-based phylogenetic statistical models [BBKM13], [Buc12], [BW07]. We
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refer the reader to [KM14] for the connection between conformal blocks and other group-
based models.

5.1. Proof of Theorem 1.3

For dominant sl2(C)-weights r1, r2, r3 ∈ Z≥0, the spaces [V (r1)⊗ V (r2)⊗ V (r3)]sl2(C)

are multiplicity free, and are non-trivial when r1 + r2 + r3 ∈ 2Z and |r1 − r3| ≤ r2 ≤
r1 + r3; these are known as the Clebsch–Gordan conditions. Proposition 4.3 implies that
the spaces V†

0,3(r1, r2, r3, L) are also multiplicity free, and that they are non-trivial when
r1 + r2 + r3 ≤ 2L and the Clebsch–Gordan conditions are satisfied; these are known as
the quantum Clebsch–Gordan conditions. The following is a consequence of the fact that
the weights (r1, r2, r3, L) define a multigrading of V†

0,3(SL2(C)).

Proposition 5.1. For G = SL2(C) the algebra V†
0,3(SL2(C)) is isomorphic to the

graded affine semigroup algebra associated to the polytope P3 = conv{(0, 0, 0), (1, 1, 0),
(1, 0, 1), (0, 1, 1)} ⊂ R3, with respect to the lattice determined by ri ∈ Z, r1 + r2 + r3
∈ 2Z.

Now we describe the algebra
⊗

v∈V (0) V
†
0,3(SL2(C)) = C[P V (0)3 ] and its T0-invariant

subalgebra. We have associated a copy of P3 to each vertex v ∈ V (0), and likewise each
entry r1, r2, r3 of a point in this P3 is assigned to an edge incident to v. The isotypical
spaces of the T0-action on C[P V (0)3 ] are each spanned by a lattice point Ew ∈ P V (0)3 . The
character of the T × C∗-action associated to a given edge e ∈ E(0) on a Ew returns the
difference Lv( Ew) − Lu( Ew) of the levels on the end points {u, v} of e, and the difference
wv(e)−wu(e) between the weights assigned to e by the v and u components of Ew. Taking
the torus invariants [C[P3]

⊗|V (0)|
]
T0 therefore picks out exactly those lattice points with

components from the same Minkowski sum L◦P3, which consistently weight the edges
of 0 (see Figure 7). By definition, the invariant subalgebra is the affine semigroup algebra
C[P0]; this proves Theorem 1.3.

r1

W5 W7

W8 W6

r3

r2 W9

W5

W8

W7

W6

W9

W4

W4

W9

W5

W8

W7

W6

r3

r1

r2
W4

Fig. 7. A T0-invariant.
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5.2. P0 is a Newton–Okounkov body

As an application of Propositions 3.1 and 3.3 we interpret the polytope P0 as a Newton–
Okounkov body for the algebra of conformal blocks over the marked curve of type 0. The
results of this subsection will not be needed elsewhere in the paper. For background on
the theory of Newton–Okounkov bodies we refer the reader to the papers of Kaveh and
Khovanskii [KK12] and Lazarsfeld and Mustaţă [LM09]. A Newton–Okounkov body P
of a graded algebra A =

⊕
L≥0AL is a combinatorial invariant associated to a choice

of a rank a + 1 valuation v : A → Za+1 (see [KK12, Definition 2.8]) which refines
the grading on A. Here a + 1 is the Krull dimension of A, and Za+1 is given a lexico-
graphic ordering which prioritizes the grading component. In particular, we assume that
v(f ) = (. . . , deg(f )) ∈ Za+1 for f homogeneous. The image v(A) ⊂ Za+1 is an affine
semigroup (see [KK12, Proposition 2.10]), and its convex hull P̄ ⊂ Ra+1 is a convex
cone. The slice P = P̄ ∩ Ra × {1} ⊂ Ra+1 is called the Newton–Okounkov body of A
associated to v.

Now we fix A = V†
C, Ep
(SL2(C)), where (C, Ep) is the stable curve of type 0. The

following proposition is a direct consequence of Propositions 3.1 and 3.3.

Proposition 5.2. As a vector space, the algebra V†
C, Ep
(SL2(C)) is a direct sum of one-

dimensional spaces Cφw,L, where w is a lattice point in the L-th Minkowski sum L◦P0 .
The product φw,Lφw′,K is a sum of the form φw+w′,L+K +

∑
u<w+w′ Cuφu,L+K , where

the partial ordering u < w+w′ means that u(e) ≤ w(e)+w′(e) for each edge e ∈ E(0)
and there is some edge where this inequality is strict.

By placing a total ordering � on the edge set E(0) we can produce a lexico-
graphic ordering ≺ on the basis members φw,L as follows. We say φw,L ≺ φw′,K
if (w(e1), . . . , w(e|E(0)|), L) is less than (w′(e1), . . . , w(e|E(0)|),K) in the lexico-
graphic ordering, where the set E(0) has been placed in bijection with the integers
{1, . . . , |E(0)|} using �. Using ≺, we define a filtration on V†

C, Ep
(SL2(C)) by the vec-

tor spaces F�w0 =
⊕

w′�w Cφw′ . Proposition 5.2 (along with Propositions 3.1 and 3.3)
implies the following proposition.

Proposition 5.3. The filtration F0 is an algebra filtration of V†
C, Ep
(SL2(C)). The asso-

ciated graded algebra of the filtration F0 is isomorphic to the affine semigroup algebra
C[P0].

As C[P0] is a domain, the filtration F0 can be used to define a valuation v0 (see [Man14,
Proposition 3.2]):

v0(f ) = min{w | f ∈ F�w0 }, f ∈ V†
C, Ep
(SL2(C)). (36)

Proposition 5.4. The Newton–Okounkov body of V†
C, Ep
(SL2(C)) with respect to the val-

uation v0 is the polytope P0.

Proof. The image of v0 is the set of all (w,L) for w a lattice point in L◦P0 . It follows
that the level 1 slice can be identified with the closure of the set of all 1

L
w; this is P0

itself. ut
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Remark 5.5. An identical construction to the one given above shows that the polytope
P0(Er, L) studied in [Man10b] and [Man12] is a Newton–Okounkov body for RC, Ep(Er, L),
where (C, Ep) is the stable curve of type 0.

For each connected, trivalent graph0 with β1(0) = g and n leaves, Theorem 1.3 produces
a tool to study V†

C, Ep
(SL2(C)) for generic (C, Ep). We prove Theorem 1.5 by focusing on

the algebra C[P0g,n ] attached to a particular graph 0g,n (see Figure 8).

...

...

Fig. 8. The graph 0g,n.

5.3. Generators

The following three lemmas show that P0g,n and the second Minkowski sum 2◦P0g,n
suffice to generate C[P0g,n ].

Lemma 5.6. The case (g, n) follows from cases (g, 1) and (0, n+ 1)

Lemma 5.7. The multiplication map π : P0g,1×2L◦Pg,1 → (2L+1)◦P0g,1 is surjective.

Lemma 5.8. The multiplication map π : [2◦P0g,1 ]
×L
→ 2L◦P0g,1 is surjective.

In [BW07] Buczyńska and Wiśniewski show that C[P00,n ] is generated by the lattice
points of P00,n , and that the ideal of relations on these generators has a quadratic, square-
free Gröbner basis. It follows that P0,n is generated by weightings which weight all edges
e ∈ E(00,n) with 0 or 1.

5.4. Proof of Lemma 5.6

We prove Lemma 5.6 with a toric fiber product argument. The weight on any edge of
0g,n coming from a lattice point of L◦P0g,n must be less than or equal to L: this follows
directly from the defining inequalities. The lattice under consideration forces each hor-
izontal edge in 0g,1 to be weighted with an even number, including the leaf edge. We
consider an element of L◦P0g,n (g > 0) as an element of L◦P0g,1 glued to an element of
L◦P00,n+1 (see Figure 9).

Let ω ∈ L◦P0g,n , and let ωg ∈ L◦P0g,1 and ω0
∈ L◦P00,n+1 be the restrictions of ω

to the copies of 0g,1 and 00,n+1 in 0g,n respectively. By the theorem of Buczyńska and
Wiśniewski, ω0 decomposes into L weightings of 00,n+1:

ω0
= η1 + · · · + ηL. (37)



The algebra of conformal blocks 2709

1 1

1

0 2 2

1

1
0

1

1

1

2 2

Fig. 9

Now suppose that the generation statement of Theorem 1.1 holds for P0g,1 ; then ωg

likewise decomposes into elements of degree 1 and 2:

ωg = [α1 + · · · + αk] + [β1 + · · · + βm]. (38)

Here 2m+k = L. Due to the restrictions imposed by the lattice, the αi all have weight 0 on
the edge shared by 0g,1 and 00,n+1. We let η1, . . . , ηL′ and β1, . . . , βm′ be the elements
with a non-zero weight on this edge in P00,n+1 and P0g,1 respectively. We must have
L′ = 2m′, so we may pair up the elements η1+ η2, . . . to make m′ elements in 2◦P00,n+1 ,
and we can glue these to the βi along the shared edge. What remains must be exactly k′

η′is and k′ α′is, both with 0 along the shared edge, which can then likewise be glued along
the edge in any order.

5.5. Proof of Lemma 5.7

We prove Lemma 5.7 with an analysis of weightings on the component graphs in Fig-
ure 10. We define the graded semigroups B1 and B2 accordingly; they are composed of
those weightings on the pictured graphs which are even on the leaf edges. We let o1 and
o2 be elements which weight the edges in a loop with 1 and all other edges with 0, in B1
and B2 respectively. The following proposition is the crux of Lemmas 5.7 and 5.8.

2x 2z

y1

y2

P

2N

N

P

(0, 0)

(L,L)

(0, 2L)

Fig. 10. Polytopes of weightings from B1(2L) and B2(2).

Proposition 5.9. The semigroups B1 and B2 are generated by elements of degrees 1
and 2 (these are the elements appearing in Figures 11 and 12 respectively).
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L = 2 L = 1 L = 1

Fig. 11

L = 2

L = 1

Fig. 12

Proof. AsB1 andB2 are both the semigroup of lattice points in a convex cone, we directly
verify that the elements of degrees 1 and 2 generate by checking that they constitute a
Hilbert basis using the software package Macaulay 2 [GS] or 4ti2 [tt]. This software uses
the project-and-lift algorithm [Hem02]. ut

It follows that all generators weight the leaf edges of either graph with either 0 or 2. We
prove Lemma 5.7 by pulling all copies of o1 and o2 off the loops in 0g,1. If a loop has a
vertex with incident entries adding to 2L + 1 we can extract an o1 or o2 from that loop,
otherwise we leave it alone. The resulting collection of loops is a member of P0g,n , and
the remainder is an element of 2L◦P0g,n (see Figure 13).

1 1

1

0

0

0 0 0

2 3

1

2

2

2 4 4

+
3 4

2

2

2

2 4 4

1

4

5

Fig. 13
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5.6. Proof of Lemma 5.8

A weighting of 0g,1 automatically induces a weighting of 0g−1,1 and an element of B2.
Now we are in a position to use an argument similar to the proof of Lemma 5.6. The
theorem is true for C[P01,1 ] = C[B1]; suppose that it holds for 0g−1,1. For an element
ω ∈ 2L◦P0g,1 we consider the restrictions ω1, ω2 to 0g−1,1 and B2 respectively. By
induction,ω1 andω2 can be factored intoL elements of 2◦P0g−1,1 andB2(2), respectively:

ω1 = α1 + · · · + αL, ω2 = β1 + · · · + βL. (39)

The number of αi which weight the edge shared by 0g−1,1 and B2 with a 2 must
equal the number of βi which also weight this edge 2. Elements which weight this edge
the same can therefore be matched up; this proves Lemma 5.8.

5.7. Relations

We will describe relations for the building block semigroups B1, B2; then we show that
these relation results are stable as these building blocks are glued together. Analysis of
the building block semigroups gives the (g, 1) case, which we combine with results in
[BW07] to handle the (g, n) case.

The semigroup algebra C[B1] is generated by two elements of level 1 and an element
of level 2, and no relations hold between these elements. The generators of the semigroup
algebra C[B2] are given in Figure 11; a Markov basis for the toric ideal vanishing on
these generators can be computed using the software package 4ti2 [tt]. This computation
shows that the relations for C[B2] are generated by those of levels 2, 3, and 4; we omit
the details.

5.8. Relations for C[P0g,1 ]

We describe relations for C[P0g,1 ] by building relations for this semigroup out of those
of B1 and B2. The theorem holds for B1 because this semigroup has unique factorization;
this is the base case of our induction. To treat P0g,1 , we consider it as a toric fiber product
of P0g−1,1 with B2 over the semigroup of non-negative integer points (n, L) with 2n ≤ L.
This semigroup is generated by (0, 1) and (1, 2), and also has unique factorization. The
maps from P0g−1,1 and B2 to this semigroup are computed by sending a lattice point to
the pair given by half the weight on the edge shared by the supporting graphs of these
semigroups, and the level of the weighting. Given an element ω ∈ P0g,1 and two factor-
izations, we first collect level 1 terms into level 2 terms; this gives factorizations into only
level 2 elements in the even level case, and level 2 elements except one level 1 element in
the odd case. Note that in doing so, we have used at most level 2 relations.

Now we consider the restriction of this relation to P0g−1,1 . By induction, there is a
way to transform

∑
β∗i |g−1,1 into

∑
α∗j |g−1,1 using degree 2, 3, 4 relations. We claim

that each of these relations can be lifted to a relation in P0g,1 . Any such relation must
preserve the list of values along the shared edge; this means that we can “unglue” the B2
side of the weightings involved in the relation, perform the relation on the (g− 1, 1) side,
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and glue the B2 weightings back on in any way consistent with their values along the
shared edge to obtain a relation on P0g,1 (see Figure 14).

This proves that we can transform
∑
β∗i to

∑
α∗j “along P0g−1,1 .” But we can now ap-

ply the same argument to perform this transformation over B2, using the relations above.
This completes the proof of the relation statement in Theorem 1.5 for (g, 1).

5.9. Relations for C[P0g,n ]

The same argument used in the case P0g,1 to extend relations from P0g−1,1 to P0g,1 can be
used to show that any relation on P0g,1 can be extended to a relation on P0g,n . From this
it follows that given two normalized ways to represent an element ω =

∑
β∗i =

∑
α∗j ,

one can be transformed to the other “over P0g,1” with relations of degree 2, 3, 4. Now the
same argument can be applied over the edge which separates P00,n+1 from P0g,1 using the
degree 2 P00,n+1 relations discovered in [BW07]. Our analysis takes care of Theorem 1.3
for n > 0; the n = 0 case is handled by noting that C[P0g,0 ] ⊂ C[P0g,1 ] is spanned by
the set of elements with 0 weighting the leaf, and all of our techniques specialize to this
case without alteration.

5.10. Best possible generation of C[P0]

We sketch how our quadratic generation result is in a certain sense best possible for the
semigroup algebras C[P0] when g > 0. We say a trivalent graph 0′ is a trivalent minor
of a trivalent graph 0 if 0′ can be obtained from a subgraph of 0 by replacing pairs of
edges joined at a bivalent vertex with a single edge, and any leaf of 0′ is also a leaf of 0.

Proposition 5.10. If 0 contains a trivalent minor isomorphic to one of the graphs de-
picted in Figure 15, then C[P0] has indecomposable elements of degree ≥ 2.
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Fig. 15. Trivalent minors with indecomposable weightings

This proposition holds for the graphs depicted in Figure 15, and any indecomposable
element on a trivalent minor of a graph 0 gives an indecomposable on 0 by extending
this element by 0 to the rest of 0. Notice that any trivalent graph with g, n ≥ 1 contains
the graph on the right in Figure 15 as a trivalent minor; for this reason we focus on 0
with n = 0. For g = 2, 3, 4, it can be shown that the graphs depicted in Figure 16 do
not contain either of the graphs in Figure 15, and that these are the only trivalent graphs
with this property. Any trivalent graph 0 with g ≥ 5 which does not have either graph in
Figure 15 as a trivalent minor must have the graph on the right in Figure 16 as a g = 4
minor. Any extension of this graph to a trivalent g = 5 graph can then be checked to have
the graph on the left in Figure 15 as a trivalent minor. This shows our results are best
possible, excluding the cases n = 0, g = 2, 3, 4.

Fig. 16
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