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Cones of traces arising from AF C �-algebras

Mark Moodie and Leonel Robert

Abstract. We characterize the topological non-cancellative cones that can be expressed as pro-
jective limits of finite powers of Œ0;1�. For metrizable cones, these are also the cones of lower
semicontinuous extended-valued traces on approximately finite-dimensional (AF) C�-algebras. Our
main result may be regarded as a generalization of the fact that any Choquet simplex is a projec-
tive limit of finite-dimensional simplices. To obtain our main result, we first establish a duality
between certain non-cancellative topological cones and Cuntz semigroups with real multiplication.
This duality extends the duality between compact convex sets and complete order unit vector spaces
to a non-cancellative setting.

1. Introduction

By a theorem of Lazar and Lindenstrauss, any metrizable Choquet simplex can be ex-
pressed as a projective limit of finite-dimensional simplices (see [11,19]). This has impli-
cations for C �-algebras. Specifically, given a metrizable Choquet simplex K, there exists
a simple, unital, approximately finite-dimensional (AF) C �-algebra whose space of tracial
states is isomorphic to K [5, 11]. In the investigations on the structure of a C �-algebra,
another kind of trace is also of interest, namely, the lower semicontinuous traces with val-
ues in Œ0;1�. These traces form a non-cancellative topological cone. (By cone we under-
stand a commutative monoid endowed with a scalar multiplication by positive scalars.)
Our goal here is to characterize through intrinsic properties the topological cones arising
as the lower semicontinuous Œ0;1�-valued traces on an AF C �-algebra. These cones are
also the sequential projective limits of cones of the form Œ0;1�n, with n 2 N, and also,
the cones arising as the Œ0;1�-valued monoid morphisms on the positive elements of a
countable dimension group.

Let A be C �-algebra. Denote its cone of positive elements by AC. A map � WAC !
Œ0;1� is called a trace if it is linear (additive, homogeneous, mapping 0 to 0) and satisfies
that �.x�x/D �.xx�/ for all x 2 A. We are interested in the lower semicontinuous traces.
Let T .A/ denote the cone of Œ0;1�-valued lower semicontinuous traces on AC. By the
results of [13], T .A/ is a complete lattice when endowed with the algebraic order, and
addition in T .A/ is distributive with respect to the lattice operations. Further, one can
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endow T .A/ with a topology that is locally convex, compact and Hausdorff. We call an
abstract topological cone with these properties an extended Choquet cone (see Section 2).

By an AF C �-algebra we understand a sequential inductive limit of finite-dimensional
C �-algebras. Not every extended Choquet cone arises as the cone of lower semicontinu-
ous traces on an AF C �-algebra. The requisite additional properties are sorted out in the
theorem below.

An element w in a cone is called idempotent if 2w D w. Given a cone C , we denote
by Idem.C / the set of idempotent elements of C .

Theorem 1.1. Let C be an extended Choquet cone (see Definition 2.1). Consider the
following propositions:

(i) C is isomorphic to T .A/ for some AF C �-algebra A.

(ii) C is isomorphic to Hom.GC; Œ0;1�/ for some dimension group .G;GC/. (Here
Hom.GC; Œ0;1�/ denotes the set of monoid morphisms from GC to Œ0;1�.)

(iii) C is a projective limit of cones of the form Œ0;1�n, n 2 N.

(iv) C has the following properties:

(a) Idem.C / is an algebraic lattice under the opposite algebraic order,

(b) for each w 2 Idem.C /, the set ¹x 2 C W x � wº is connected.

Then (i))(ii),(iii),(iv). If C is additionally assumed to be metrizable, then the pro-
jective limit in (iii) may be chosen over a countable index set, the group G in (i) may be
chosen countable, and in this case (ii))(i).

We refer to property (a) in part (iv) as “having an abundance of co-compact idempo-
tents”. The fact that the primitive spectrum of an AF C �-algebra has a basis of compact
open sets makes this condition necessary. We call property (b) in part (iv) “strong con-
nectedness”. The existence of a non-trivial trace on every simple ideal-quotient of an AF
C �-algebra makes this condition necessary. In general, if a C �-algebra A is such that its
primitive spectrum has a basis of compact open sets, and every simple quotient I=J , where
J ¨ I are ideals of A, has a non-zero densely finite trace, then T .A/ has an abundance of
co-compact idempotents and is strongly connected, i.e., properties (a) and (b) above hold.
For example, if A has real rank zero, stable rank one, and is exact, then these conditions
are met. If A is also separable—in which case T .A/ is metrizable—then Theorem 1.1
asserts the existence of an AF C �-algebra B such that T .A/ Š T .B/.

The crucial implication in Theorem 1.1 is (iv) implies (iii). A reasonable approach
to proving it is to first prove that (iv) implies (ii) by directly constructing a dimension
group G from the cone C , very much in the spirit of the proof of the Lazar–Lindenstrauss
theorem obtained by Effros, Handelman, and Shen in [11] (which, unlike the proof in [19],
also deals with non-metrizable Choquet simplices). If the cone C is assumed to be finitely
generated, then we indeed obtain a direct construction of an ordered vector space with the
Riesz property .V; V C/ such that Hom.V C; Œ0;1�/ is isomorphic to C . This is done in
the last section of the paper. In the general case, however, such an approach has eluded us.
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To prove Theorem 1.1 we first establish a duality between extended Choquet cones
with an abundance of co-compact idempotents and certain abstract Cuntz semigroups
called Cu-cones (see Definition 5.1). Briefly stated, this duality works as follows:

C 7! Lsc� .C / and S 7! F.S/:

That is, to an extended Choquet cone C with an abundance of co-compact idempotents
one assigns the Cu-cone Lsc� .C / of lower semicontinuous linear functions f WC ! Œ0;1�

with “� -compact support”. In the other direction, to a Cu-cone S with an abundance of
compact ideals one assigns the cone of functionals F.S/; see Section 5 and Theorem 5.3.
In the context of this duality, strong connectedness in C translates into the property of
weak cancellation in Lsc� .C /. We then use this arrow-reversing duality to turn the ques-
tion of finding a projective limit representation for a cone into one of finding an inductive
limit representation for a Cu-cone. To achieve the latter, we follow the strategy of proof
of the Effros–Handelman–Shen theorem, adapted to the category at hand. The crucial step
in this strategy is obtaining a “Triangle Lemma” (Lemma 6.2 and Theorem 6.3). A tech-
nical complication for proving this lemma in our set-up is the non-cancellative nature of
Cu-cones. This is, however, adequately compensated by the above mentioned property of
“weak cancellation” (dual to strong connectedness).

A problem closely related to Theorem 1.1 asks for a characterization of the lattices
arising as (closed two-sided) ideal lattices of AFC �-algebras. This problem was solved by
Bratteli and Elliott in [7], and independently by Bergman in unpublished work: Any dis-
tributive algebraic lattice with a countable set of compact elements is the lattice of closed
two-sided ideals of an AF C �-algebra. Alternatively stated, in the setting of dimension
groups, any distributive algebraic lattice with a countable set of compact elements arises
as the lattice of ideals of a countable dimension group. For a thorough discussion of this
result see [16]. It is worth noting that the requirement for the set of compact elements
to be countable is necessary, as shown by examples from Růžička and Wehrung [24, 28].
These examples show that not every distributive algebraic lattice can be realized as the
lattice of ideals of a dimension group. Now, the lattice of ideals of a dimension G is in
order-reversing bijection with the lattice of idempotents of the cone Hom.GC; Œ0;1�/
via the assignment I 7! �I , where �I WGC ! ¹0;1º is zero on IC and 1 otherwise.
Thus, the realization of a cone C in the form Hom.GC; Œ0;1�/ entails the realization of
.Idem.C /;�op/ as the ideal lattice of G. This means that the distributive algebraic lattices
in the examples by Růžička and Wehrung cannot be realized as the lattice of idempotents
of a cone C satisfying any of the equivalent conditions (ii), (iii), or (iv) of Theorem 1.1.

This paper is organized as follows: In Section 2 we define extended Choquet cones and
prove a number of background results on their structure. In Section 3 we go over three
constructions—starting from a C �-algebra, a dimension group, and a Cu-semigroup—
yielding extended Choquet cones that are strongly connected and have an abundance
of co-compact idempotents. Sections 4 and 5 delve into spaces of linear functions on
extended Choquet cones with an abundance of co-compact idempotents. In Theorem 5.3
we establish the above mentioned duality assigning to a cone C the Cu-cone Lsc� .C /,
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and conversely to a Cu-cone S its cone of functionals F.S/. In Section 6 we prove
Theorem 1.1. In Section 7 we assume that the cone C is finitely generated. Under this
assumption, we give a direct construction of an ordered vector space with the Riesz
property .V; V C/ such that C Š Hom.V C; Œ0;1�/. The vector space V is described as
R-valued functions on a certain spectrum of the cone C .

2. Extended Choquet cones

2.1. Algebraically ordered compact cones

We call cone a commutative monoid .C;C/ endowed with a scalar multiplication by
positive real numbers .0;1/ � C ! C such that

(i) the map .t; x/ 7! tx is additive on both variables,

(ii) s.tx/ D .st/x for all s; t 2 .0;1/ and x 2 C ,

(iii) 1 � x D x for all x 2 C .

We do not assume that the addition operation on C is cancellative. In fact, the primary
example of the cones that we investigate below is Œ0;1� endowed with the obvious oper-
ations.

The algebraic pre-order on C is defined as follows: x � y if there exists z 2 C such
that x C z D y. We say that C is algebraically ordered if this pre-order is an order.

We call C a topological cone if it is endowed with a topology for which the operations
of addition and multiplication by positive scalars are jointly continuous.

Definition 2.1. An algebraically ordered topological cone C is called an extended Cho-
quet cone if

(i) C is a lattice under the algebraic order, and the addition operation is distributive
over both ^ and _:

x C .y ^ z/ D .x C y/ ^ .x C z/;

x C .y _ z/ D .x C y/ _ .x C z/;

for all x; y; z 2 C ,

(ii) the topology on C is compact, Hausdorff, and locally convex, i.e., it has a basis
of open convex sets.

Remark 2.2. It is a standard result that in a compact algebraically ordered monoid both
upward and downward directed sets converge to their supremum and infimum, respec-
tively ([2, Proposition 3.1], [14, Proposition VI-1.3, p. 441]). We shall make frequent use
of this fact applied to extended Choquet cones. It readily follows from this and the exis-
tence of finite suprema and infima that extended Choquet cones are complete lattices.
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Remark 2.3. ByWehrung’s [26,Theorem 3.11], the underlying positively ordered monoid
of an extended Choquet cone is an injective object in the category of positively ordered
monoids. Hence, every extended Choquet cone is a distributive lattice under _ and ^, by
[26, Proposition 2.19 and Lemma 3.6] (see also [13, Proposition 3.4]). Note, however, that
we assume additional structure on an extended Choquet cone, namely, its topology.

Example 2.4. The set Œ0;1� is an extended Choquet cone when endowed with the stan-
dard operations of addition and scalar multiplication and the standard topology. More
generally, the cartesian powers of Œ0;1�, endowed with the product topology and coordi-
natewise operations, are extended Choquet cones.

Example 2.5. Let .L;�/ be a complete lattice such that .L;�op/ (L under the oppo-
site order) is a distributive continuous lattice. Endow L with the Lawson topology on
.L;�op/. Define on L addition and scalar multiplication operations by x C y WD x _ y
for all x; y 2 L, and ˛x D x for all x 2 L and ˛ 2 .0;1/. We obtain in this way an
extended Choquet cone. Indeed, since the algebraic order on the cone L is precisely the
order onL (addition agrees with the join operation),L is a complete lattice under the alge-
braic order. The distributivity of addition over the lattice operations follows from the fact
that L is distributive. The Lawson topology is compact and Hausdorff. Continuity of addi-
tion with respect to this topology follows from the fact that continuous lattices are meet
continuous. Local convexity of the Lawson topology is also easily verified (details left
to the reader). The reader is referred to [14] for background on the theory of continuous
lattices.

Let C and D be extended Choquet cones. A map �WC ! D is a morphism in the
extended Choquet cones category if � is linear (additive, homogeneous with respect to
scalar multiplication, and mapping 0 to 0) and continuous.

Theorem 2.6. The category of extended Choquet cones has projective limits.

Proof. Let ¹Ci W i 2 I º, ¹'i;j WCi ! Cj W i; j 2 I with j � iº, be a projective system of
extended Choquet cones, where I is an upward directed set. Define

C D

²
.xi /i 2

Y
i2I

Ci W xj D 'i;j .xi / for all i; j 2 I with j � i
³
:

Endow the product
Q
i2I Ci with coordinatewise operations, coordinatewise order, and

with the product topology; endow C with the topological cone structure induced by inclu-
sion. Let �i W C ! Ci , i 2 I , denote the projection maps. It follows from well known
arguments that ¹C; �i jC W i 2 I º is the projective limit of the system ¹Ci ; �i;j W i; j 2 I º
as compact Hausdorff topological cones (cf. [10, Theorem 13]). Since for each i the topol-
ogy of Ci has a basis of open convex sets, the product topology on

Q
i Ci also has a basis

of open convex sets. Further, since C is a convex subset of
Q
i Ci , the induced topology

on C is locally convex as well.
Let us now prove that C is a lattice. The proof runs along the same lines as the one in

[10, Theorem 13] for projective limits of Choquet simplices. We show that C has all finite



M. Moodie and L. Robert 1284

suprema; the argument for finite infima is similar. Let x D .xi /i and y D .yi /i be in C .
Their coordinatewise supremum exists in

Q
i Ci , but does not necessarily belong to C .

For each k 2 I define z.k/ 2
Q
i Ci by

.z.k//i D

´
�k;i .xk _ yk/ if i � k;

xi _ yi otherwise:

If k0 � k, then
�k0;k.xk0 _ yk0/ � �k0;k.xk0/ D xk ;

and similarly �k0;k.xk0 _ yk0/ � yk , whence �k0;k.xk0 _ yk0/ � xk _ yk . It follows that

.z.k
0//i D �k0;i .xk0 _ yk0/ � �k;i .xk _ yk/ D .z

.k//i ;

for i � k, while
.z.k

0//i � xi _ yi D .z
.k//i

for i — k. Thus, .z.k//k2I is an upward directed net. We shall verify that z D supk z
.k/

is the supremum of ¹x; yº in C . It is readily shown that z belongs to C . Observe also
that z � z.k/ � x; y for all k. Suppose that w D .wi /i 2 C is such that w � x; y. Then
wi � xi _ yi for all i , and further

wi D 'k;i .wk/ � 'k;i .xk _ yk/:

Hence, w � z.k/ for all k, and so w � z. This proves that z is in fact the supremum of
¹x; yº in C .

Let us prove distributivity of addition over _. Let x; y; v 2 C . Fix an index i . Then�
.x C v/ _ .y C v/

�
i
D sup

k

�k;i
�
.xk C vk/ _ .yk C vk/

�
D sup

k

�k;i
�
.xk _ yk/C vk

�
D sup

k

�k;i .xk _ yk/C vi

D .x _ y C v/i ;

where we have used the distributivity of addition over _ on each coordinate and the
construction of joins in C obtained above. Thus, .x C v/ _ .y C v/ D .x _ y/C v. Dis-
tributivity over ^ is handled similarly.

2.2. Lattice of idempotents

Throughout this subsection C denotes an extended Choquet cone.
An element w 2 C is called idempotent if 2w D w. It follows, using that C is alge-

braically ordered, that tw D w for all t 2 .0;1�. We denote the set of idempotents of C
by Idem.C /. The set Idem.C / is a sub-lattice of C : if w1 and w2 are idempotents then

2.w1 _ w2/ D .2w1 _ 2w2/ D w1 _ w2;
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where we have used that multiplication by 2 is an order isomorphism. Hence, w1 _ w2 is
an idempotent. Similarly, w1 ^ w2 is shown to be an idempotent. Moreover, w1 _ w2 D
w1 C w2, a fact easily established.

In the lattice Idem.C /, we use the symbol� to denote the way-below relation under
the opposite order. That is,w1�w2 if whenever infi vi �w2 for a decreasing net .vi /i in
Idem.C /, we have vi0 �w1 for some i0. We callw 2 Idem.C / a co-compact idempotent if
w�w, i.e.,w is a compact element of Idem.C / under the opposite order. More explicitly,
w is co-compact if whenever infi vi � w for a decreasing net .vi /i in Idem.C /, we have
vi0 � w for some i0.

A complete lattice is called algebraic if each of its elements is a supremum of compact
elements [14, Definition I-4.2].

Definition 2.7. We say that an extended Choquet coneC has an abundance of co-compact
idempotents if .Idem.C /;�op/ is an algebraic lattice, i.e., every idempotent in C is an
infimum of co-compact idempotents.

Let x 2 C . Consider the set ¹z 2 C W x C z D xº. This set is closed under addition
and also closed in the topology of C . It follows that it has a maximum element ".x/. Since
2 � ".x/ is also absorbed additively by x, we have ".x/D 2".x/, i.e., ".x/ is an idempotent.
We call ".x/ the support idempotent of x.

Lemma 2.8 (Cf. [2, Lemma 3.2]). Let x; y; z 2 C .

(i) ".x/ D infn 1nx.

(ii) If x C z � y C z then x C ".z/ � y C ".z/.

Proof. (i) Observe that w WD limn
1
n
x exists, since the infimum of a decreasing sequence

is also its limit. It is also clear that 2w D w, and that x C w D x. Let z 2 C be such that
x C z D x. Then x C nz D x, i.e., 1

n
x C z D 1

n
x, for all n 2 N. Letting n!1, we get

that w C z D w, and in particular, w � z. Thus, w is the largest element absorbed by x,
i.e., w D ".x/.

(ii) This is [2, Lemma 3.2]. Here is the argument: We deduce, by induction, that nx C
z � ny C z for all n 2 N. Hence, x C 1

n
z � y C 1

n
z. Letting n!1 and using (i), we

get x C ".z/ � y C ".z/.

Lemma 2.9. LetK �C be closed and convex. Then the map x 7! ".x/ attains a maximum
on K.

Proof. LetW D ¹".x/ W x 2Kº. Let x1; x2 2K, with ".x1/D w1 and ".x2/D w2. Since
K is convex, .x1 C x2/=2 2 K. Since

"
�x1 C x2

2

�
D lim

n

�
1

2n
x1 C

1

2n
x2

�
D ".x1/C ".x2/;

the setW is closed under addition. For eachw 2W , let us choose xw 2K with ".xw/Dw.
By compactness of K, the net .xw/w2W has a convergent subnet. Say xh.�/ ! x 2 K,
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where hWƒ!W is increasing and with cofinal range. For each �we have xh.�0/C h.�/D
xh.�0/ for all �0 � �. Passing to the limit in �0 we get x C h.�/ D x. Since h.�/ ranges
through a cofinal set in W , x C w D x for all w 2 W . Thus, ".�/ attains its maximum
on W at x.

Lemma 2.10. For each idempotent w 2 C the set ¹x 2 C W w � ".x/º is open. (Recall
that� is the way below relation in the lattice .Idem.C /;�op/.)

Proof. Let x 2 C be such that w � ".x/. By Lemma 2.9, for each closed convex neigh-
borhood K of x, there exists xK 2 K at which ".�/ attains its maximum. By the local
convexity of C , the system of closed convex neighborhoods of x is downward directed.
It follows that .".xK//K is downward directed. Moreover, xK ! x, since the topology
is Hausdorff. We claim that ".x/ D infK ".xK/, where K ranges through all the closed
convex neighborhoods of x. Proof: Set y D infK ".xK/. We have y � ".xK/ � xK

n
for all

K and n 2 N. Passing to the limit, first in K and then in n, we get that y � ".x/. On the
other hand, ".x/ � ".xK/ for all K (since x 2 K and " attains its maximum on K at xK).
Thus, ".x/ � y, proving our claim.

We have w � ".x/ D infK ".xK/. Hence, there is K such that w � ".xK/. So, there
is a neighborhood of x all whose members belong to ¹z 2 C W w� ".z/º. This shows that
¹z 2 C W w � ".z/º is open.

2.3. Cancellative subcones

Fix an idempotent w 2 C . Let

Cw D
®
x 2 C W ".x/ D w

¯
:

Then Cw is closed under sums, scalar multiplication by positive scalars, finite infima,
and finite suprema. By Lemma 2.8 (ii), Cw is also cancellative: x C z � y C z implies
that x � y for all x; y; z 2 Cw . It follows that Cw embeds in a vector space; namely, the
abelian group of formal differences x � y, with x;y 2 Cw endowed with the unique scalar
multiplication extending the scalar multiplication on Cw . Let Vw denote the vector space
of differences x � y, with x; y 2 Cw . Let �WCw � Cw ! Vw be defined by �.x; y/ D
x � y. We endow Cw with the topology that it receives as a subset of C . We endow Vw
with the quotient topology coming from the map �.

Theorem 2.11. Let w 2 Idem.C / be a co-compact idempotent. Then Vw is a locally
convex topological vector space whose topology restricted to Cw agrees with the topology
on Cw . Moreover, either Cw D ¹wº or Cw has a compact base.

Note: A subsetB of a cone T is called a base if for each nonzero x 2 T the intersection
of .0;1/ � x with B is a singleton set.

Proof. Let us first show that the topology on Cw is locally compact. Since w is co-
compact, the set ¹x 2 C W w � ".x/º is open by Lemma 2.10. We then have that Cw
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is the intersection of the closed set ¹x 2 C W w � xº and the open set ¹x W w � ".x/º.
Hence, Cw is locally compact in the induced topology.

We can now apply [18, Theorem 5.3], which asserts that if Cw is a locally compact
cancellative cone, then indeed Vw is a locally convex topological vector space whose
topology extends that of Cw . Finally, by [1, Theorem II.2.6], a locally compact nontrivial
cone in a locally convex topological space has a compact base.

2.4. Strong connectedness

Let v;w 2 Idem.C / be such that v �w. Let us say that v is co-compact relative tow if v is
a co-compact idempotent in the extended Choquet cone ¹x 2 C W x � wº. Put differently,
if a downward directed net .vi /i in C satisfies that infi vi � v, then vi ^w � v for some i .

Theorem 2.12. Let C be an extended Choquet cone. The following are equivalent:

(i) For any w1;w2 2 Idem.C / such that w1 < w2 and w1 is co-compact relative to
w2, there exists x 2 C such that w1 � x � w2 and x is not an idempotent.

(ii) The set ¹x 2 C W x � wº is connected for all w 2 Idem.C /.

Moreover, if the above hold then the element x in (i) may always be chosen such that
".x/ D w1.

Proof. We show that the negations of (i) and (ii) are equivalent.
Not (ii)) not (i): Suppose that ¹x 2 C W x � wº is disconnected for some idempo-

tent w. Working in the cone ¹x 2 C W x � wº as the starting extended Choquet cone, we
may assume without loss of generality that w D 1 (the largest element of C ). Let U
and V be disjoint open sets whose union is C . Assume that1 … U . Observe that totally
ordered subsets of U have an upper bound: if .xi /i is a chain then xi ! supi xi , and since
U is closed, sup xi 2 U . By Zorn’s lemma, U contains a maximal element v. Since 2v is
connected to v by the path t 7! tv with t 2 Œ1; 2�, we must have that 2v D v, i.e., v is an
idempotent. Let us show that v is co-compact: Let .vi /i be a decreasing net of idempo-
tents with infimum v. Suppose, for the sake of contradiction, that vi ¤ v for all i . Then
vi 2 U

c for all i . Since U c is closed and vi ! v, v 2 U c , which is a contradiction. Thus,
v is co-compact. Let x 2 C be such that v � x �1. If ".x/ D1, then x D1. Suppose
that ".x/ D v. Since x is connected to v by the path t 7! tx, t 2 .0; 1�, we have x 2 U .
But v is maximal in U . Thus, x D v. This proves not (i).

Not (i)) not (ii): Suppose that there existw1;w2 2 Idem.C / such thatw1 <w2,w1 is
relatively co-compact inw2, and there is no non-idempotent x 2C such thatw1 � x �w2.
By Zorn’s lemma, and sincew2�w1, we can choosew2 minimal among the idempotents
such that w1 < w2. Then

w1 � x � w2) x 2 ¹w1; w2º for all x 2 C: (2.1)

Let us show that ¹x 2 C W x � w2º is disconnected. Let

U1 D ¹x 2 C W x � w1º and U2 D ¹x 2 C W x — w1º:
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These sets are clearly disjoint, non-empty (w1 2 U1 and w2 2 U2), and cover ¹x 2 C W
x � w2º. It is also clear that U2 is open in C . Let us consider U1. By (2.1), x 2 U1 if
and only if ".x/ � w1 and x � w2. Further, since w1 is a co-compact idempotent in the
extended Choquet cone ¹z 2 C W z � w2º, the set U1 may be described as all x in the cone
¹z 2 C W z � w2º such that w1 � ".x/, where the relation� is taken in the idempotent
lattice of the cone ¹z 2C W z�w2º. Thus, by Lemma 2.10 applied in the extended Choquet
cone ¹z 2 C W z � w2º, the set U1 is (relatively) open in ¹x 2 C W x � w2º.

Finally, let us argue that x in (i) may be chosen such that ".x/ D w1: Starting from
w1 � w2, with w1 relatively co-compact in w2, choose w02 minimal element in ¹w 2
Idem.C / W w1 < w � w2º, which exists by Zorn’s lemma. Let x 2 C be a non-idempotent
such that w1 � x � w02. Then ".x/ 2 ¹w1; w02º, but we cannot have ".x/ D w02, since this
would entail that x D w02. So ".x/ D w1.

Definition 2.13. Let C be an extended Choquet simplex. Let us say that C is strongly
connected if it satisfies either one of the equivalent properties listed in Theorem 2.12.

Proposition 2.14. IfC is a projective limit of extended Choquet cones of the form Œ0;1�n,
then C is strongly connected and has an abundance of co-compact idempotents.

Proof. Suppose that
C D lim

 �
¹Ci ; �i;j W i; j 2 I º;

where Ci Š Œ0;1�ni for all i 2 I . A projective limit of continua (compact Hausdorff con-
nected spaces) is again a continuum. Since each Ci is a continuum, so is C . In particular,
C is connected. If w 2 Idem.C /, with w D .wi /i 2

Q
i Ci , then

¹x 2 C W x � wº D lim
 �
¹x 2 Ci W x � wiº:

Thus, the same argument shows that ¹x 2 C W x � wº is connected.
The lattice of idempotent elements of Ci is finite, hence algebraic under the oppo-

site order, for all i . Further, by additivity and continuity, the maps �i;j preserve directed
infima and arbitrary suprema (i.e., directed suprema and arbitrary infima under the oppo-
site order). That Idem.C / is algebraic under the opposite order can then be deduced from
the fact that a projective limit of algebraic lattices is again an algebraic lattice, where
the morphisms preserve directed suprema and arbitrary infima. Let us give a direct argu-
ment instead: Let w 2 Idem.C /, with w D .wi /i 2

Q
i Ci . For each index k 2 I define

w.k/ 2
Q
i Ci as the unique element in C such that

.w.k//i D sup
®
z 2 Ci W �i;k.z/ D wk

¯
for all i � k:

It is not hard to show that .w.k//k2I is a decreasing net in Idem.C / with infimum w.
Moreover, from the co-compactness of wk 2 Idem.Ck/ we deduce that w.k/ 2 Idem.C /
is co-compact for all k 2 I . Thus, Idem.C / is an algebraic lattice under the opposite
order.
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3. Cones of traces and functionals

Here we review various constructions giving rise to extended Choquet cones.

3.1. Traces on a C �-algebra

LetA be a C �-algebra. LetAC denote the cone of positive elements ofA. A map � WAC!
Œ0;1� is called a trace if it maps 0 to 0, it is additive, homogeneous with respect to scalar
multiplication, and satisfies �.x�x/D �.xx�/ for all x 2 A. The set of all lower semicon-
tinuous traces on A is denoted by T .A/. It is endowed with the pointwise operations of
addition and scalar multiplication. T .A/ is endowed with the topology with the following
sub-basis of open sets:

Va;r D
®
� 2 T .A/ W �.a/ > r

¯
; a 2 AC; r 2 RC;

Wa;r D
®
� 2 T .A/ W �

�
.a � "/C

�
< r for some " > 0

¯
; a 2 AC; r 2 RC:

A net .�i /i in T .A/ converges to � 2 T .A/ if

lim sup �i
�
.a � "/C

�
� �.a/ � lim inf �i .a/

for all a 2 AC and " > 0 (see [13, Section 3.2] and [17, Section 4.2]). The topology
on T .A/ is clearly locally convex. By [13, Theorems 3.3 and 3.7], T .A/ is an extended
Choquet cone (see also [17, Corollary 4.3]).

Proposition 3.1. Let A be a C �-algebra.

(i) If the primitive spectrum of A has a basis of compact open sets, then T .A/ has
an abundance of co-compact idempotents. In particular, this holds if A has real
rank zero.

(ii) Suppose that for all J ¨ I � A, closed two-sided ideals of A such that I=J
has compact primitive spectrum, there exists a non-zero lower semicontinuous
densely finite trace on I=J . Then T .A/ is strongly connected. In particular, this
holds if A has stable rank one and is exact.

Proof. (i) The lattice of closed two-sided ideals of A is in order-reversing bijection with
the lattice of idempotents of T .A/ via the assignment I 7! �I , where

�I .a/ WD

´
0 for a 2 IC;

1 otherwise.

On the other hand, the lattice of closed two-sided ideals of A is isomorphic to the lattice
of open sets of the primitive spectrum of A [21, Theorem 4.1.3]. Thus, the lattice of idem-
potents of T .A/ is algebraic (under the opposite order) if and only if the lattice of open
sets of the primitive spectrum of A is algebraic. The latter is equivalent to the existence of
a basis of compact open sets for the topology.
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(ii) Let us check that T .A/ satisfies condition (i) of Theorem 2.12. Recall that idem-
potents in T .A/ have the form �I , where I is a closed two-sided ideal. Let I and J be
(closed, two-sided) ideals ofA, with J � I , so �I � �J . The property that �I is co-compact
relative to �J means that if .Ii /i is an upward directed net of ideals such that J � Ii � I
for all i and I D

S
Ii , then I D Ii0 for some i0. This, in turn, is equivalent to I=J hav-

ing compact primitive spectrum. By assumption, there exists � 2 T .I=J / that is densely
finite and non-zero. Pre-composed with the quotient map � W I ! I=J (which maps IC
onto .I=J /C), � gives rise to a trace � ı � 2 T .I /. Let z� be the extension of � ı � to AC
such that z�.a/ D1 for all a 2 ACnIC. Then �I � z� � �J and z� is not an idempotent, as
it attains values other than ¹0;1º. This proves that T .A/ is strongly connected.

Suppose now that A has stable rank one and is exact. By the arguments from the previ-
ous paragraph, it suffices to show that if I=J is a non-trivial ideal-quotient with compact
primitive spectrum, then there is a nontrivial lower semicontinuous densely finite trace
on I=J . Observe that I=J has stable rank one and is exact, since both properties pass
to ideals and quotients. An exact C �-algebra of stable rank one with compact primitive
spectrum always has a nonzero, densely finite lower semicontinuous trace; see [23, Theo-
rem 2.15].

Example 3.2. Let Z denote the Cantor space. Let A D C.Z/, i.e., the C �-algebra of
continuous C-valued functions on Z. Then A is an AF C �-algebra, and in particular, it
is an exact C �-algebra of real rank zero and stable rank one. Thus, its cone T .A/ is an
extended Choquet cone that is strongly connected and has an abundance of co-compact
elements, by Proposition 3.1. The cone T .A/ consists of the Borel measures on Z—
with values in Œ0;1�—where each measure gives rise to a trace simply by integration.
Incidentally, we can see in this example that in an extended Choquet cone the operation
^ need not be continuous. Take for example any sequence xn 2 Z and x 2 Z such that
xn! x and xn¤ x for all n. Then the Dirac measures ıxn satisfy that ıxn! ıx . However,

ıxn ^ ıx D 0 for all n:

We do not know whether the operation _ is always continuous in an extended Choquet
cone.

Example 3.3. Let A D C.Œ0; 1�/. The cone of traces T .A/ consists of the set of all Borel
measures on Œ0; 1� (with values in Œ0;1�). Idempotent elements of T .A/ are in order
reversing bijection with the ideals of C Œ0; 1�, which in turn are in order preserving bijec-
tion with the open subsets of Œ0; 1�. The compact elements of the lattice of open subsets
of Œ0; 1� are the clopen subsets, i.e., Œ0; 1� and ¿. It is thus clear that T .A/ does not have
an abundance of co-compact idempotents. On the other hand, T .A/ is strongly connected,
as we can easily arrange for the existence of a non-zero bounded trace on any non-zero
quotient I=J , with J � I � A ideals of A (thus verifying Proposition 3.1 (ii)).

Example 3.4. Let A be a simple unital C �-algebra without bounded traces (e.g., the
Cuntz algebra O2). It is easily established that T .A/ contains exactly two elements: the
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0 trace and the trace that is1 on all non-zero positive elements. Thus, T .A/ D ¹0;1º.
Every element of T .A/ is a co-compact idempotent. On the other hand, T .A/ is clearly
not strongly connected.

3.2. Œ0;1�-valued functionals on a dimension group

Let .G; GC/ be an ordered abelian group. Then .G; GC/ is called a dimension group if
it is directed, unperforated (i.e., kx > 0) x > 0 for all x 2 G and k 2 N), and has the
Riesz refinement property (see [15, Chapter 3]). Let Hom.GC; Œ0;1�/ denote the set of
all Œ0;1�-valued monoid morphisms onGC (i.e., �WGC! Œ0;1� additive and mapping 0
to 0). Endow Hom.GC; Œ0;1�/ with pointwise cone operations and with the topology of
pointwise convergence.

Proposition 3.5. Let G be a dimension group. Then Hom.GC; Œ0;1�/ is an extended
Choquet cone that is strongly connected and has an abundance of co-compact idempo-
tents.

Proof. By [26, Theorem 2.33], Hom.GC; Œ0;1�/ is a complete positively ordered monoid,
which entails that it is a complete lattice and that addition distributes over ^ and _. The
topology on Hom.GC;Œ0;1�/ is that induced by its inclusion in Œ0;1�GC. Since the latter is
compact and Hausdorff, so is Hom.GC; Œ0;1�/. Further, since Hom.GC; Œ0;1�/ is a con-
vex subset of Œ0;1�GC , the induced topology is locally convex. Thus, Hom.GC; Œ0;1�/ is
an extended Choquet cone. To see that it is strongly connected and has an abundance of co-
compact idempotents, we can first express .G;GC/ as an inductive limit of .Zn;ZnC/ using
the Effros–Handelman–Shen theorem [11, Theorem 2.2], apply the functor Hom.�; Œ0;1�/
to this inductive system, and then apply Proposition 2.14. We give a direct argument in
the paragraphs below.

A subgroup I � G is an order ideal if IC WD GC \ I is a hereditary set and I D
IC � IC. Idempotent elements of Hom.GC; Œ0;1�/ have the form �I .g/ D 0 if g 2 IC
and �I .g/ D1 if g 2 GCnIC, for some ideal I . Moreover, the map

I 7! �I

is an order-reversing bijection between the two lattices. It is well known that the lattice
of ideals of an ordered group is algebraic. Thus, Hom.GC; Œ0;1�/ has an abundance of
co-compact idempotents.

Let us now prove strong connectedness. Let I; J � G be order ideals such that J ¨ I

and �I is co-compact relative to �J . In this case, this means that I=J is finitely (thus,
singly) generated. Thus, it has a finite nonzero functional

�W .I=J /C ! Œ0;1/

(e.g., by [11, Theorem 1.4]). As in the proof of Proposition 3.1 (ii), we define a functional
on all of GC by pre-composing � with the quotient map I 7! I=J and setting it equal to
1 on GCnIC. This produces a functional z� 2 Hom.GC; Œ0;1�/ such that �I � z� � �J
and z� is not an idempotent.
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3.3. Functionals on a Cu-semigroup

Yet another construction yielding an extended Choquet cone is the dual of a Cu-semi-
group. Let us first briefly recall the definition of a Cu-semigroup (see [4]). Let S be a
positively ordered commutative monoid. Given x; y 2 S , let us write x � y (read “x is
way below y”) if whenever .yn/1nD1 is an increasing sequence in S such that y � supn yn,
there exists n0 such that x � yn0 .

Definition 3.6. We call S a Cu-semigroup if it satisfies the following axioms:

(O1) For every increasing sequence .xn/n in S , the supremum supn xn exists.

(O2) For every x 2 S there exists a sequence .xn/n in S such that xn � xnC1 for all
n 2 N and x D supn xn.

(O3) If .xn/n and .yn/n are increasing sequences in S , then

sup
n
.xn C yn/ D sup

n
xn C sup

n
yn:

(O4) If xi � yi for i D 1; 2, then x1 C x2 � y1 C y2.

Observe that in our definition of the way-below relation above we only consider
increasing sequences .yn/n, rather than increasing nets. In the context of Cu-semigroups
we always use the symbol� to indicate this sequential version of the way below relation.

A map between Cu-semigroups �WS! T is a Cu-semigroups morphism if it preserves
the suprema of increasing sequences and the way below relation�.

Two additional conditions that we often impose on Cu-semigroups are the following:

(O5) If x0 � x � y then there exists z such that x0 C z � y � x C z.

(O5) If x; y; z 2 S are such that x � y C z, then for every x0� x there are elements
y0; z0 2 S such that x0 � y0 C z0, y0 � x; y and z0 � x; z.

We call an ordered monoid map �WS ! Œ0;1� a functional if it preserves the suprema
of increasing sequences. The collection of all functionals on S , denoted by F.S/, is a
cone, with the cone operations defined pointwise. F.S/ is endowed with the topology
with the following sub-basis of open sets:

Vs;r D
®
� 2 F.S/ W �.s/ > r

¯
; s 2 S; r 2 RC;

Ws;r D
®
� 2 F.S/ W �.s0/ < r for some s0 � s

¯
; s 2 S; r 2 RC:

A net .�i /i2I in F.S/ converges to a functional � if

lim sup
i

�i .s
0/ � �.s/ � lim inf

i
�i .s/

for all s0 � s, in S ; see [17, Proposition 3.7]. The topology on F.S/ is clearly locally
convex. By [13, Theorem 4.8] and [22, Theorem 4.1.2], if S is a Cu-semigroup satisfying
O5 and O6, then F.S/ is an extended Choquet cone. In Section 5 we address the problem
of what conditions on S guarantee thatF.S/ has an abundance of co-compact idempotents
and is strongly connected.
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4. Functions on an extended Choquet cone

Throughout this section we let C denote an extended Choquet cone with an abundance of
co-compact idempotents, i.e., such that the lattice .Idem.C /;�op/ is algebraic.

4.1. The spaces Lsc.C / and A.C /

Let us denote by Lsc.C / the set of all functions f WC ! Œ0;1� that are linear (i.e., addi-
tive, homogeneous with respect to scalar multiplication, and mapping 0 to 0) and lower
semicontinuous (i.e., f �1..a;1�/ is open for all a 2 Œ0;1/).

The linearity of the functions in Lsc.C / implies that they are also order-preserving, for
if x � y in C , then y D xC z for some z, and so f .y/D f .x/C f .z/� f .x/. We endow
Lsc.C / with the operations of pointwise addition and scalar multiplication, and with the
pointwise order. Lsc.C / is thus an ordered cone. Further, the pointwise supremum of
functions in Lsc.C / is again in Lsc.C /; thus, Lsc.C / is a directed complete ordered set
(dcpo).

Let us denote by Lsc� .C / the subset of Lsc.C / of functions f WC ! Œ0;1� for which
the set f �1..a;1�/ is � -compact—in addition to being open—for all a 2 Œ0;1/ (equiv-
alently, for a D 1, by linearity.)

Let us denote by A.C / the functions in Lsc.C / that are continuous. Notice that

A.C / � Lsc� .C /;

since
f �1

�
.a;1�

�
D

[
n

f �1
�
ŒaC 1=n;1�

�
;

and the right side is a union of closed (hence, compact) subsets of C .
Our goal in this section is to show that every function in Lsc.C / (Lsc� .C /) is the

supremum of an increasing net (sequence) of functions in A.C /. We achieve this in The-
orem 4.4 after a number of preparatory results.

Given f 2 Lsc.C /, define its support supp.f / 2 C as

supp.f / D sup
®
x 2 C W f .x/ D 0

¯
:

Since f .x/ D 0) f .2x/ D 0, it follows easily that supp.f / is an idempotent of C .
For each w 2 Idem.C /, let

�w.x/ D

´
0 if x � w;

1 otherwise.

This is a function in Lsc.C /.

Lemma 4.1. We have1� f D �supp.f /, for all f 2 Lsc.C /. (Here1� f WD supn2N nf .)
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Proof. The set ¹x 2 C W f .x/ D 0º is upward directed and converges to its supremum,
i.e., to supp.f /. It follows, by the lower semicontinuity of f , that f .supp.f // D 0.

If x � supp.f /, then f .x/� f .supp.f //D 0. Hence, .1 � f /.x/D 0. If on the other
hand x — supp.f /, then f .x/ ¤ 0, which implies that .1 � f /.x/ D 1. We have thus
shown that1 � f D �supp.f /.

Let w 2 C be an idempotent. Define Aw.C / D ¹f 2 A.C / W supp.f / D wº and

AC.Cw/ D
®
f WCw ! Œ0;1/ W f is continuous, linear, and f �1

�
¹0º
�
D ¹wº

¯
:

(Recall that we have defined Cw D ¹x 2 C W ".x/ D wº.)

Theorem 4.2. If f 2 A.C / then supp.f / is a co-compact idempotent. Further, given a
co-compact idempotent w 2 Idem.C /, the restriction map f 7! f jCw is an ordered cone
isomorphism from Aw.C / to AC.Cw/.

Proof. Let f 2 A.C /. We have already seen that supp.f / is an idempotent. To prove
that it is co-compact, let .wi /i2I be a downward directed family of idempotents with
infimum supp.f /. By the continuity of f , we have limi f .wi / D f .supp.f // D 0. But
f .wi / 2 ¹0;1º for all i . Therefore, there exists i0 such that f .wi /D 0 for all i � i0. But
supp.f / is the largest element on which f vanishes. Hence, wi D supp.f / for all i � i0.
Thus, supp.f / is a co-compact idempotent.

Now, fix a co-compact idempotent w. Let f 2 Aw.C /. Clearly, f is continuous and
linear on Cw , and f .w/ D 0. Let x 2 Cw . If f .x/ D 0, then x � w, which implies that
x D w. Thus, f .x/ > 0 for all x 2 Cwn¹wº. Suppose that f .x/ D 1. Then f .w/ D
limn f .

1
n
x/ D1, contradicting that w D supp.f /. Thus, f .x/ <1 for all x 2 Cw . We

have thus shown that f jCw 2 AC.Cw/.
It is clear that the restriction map

Aw.C / 3 f 7! f jCw 2 AC.Cw/

is additive and order-preserving. Let us show that it is an order embedding. Let f; g 2
Aw.C / be such that f jCw � gjCw . Let x 2 C . Suppose that x C w 2 Cw . Then

f .x/ D f .x C w/ � g.x C w/ D g.x/:

If, on the other hand, x C w … Cw , then ".x C w/ > w. Hence,

f .x/ D f .x C w/ � f
�
".x C w/

�
D1:

We argue similarly that g.x/ D1. Thus, f .x/ D g.x/.
Let us finally prove surjectivity. Suppose first that Cw D ¹wº. Then AC.Cw/ consists

of the zero function only. Clearly then, �w jCw D 0 and supp.�w/D w. It remains to show
that �w is continuous. The set ��1w .¹1º/ D ¹x 2 C W x — wº is open. On the other hand,
��1w .¹0º/ D ¹x 2 C W x � wº agrees with ¹x 2 C W ".x/ � wº (since we have assumed
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that Cw D ¹wº). The set ¹x 2 C W ".x/ � wº is open by the co-compactness of w (Lemma
2.10). Thus, �w is continuous.

Suppose now that Cw ¤ ¹wº. Let Qf 2 AC.Cw/. Define f WC ! Œ0;1� by

f .x/ D

´
Qf .x C w/ if x C w 2 Cw ;

1 otherwise.

Observe that f jCw D Qf . Let us show that f 2 Aw.C /. To show that supp.f / D w, note
that

f .x/ D 0, Qf .x C w/ D 0, x C w D w, x � w:

Thus, w is the largest element on which f vanishes, i.e., w D supp.f /. We leave the not
difficult verification that f is linear to the reader. Let us show that f is continuous. Let
.xi /i be a net in C with xi ! x. Suppose first that x Cw 2 Cw , i.e., ".x/ � w. Since the
set ¹y 2 C W ".y/ � wº is open (Lemma 2.10), ".xi / � w for large enough i . Therefore,

lim
i
f .xi / D lim

i

Qf .xi C w/ D Qf .x C w/ D f .x/:

Now suppose that x Cw … Cw , in which case f .x/ D1. To show that limi f .xi / D1,
we may assume that xi 2 Cw for all i (otherwise f .xi / D1 by definition). Observe also
that xi ¤ w for large enough i . Let us thus assume that xi 2 Cwn¹wº for all i . Since w is
a co-compact idempotent, C! has a compact base K � Cw n ¹wº (Theorem 2.11). Write
xi D ti Qxi with Qxi 2 K and ti > 0 for all i . Passing to a convergent subnet and relabeling,
assume that Qxi ! y 2 K and ti ! t 2 Œ0;1�. If t <1, then x D limi ti Qxi D ty 2 Cw ,
contradicting our assumption that x Cw … Cw . Hence t D1. Let ı > 0 be the minimum
value of Qf on the compact set K. Then

f .xi / D Qf .xi / D tif . Qxi / � tiı:

Hence f .xi /!1, thus showing the continuity of f at x.

We will need the following theorem from [2]:

Theorem 4.3 ([2, Theorem 3.5]). Given f; g 2 Lsc.C / there exists f ^ g and further,

f ^ sup
i

fi D sup
i

.f ^ fi /;

for any upward directed set .fi /i2I in Lsc.C /.

Recall that throughout this section C denotes an extended Choquet cone with an abun-
dance of co-compact idempotents.

Theorem 4.4. Every function in Lsc.C / is the supremum of an upward directed family
of functions in A.C /, and every function in Lsc� .C / is the supremum of an increasing
sequence in A.C /.
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Proof. Let f 2 Lsc.C / and set w D supp.f /. We first consider the case that w is co-
compact and then deal with the general case.

Assume that w is co-compact. If Cw D ¹wº, then f D �w . Further, �w is continuous,
as shown in the proof of Theorem 4.2. Suppose that Cw ¤ ¹wº. Consider the restriction
of f to Cw . By [1, Corollary I.1.4], f jCw is the supremum of an increasing net . Qhi /i of
linear continuous functions Qhi WCw ! R. Since f jCw is strictly positive on Cwn¹wº, it is
separated from 0 on any compact base ofCw . It follows that the functions Qhi are eventually
strictly positive on Cwn¹wº. Indeed, the sets Ui;ı D Qh�1i ..ı;1�/ \ Cw , where i 2 I and
ı > 0, form an upward directed open cover of Cwn¹wº. Thus, for some ı > 0 and i0 2 I ,
Qhi is greater than ı on a (fixed) compact base of Cw for all i � i0. Let us thus assume that
Qhi 2 AC.Cw/ for all i . By Theorem 4.2, each Qhi has a unique continuous extension to an
hi 2 Aw.C /. Further, .hi /i is also an increasing net. We claim that f D supi hi . Let us
first show that hi � f for all i . Let x 2 C be such that f .x/ <1. Then

0 D lim
n

1

n
f .x/ D f .".x// D 0:

Hence, ".x/ � w, i.e., x C w 2 Cw . We thus have that

hi .x/ D Qhi .x C w/ � f .x C w/ D f .x/:

Hence, hi � f for all i . Set h D supi hi . Clearly h � f . If ".x/ � w then

h.x/ D h.x C w/ D sup
i

hi .x C w/ D f .x/:

If, on the other hand, ".x/ — w, then hi .x/ D 1 for all i and h.x/ D 1 D f .x/. Thus,
h D f .

Let us now consider the case when w is not co-compact. Define

H D
®
h 2 A.C / W h � .1 � "/f for some " > 0

¯
:

Let us show thatH is upward directed and has pointwise supremum f . Let h1;h2 2H . Set
v1 D supp.h1/ and v2 D supp.h2/, which are co-compact idempotents, by Theorem 4.2,
and satisfy that w � v1; v2. Set v D v1 ^ v2, which is also co-compact and such that
w� v. Set gD f ^�v , which exists by Theorem 4.3. Since scalar multiplication by a non-
negative scalar is an order isomorphism on C , we have tg D .tf / ^ �v . Letting t !1
and using Theorem 4.3, we get1 � g D �w ^ �v D �v . Thus, supp.g/D v (Lemma 4.1).
Let " > 0 be such that h1; h2 � .1� "/f . Then, h1; h2 � .1� "/g. Since we have already
established the case of co-compact support idempotent, there exists an increasing net .gi /i
in Av.C / such that g D supi gi . By [13, Proposition 5.1], h1; h2 � .1 � "=2/g in the
directed complete ordered set Lsc.C / (see also the definition of the relation C in the next
section). Thus, there exists i0 such that h1; h2 � .1 � "=2/gi0 . Now h D .1 � "=2/gi0
belongs to H and satisfies that h1; h2 � h. This shows that H is upward directed.

Let us show that f is the pointwise supremum of the functions inH . It suffices to show
that f is the supremum of functions in A.C /, as we can then easily arrange for the 1 � "
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separation. Choose a decreasing net of co-compact idempotents .vi /i with w D inf vi
(recall that C has an abundance of co-compact idempotents). For each fixed i , f ^ �vi
has support idempotent vi , which is co-compact. Thus, as demonstrated above, f ^ �vi
is the supremum of an increasing net in A.C /. But f D supi .f ^ �vi / (Theorem 4.3). It
follows that f is the pointwise supremum of functions in A.C /.

Finally, suppose that f 2 Lsc� .C /, and let us show that there is a countable set in H
with pointwise supremum f . For each h 2 H , let Uh D h�1..1;1�/. The sets .Uh/h2H
form an open cover of f �1..1;1�/. Since the latter is � -compact, we can choose a count-
able setH 0 �H such that .Uh/h2H 0 is also a cover of f �1..1;1�/. Observe that for each
x 2 C , f .x/ > 1 if and only if h.x/ > 1 for some h 2H 0. It follows, by the homogeneity
with respect to scalar multiplication of these functions, that suph2H 0 h.x/ D f .x/ for all
x 2 C . Now using that H is upward directed we can construct an increasing sequence
with supremum f .

Theorem 4.5. Let C be a metrizable extended Choquet cone with an abundance of co-
compact idempotents. Then there exists a countable subset of A.C / such that every func-
tion in Lsc.C / is the supremum of an increasing sequence of functions in this set.

Proof. Let us first argue that the set of co-compact idempotents is countable. Let .Ui /1iD1
be a countable basis for the topology of C . Let w 2 Idemc.C / be a co-compact idem-
potent. Since ¹x 2 C W w � xº is an open set, by Lemma 2.10, there exists Ui such that
w 2 Ui � ¹x 2 C W w � xº. Clearly then w D infUi . Thus, the set of co-compact idem-
potents embeds in the countable set ¹infUi W i D 1; 2; : : :º.

Now fix a co-compact idempotent w. Recall that Aw.C / is isomorphic to the cone
AC.Cw/ of positive linear functions on the cone Cw . Suppose that Cw ¤ ¹wº. Let K
denote a compact base of Cw , which exists by Theorem 2.11, and is metrizable since
C is metrizable by assumption. Then AC.Cw/ is separable in the metric induced by the
uniform norm on K, since it embeds in C.K/, which is separable. Let zBw � AC.Cw/
be a countable dense subset. It is not hard now to express any function in AC.Cw/ as the
supremum of an increasing sequence in zBw . Indeed, it suffices to show that for any " > 0
and f 2 AC.Cw/, there exists g 2 zBw such that .1� "/f � g � f . Keeping in mind that
f is separated from 0 on K, we can choose g 2 zBw such that�1 � "

2

�
f jK � gjK


1
<
"

2
min
x2K

ˇ̌
f .x/

ˇ̌
:

Then g is as desired. LetBw �Aw.C / be the set mapping bijectively onto zBw �AC.Cw/
via the restriction map. By Theorem 4.2, every function in Aw.C / is the supremum of an
increasing sequence in Bw . If, on the other hand, Cw D ¹wº, then Aw.C /D ¹�wº. In this
case we set Bw D ¹�wº.

Let B D
S
w Bw , where w ranges through the set of co-compact idempotents, and

Bw is as in the previous paragraph. Observe that B is countable. Let us show that every
function in f 2 Lsc.C / is the supremum of an increasing sequence in B . Observe that
Lsc.C / D Lsc� .C /, since all open subsets of a compact metric space are � -compact.
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Thus, f D supn hn, where .hn/1nD1 is an increasing sequence in A.C /. The sequence h0nD
.1� 1

n
/hn is also increasing, with supremum f , and h0n� h0nC1 in the directed complete

ordered set Lsc.C / (see [13, Proposition 5.1] and also the definition of the relation C in
the next section). Say h0nC1 2Awn.C / for some co-compact idempotentwn. Since h0nC1 is
the supremum of a sequence in Bwn , we can choose gn 2 Bwn such that h0n � gn � h

0
nC1.

Then .gn/1nD1 is an increasing sequence in B with supremum f .

5. Duality with Cu-cones

In this section we prove a duality between extended Choquet cones with an abundance of
co-compact idempotents and certain Cu-cones. We begin by defining Cu-cones.

Definition 5.1. By a Cu-cone we understand a Cu-semigroup S that is also a cone, i.e., it
is endowed with a scalar multiplication by .0;1/ compatible with the monoid structure
of S ; see Section 2. Further we ask that

(1) t1 � t2 and s1 � s2 imply t1s1 � t2s2 for all t1; t2 2 .0;1/ and s1; s2 2 S ,

(2) supn tnsnD.supn tn/.supn sn/where .tn/1nD1 and .sn/1nD1 are increasing sequences
in .0;1/ and S , respectively.

Observe that, in contrast with extended Choquet cones, we impose no topology on
Cu-cones. Cu-cones are called Cu-semigroups with real multiplication in [22]; they are
also the Cu-semimodules over the Cu-semiring Œ0;1�, in the sense of [4].

Throughout this section, S denotes a Cu-cone satisfying the axioms O5 and O6. Under
these assumptions, F.S/ is an extended Choquet cone.

Let us recall the relation C in Lsc.C / defined in [13]: Given f; g 2 Lsc.C /, we write
f C g if f � .1 � "/g for some " > 0 and f is continuous at each x 2 C such that
g.x/ <1. By [13, Proposition 5.1], f C g implies that f is way below g in the dcpo
Lsc.C /, meaning that for any upward directed net .gi /i such that g� supgi , there exists i0
such that f � gi0 .

Lemma 5.2. (Cf. [22, Lemma 3.3.2]) Let f; g 2 Lsc.C / be such that f C g. Then here
exists h 2 Lsc.C / such that f C h D g and h � "g for some " > 0. Moreover, if f; g 2
Lsc� .C /, then h may be chosen in Lsc� .C /, and if f; g 2 A.C /, then h may be chosen in
A.C /.

Proof. Define hWC ! Œ0;1� by

h.x/ D

´
g.x/ � f .x/ if g.x/ <1;

1 otherwise:

Then f C hD g. The linearity of h follows from a straightforward analysis. Since f C g,
there exists "> 0 such that f � .1� "/g. Then g.y/� f .y/� "g.y/whenever g.y/<1,
while if g.y/ D1 then g.y/ D1 D h.y/. This establishes that h � "g.
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The proof of [22, Lemma 3.3.2] establishes the lower semicontinuity of h. Let us
recall it here: Let .xi /i be a net in C such that xi ! x. Suppose first that g.x/ <1. Then
f .x/ <1, and by the continuity of f at x, f .xi / <1 for large enough i . Then,

lim inf
i

h.xi / � lim inf
i

g.xi / � f .xi / � g.x/ � f .x/ D h.x/:

Suppose now that g.x/ D1. Then h.x/ D1. Since h � "g,

lim inf
i

h.xi / � " lim inf
i

g.xi / � "g.x/ D1;

thus showing lower semicontinuity at x.
Assume now that f; g 2 Lsc� .C /. It is not difficult to show that h.x/ > 1 if and only

if g.x/ > 1=" or g.x/ > 1C r and f .x/ � r for some r 2 Q. Thus,

h�1
�
.1;1�

�
D g�1

�
.1=";1�

�
[

[
r2Q

�
g�1

�
.1C r;1�

�
\ f �1

�
Œ0; r�

��
:

The right side is � -compact. Hence, h 2 Lsc� .C /.
Assume now that f; g 2 A.C /. Continuity at x 2 C such that h.x/ D 1 follows

automatically from lower semicontinuity. Let x 2 C be such that h.x/ <1, i.e., g.x/ <
1. If xi ! x then g.xi / <1 and f .xi / <1 for large enough i . Then

h.xi / D g.xi / � f .xi /! g.x/ � f .x/ D h.x/;

where we used the continuity of g and f . Thus, h is continuous at x.

By an ideal of a Cu-cone we understand a subcone that is closed under the suprema of
increasing sequence. There is an order-reversing bijection between the ideals of S and the
idempotents of F.S/:

I 7! �I .x/ WD

´
0 if x 2 I

1 otherwise,

where I ranges through the ideals of S .
Let us say that a Cu-cone S has an abundance of compact ideals if the lattice of ideals

of S is algebraic, i.e., every ideal of S is a supremum of compact ideals.

Theorem 5.3. Let S be a Cu-cone satisfying O5 and O6 and having an abundance of com-
pact ideals. Then F.S/ is an extended Choquet cone with an abundance of co-compact
idempotents. Moreover, S Š Lsc� .F.S// via the assignment

S 3 s 7! Os 2 Lsc�
�
F.S/

�
;

where Os.�/ WD �.s/ for all � 2 F.S/.
Let C be an extended Choquet cone with an abundance of co-compact idempotents.

Then Lsc� .C / is a Cu-cone satisfying O5 and O6 and having an abundance of compact
ideals. Moreover, C Š F.Lsc� .C // via the assignment

C 3 x 7! Ox 2 F
�

Lsc� .C /
�
;

where Ox.f / WD f .x/ for all f 2 Lsc� .C /.
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Proof. As recalled in Section 3, by the results of [22], F.S/ is an extended Choquet
cone. The bijection between the ideals of S and the idempotents of F.S/ translates the
abundance of compact ideals of S directly into the abundance of co-compact idempotents
of F.S/. By [22, Theorem 3.2.1], the mapping

S 3 s 7! Os 2 Lsc
�
F.S/

�
is an isomorphism of the Cu-cone S onto the space of functions f 2 Lsc.F.S// express-
ible as the pointwise supremum of an increasing sequence .hn/1nD1 in Lsc.F.S// such that
hn C hnC1 for all n. The set of all such functions is denoted by L.F.S// in [22]. Let us
show that, under our present assumptions, L.F.S// D Lsc� .F.S//. Let f 2 Lsc.F.S//
be such that f D suphn, where hn C hnC1 for all n. We have h�1n ..1;1�/� f

�1..1;1�/

for all n [13, Proposition 5.1]. Hence,

f �1
�
.1;1�

�
D

[
n

h�1n
�
.1;1�

�
:

Thus, f 2 Lsc� .F.S//. Suppose, on the other hand, that f 2 Lsc� .F.S//. Then, by
Theorem 4.4, there exists an increasing sequence .hn/1nD1 in A.F.S// with supremum f .
Clearly, h0n D .1 �

1
n
/hn is also increasing, has supremum f , and h0n C h0nC1 for all n.

Hence, f 2 L.F.S//.
Let us turn now to the second part of the theorem. Let C be an extended Choquet cone

with an abundance of co-compact idempotents. Let us show that Lsc� .C / satisfies all
axioms O1-O6 (Section 3). Let us show first that Lsc� .C / is closed under the suprema of
increasing sequences: Let f D supn fn, with .fn/1nD1 an increasing sequence in Lsc� .C /.
Then f �1..1;1�/ D

S1
nD1 f

�1
n ..1;1�/. Since the sets on the right side are � -compact,

so is the left side. Thus, f 2 Lsc� .C /.
Let f 2 Lsc� .C /, and let .hn/1nD1 be an increasing sequence in A.C / with supremum

f . Then h0n D .1 �
1
n
/hn has supremum f and h0n � h0nC1 for all n (since h0n C h0nC1).

This proves O2. Axiom O3 follows at once from the fact that suprema in Lsc� .C / are
taken pointwise. Suppose that f1 � g1 and f2 � g2. Choose h1; h2 2 A.C / such that
fi � hi C gi for i D 1;2. Then f1C f2 � h1C h2 C g1C g2, from which we deduce O4.

Let us prove O5: Suppose that f 0; f; g 2 Lsc� .C / are such that f 0� f � g. Choose
h 2 A.C / such that f 0 � h C f . By Lemma 5.2, there exists h0 2 Lsc� .C / such that
hC h0 D g. Then, f 0 C h0 � g � f C h0, proving O5.

Let us prove O6. We prove the stronger property that Lsc� .C / is inf-semilattice or-
dered, i.e., pairwise infima exist and addition distributes over infima. Recall that, by the
results of [2], Lsc.C / is inf-semilattice ordered (see Theorem 4.3). Let us show that if
f;g 2 Lsc� .C /, then f ^ g is also in Lsc� .C /. By [2, Lemma 3.4], for every x 2 C there
exist x1; x2 2 C , with x1 C x2 D x, such that .f ^ g/.x/ D f .x1/C g.x2/. It is then
clear that

.f ^ g/�1
�
.1;1�

�
D

[
a1;a22Q;
a1Ca2>1

�
f �1

�
.a1;1�

�
\ g�1

�
.a2;1�

��
:
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Since the right side is a � -compact set, f ^ g 2 Lsc� .C /. To verify O6, suppose that
f � g1 C g2, with f; g1; g2 2 Lsc� .C /. Then, using the distributivity of addition over ^,
f � g1 C g2 ^ f , which proves O6.

Finally, let us prove that C 3 x 7! Ox 2 F.Lsc� .C // is an isomorphism of extended
Choquet cones. We consider injectivity first: Let x;y 2C be such that f .x/D f .y/ for all
f 2 Lsc� .C /. Choose f 2 A.C /. Passing to the limit as n!1 in f . 1

n
x/ D f . 1

n
y/ we

deduce that f .".x// D f .".y// for all f 2 A.C /. Since every function in Lsc.C / is the
supremum of a directed net of functions in A.C /, we have that f .".x// D f .".y// for all
f 2Lsc.C /. Now choosing f D�w , forw 2 Idem.C /, we conclude that ".x/D ".y/, i.e.,
x and y have the same support idempotent. Set w D ".x/ D ".y/. Choose a co-compact
idempotent v such that w � v. Then x C v; y C v 2 Cv , and f .x C y/ D f .y C v/

for all f 2 A.C /. By Theorem 4.2, f .x C v/ D f .y C v/ for all f 2 AC.Cv/. Recall
that Cv has a compact base and embeds in a locally convex Hausdorff vector space Vv
(Theorem 2.11). We have f .x C v/ D f .y C v/ for all f 2 AC.Cv/ � AC.Cv/. But
AC.Cv/ � AC.Cv/ consists of all the affine functions on Cv that vanish at the origin.
Thus, f .x C v/ D f .y C v/ for all such functions, and in particular, for all continuous
functionals on Vv . Since the weak topology on Vv is Hausdorff, x C v D y C v. Passing
to the infimum over all co-compact idempotents v such that w � v, and using that C has
an abundance of co-compact idempotents, we conclude that

x D x C w D y C w D y:

Thus, the map x 7! Ox is injective.
Let us prove continuity of the map x 7! Ox. Let .xi /i be a net in C with xi ! x. Let

f 0; f 2 Lsc� .C /, with f 0 � f . By the lower semicontinuity of f , we have

Ox.f / D f .x/ � lim inf
i

f .xi / D lim inf
i
Oxi .f /:

Choose h 2 A.C / such that f 0 � h � f , which is possible since f is supremum of an
increasing sequence in A.C /. Then

lim sup
i

Oxi .f
0/ � lim sup

i

Oxi .h/ D lim sup
i

h.xi / D h.x/ � f .x/ D Ox.f /:

This shows that Oxi ! Ox in the topology of F.Lsc� .C //.
Let us prove surjectivity of the map x 7! Ox. (Linearity is straightforward; continuity

of the inverse is automatic from the fact that the cones are compact and Hausdorff.) The
range of the map x 7! Ox is a compact subcone of F.Lsc� .C // that separates elements of
Lsc� .C / and contains 0. By the separation theorem [3, Corollary A.12], it must be all of
F.Lsc� .C //.

Let S be a Cu-cone. We say that S has weak cancellation if x C z � y C z implies
x � y for all x; y; z 2 S .

Lemma 5.4. Let C be an extended Choquet cone. Let h; h0; g 2 Lsc.C / be such that
h C g C h0 and h0 C h. Then supp.g C h0/ is relatively co-compact in supp.g/.
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Proof. Set w1 D supp.g C h0/ and w2 D supp.g/. Let .vi /i be a downward directed net
of idempotents with

V
i vi � w1. Then the functions .�vi /i form an upward directed net

such that g C h0 � �w1 � supi �vi . Since h C g C h0, there exists i0 such that h � �vi0 .
We have that

g C h0 � g C h � �w2 C �vi0 D �w2^vi0 :

Hence, w2 ^ vi0 � w1, which proves the lemma.

Theorem 5.5. Let C be an extended Choquet cone with an abundance of co-compact
idempotents. Then C is strongly connected if and only if Lsc� .C / has weak cancellation.

Proof. Suppose first that C is strongly connected. Let f; g; h 2 Lsc� .C / be such that
f C h � g C h. Choose C-increasing sequences .gn/1nD1 and .hn/1nD1 in A.C / such
that g D supn gn and hD supn hn. Then f C h� gmC hm for somem. We will be done
once we have shown that f � gm.

Let x 2C . If gm.x/D1, then indeed f .x/�1D gm.x/. Suppose that gm.x/ <1.
If hm.x/ <1, then we can cancel hm.x/ in f .x/C hm.x/ � gm.x/C hm.x/ to obtain
the desired f .x/ � gm.x/. It thus suffices to show that gm.x/ <1 implies hm.x/ <1,
i.e., that supp.gm/ � supp.hm/. Let w1 D supp.gm C hm/ and w2 D supp.gm/. Then
w1 � w2 and w1 is relatively co-compact in w2, by the previous lemma. Suppose for the
sake of contradiction thatw1 ¤w2. By strong connectedness, there exists x 2 C such that
w1 � x � w2, with ".x/ D w1 and x ¤ w1. Then,

h.x/ � gm.x/C hm.x/

D hm.x/ � .1 � ı/h.x/;

for some ı > 0. Hence, h.x/ 2 ¹0;1º. If h.x/ D 0, then hm.x/ D gm.x/ D 0, while if
h.x/D1, then gm.x/C hm.x/ � h.x/D1. In either case, we get a contradiction with
0 < .gm C hm/.x/ <1, which holds by Theorem 4.2. Hence, w1 D w2. We thus have
that supp.gm/ D supp.gm C hm/ � supp.hm/.

Suppose conversely that Lsc� .C / has weak cancellation. Let w1 < w2 be idempo-
tents in C , with w1 relatively co-compact in w2. Further, using Zorn’s lemma, choose w2
minimal such that w1 < w2 and w1 is relatively co-compact in w2. Suppose for the sake
of contradiction that w1 � x � w2 implies x 2 ¹w1; w2º. Let D D ¹x 2 C W x � w2º.
Then D is an extended Choquet cone and w1 is a co-compact idempotent in D. Further,
Dw1 D ¹w1º. So, as shown in the course of the proof of Theorem 4.2, �w1 jD is con-
tinuous on D. Let .hi /i 2 A.C / be an upward directed net with supremum �w1 . Since
�w1 jD C �w1 jD , there exists i such that �w1 jD � hi jD . It follows that �w1 � hi C �w2
(as functions on C ). Fix an index j � i . Then

3hj C �w1 � hi C �w2 :

Now let .lk/k be an upward directed net in A.C / with supremum �w2 . Then there exists
an index k such that 3hj � hi C lk . Observe that hi C 2hk . By weak cancellation in
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Lsc� .C /, we conclude that hj � lk . (Note: we have used weak cancellation in the form
f C h � g C h0 and h0 � h imply f � g.) Thus, hj � �w2 for all j � i , implying that
�w1 � �w2 . This contradicts that w1 ¤ w2.

In the following section we will make use of the following form of Riesz decomposi-
tion:

Theorem 5.6. Let C be an extended Choquet cone that is strongly connected and has an
abundance of co-compact idempotents. Let f; g1; g2 2 A.C / be such that f C g1 C g2.
Then there exist f1; f2 2 A.C / such that f D f1 C f2, f1 C g1, and f2 C g2.

Proof. Let " > 0 be such that f � .1 � "/g1 C .1 � "/g2. Then, using the distributivity
of addition over ^,

f � f ^
�
.1 � "/g1

�
C .1 � "/g2 D .1 � "/

�
.f ^ g1/C g2

�
:

Thus, f C .f ^ g1/C g2 (recall that f is continuous). By Theorem 4.4, f ^ g1 is the
supremum of a net of functions in A.C /. Thus, there exists h2A.C / such that f C hC g2
and h C .f ^ g1/. By Lemma 5.2, we can find l 2 A.C / such that f D h C l . Then
hC l C hC g2. By weak cancellation in Lsc� .C / (Theorem 5.5), we have that l C g2.
Setting f1 D h and f2 D l yields the desired result.

6. Proof of Theorem 1.1

Throughout this section C denotes an extended Choquet cone that is strongly connected
and has an abundance of co-compact idempotents.

6.1. The triangle lemma

To prove Theorem 1.1 we follow a strategy similar to the proof of the Effros–Handelman–
Shen theorem [11]. The key step in this proof is establishing a “triangle lemma”, Theo-
rem 6.3 below.

Recall that a Cu-semigroups morphism is an ordered monoid morphism between Cu-
semigroups that preserves the suprema of increasing sequences and the way below relation
(see paragraphs after Definition 3.6). By a Cu-cones morphism between Cu-cones we
understand a Cu-semigroup morphism that is also homogeneous with respect to the scalar
multiplication by .0;1/.

Lemma 6.1. A linear map �W Œ0;1�! Lsc� .C / is a Cu-cones morphism if and only if
�.1/ D1 � �.1/ and �.1/ 2 A.C /.

Proof. Suppose that � is a Cu-cones morphism. That �.1/ D 1 � �.1/ follows at once
from � being supremum preserving and additive. Set f D �.1/. To prove the continuity
of f , it suffices to show that it is upper semicontinuous, since it is already lower semicon-
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tinuous by assumption. Fix " > 0. Since 1 � "� 1 in Œ0;1�, we have .1 � "/f � f in
Lsc� .C /. Choose g 2 A.C / such that .1� "/f � g � f (which exists by Theorem 4.4).
Let xi ! x be a convergent net in C . Then,

.1 � "/ lim sup
i

f .xi / � lim supg.xi / D g.x/ � f .x/:

Letting "! 0, we get that lim supf .xi / � f .x/. Thus, f is upper semicontinuous.
Conversely, suppose that �.1/ 2 A.C / and �.1/ D 1 � �.1/. Observe that if f 2

A.C / then f̨ C f̌ for all scalars 0 � ˛ < ˇ � 1. Hence, �.˛/� �.ˇ/ in Lsc� .C /
whenever ˛ � ˇ in Œ0;1�, i.e., � preserves the way below relation. The rest of the prop-
erties of � are readily verified.

The core of the proof of Theorem 6.3 (the “triangle lemma”) is contained in the fol-
lowing lemma:

Lemma 6.2. Let �W Œ0;1�n!Lsc� .C / be a Cu-cones morphism. Let x;y 2 Œ0;1/n \Zn

be such that �.x/� �.y/. Then there exist N 2 N and Cu-cones morphisms

Œ0;1�n
Q
�! Œ0;1�N

 
�! Lsc� .C /;

such that  Q D � and Qx � Qy. Moreover, Q maps Œ0;1/n \ Zn to Œ0;1/N \ ZN .

Proof. Let x D .x1; : : : ; xn/, y D .y1; : : : ; yn/, and � be as in the statement of the lemma.
Let .Ei /niD1 denote the canonical basis of Œ0;1�n. Set fi D �.Ei / for i D 1; : : : ; n, which
belong to A.C / by Lemma 6.1. Let

M D max
i
jxi � yi j; n1 D #¹i W xi � yi DM º; n2 D #¹i W yi � xi DM º:

Let us define the degree of the triple .�; x; y/, and denote it by deg.�; x; y/, as the vec-
tor .M; n1; n2; n/. We order the degrees lexicographically. We will prove the lemma by
induction on the degree of the triple .�; x; y/.

If M D 0, then x D y. In this case we may simply define Q as the identity map and
� D  . Next, let us deal with the case n D 1, i.e., the domain of � is Œ0;1�. Since Œ0;1�
is totally ordered, either x � y or y < x. In the first case, settingQ the identity and � D  
gives the result. If y < x, then �.y/� �.x/, which, together with �.x/� �.y/, implies
that �.x/D �.y/ is a compact element in A.C /. The only compact element in A.C / is 0,
for if f � f , then f � .1� "/f for some " > 0, and so f D 0 by weak cancellation in
Lsc� .C / (Theorem 5.5). Thus, �.x/ D 0, which in turn implies that � D 0. We can then
choose Q and  to be the 0 maps.

Suppose now that �, x, y are as in the lemma, and that the lemma holds for all triples
.�0; x0; y0/ with smaller degree. If x � y, then we can chooseQ the identity map, � D  ,
and we are done. Let us thus assume that x — y. If xi0 D yi0 for some index i0, then we
can write x D xi0Ei0 C Qx and y D xi0Ei0 C Qy, where Qx; Qy belong to S WD span.Ei /i¤i0 Š
Œ0;1�n�1. By weak cancellation in Lsc� .C /, �.x/� �.y/ implies that �. Qx/� �. Qy/.
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Since Qx; Qy belong to a space of smaller dimension, the degree of .�jS ; Qx; Qy/ is smaller than
that of .�; x; y/ (M; n1; n2 have not increased, while n has decreased). By the induction
hypothesis, there exist maps zQWS! Œ0;1�N and z W Œ0;1�N ! Lsc� .C / such that zQ Qx �
zQ Qy, �jS D z zQ, and zQ maps the elements with integer coordinates in S to the elements

with integer coordinates in Œ0;1�N . Define QW Œ0;1�n ! Œ0;1�NC1 as the extension
of zQ such that QEi0 D ENC1. Define  as the extension of z to Œ0;1�NC1 such that
 .ENC1/ D fi0 . Then � D  Q and

Qx D zQ Qx C xi0ENC1 �
zQ Qy C yi0ENC1 D Qy;

thus again completing the induction step.
We assume in the sequel that xi ¤ yi for all i , i.e., either xi < yi or xi > yi , for all

i D 1; : : : ; n. Let
I D ¹i W xi > yiº; J D ¹j W yj > xj º:

Let
M1 D max

i2I
xi � yi ; M2 D max

j2J
yj � xj :

Observe that M D max.M1;M2/. We break up the rest of the proof into two cases.
Case M1 �M2. Using weak cancellation in

nX
iD1

xifi D �.x/� �.y/ D

nX
iD1

yifi

we get X
i2I

.xi � yi /fi �
X
j2J

.yj � xj /fj :

Let i1 2 I be such that xi1 � yi1 DM1. From the last inequality we deduce that

M1fi1 �
X
j2J

M2fj ;

and since M2 � M1, we get fi1 �
P
j2J fj . By the Riesz decomposition property in

A.C / (Theorem 5.6), there exist gj ; hj 2 A.C /, with j 2 J , such that

fi1 D
X
j2J

gj ;

fj D gj C hj for all j 2 J:

Let N1 D nC jJ j � 1, and let us label the canonical generators of Œ0;1�N1 with the set
¹Ei W i D 1; : : : ; n; i ¤ i1º [ ¹Gj W j 2 J º. Define Q1W Œ0;1�n ! Œ0;1�N1 as follows:

Q1Ei D Ei if i 2 In¹i1º;

Q1Ei1 D
X
j2J

Gj ;

Q1Ej D Ej CGj if j 2 J;
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and extend Q1 to a Cu-cone morphism on Œ0;1�n. Next, define a Cu-cone morphism
 1W Œ0;1�

N1 ! Lsc� .C / on the same generators as follows:

 1.Ei / D fi ; if i 2 In¹i1º;

 1.Ej / D hj ; if j 2 J;

 1.Gj / D gj ; if j 2 J:

It is easily checked that  1Q1 D � and that Q1 maps Œ0;1�n \ Zn to Œ0;1�N1 \
Œ0;1�N1 . Also,

Q1x D
X

i2In¹i1º

xiEi C
X
j2J

xi1Gj C
X
j2J

xj .Ej CGj /

D

X
i¤i1

xiEi C
X
j2J

.xi1 C xj /Gj :

Similarly,
Q1y D

X
i¤i1

yiEi C
X
j2J

.yi1 C yj /Gj :

We claim that deg. 1;Q1x;Q1y/< deg.�;x;y/. Indeed, the maximum of the differences
of the coordinates (M above) has not gotten larger. Moreover, the number of times that
M1 is attained (n1 above) is smaller, since we have removed the coordinate i1 and added
new coordinates for which

.xi1 C xj / � .yi1 C yj / DM1 C xj � yj 2 Œ0;M1 � 1�:

By induction, the lemma holds for . 1; Q1x; Q1y/. Thus, there exist Cu-cones mor-
phisms Q2W Œ0;1�N1 ! Œ0;1�N2 and  2W Œ0;1�N2 ! Lsc� .C / satisfying that  1 D
 2Q2 and Q2Q1x � Q2Q1y. Setting Q D Q1Q2 and  D  2, we get the desired
result.

Case M2 > M1. This case is handled similarly to the previous case, though with a few
added complications. Observe first thatM2 � 2 (sinceM1 � 1; otherwise x � y). Choose
" > 0 such that �.x/� .1 � "/�.y/. If necessary, make " smaller, so that we also have

" < min
²
1

4xi
;
1

4yj
W xi ¤ 0; yj ¤ 0

³
:

Notice that this implies that

xi > .1 � 2"/yi , xi > yi ; for i D 1; 2; : : : ; n;

xi < .1 � 2"/yi , xi < yi ; for i D 1; 2; : : : ; n:
(6.1)

Let h 2 A.C / be such that h C �.x/ D .1 � "/�.y/, which exists by Lemma 5.2.
Enlarge the domain of � to Œ0;1�nC1, labeling the new generator by H (D .0; : : : ; 0; 1/),
and setting �.H/ D h. We then have .1 � 2"/�.y/� hC �.x/, i.e.,

nX
iD1

.1 � 2"/yifi � hC

nX
iD1

xifi :
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Using weak cancellation and the inequalities (6.1) we can move terms around to getX
j2J

�
.1 � 2"/yj � xj

�
fj � hC

X
i2I

�
xi � .1 � 2"/yi

�
fi :

Let j1 2 J be such that yj1 � xj1 DM2. Then�
.1 � 2"/yj1 � xj1

�
fj1 � hC

X
i2I

�
xi � .1 � 2"/yi

�
fi :

By our choice of ", we have the inequalities

.1 � 2"/yj1 � xj1 �M2 �
1

2
and xi � .1 � 2"/yi �M1 C

1

2
for all i:

Hence, �
M2 �

1

2

�
fj1 � hC

X
i2I

�
M1 C

1

2

�
fi :

Further, M1 C
1
2
�M2 �

1
2

(since M2 > M1) and M2 �
1
2
> 1 (since M2 � 2). So

fj1 � hC
X
i2I

fi :

By the Riesz decomposition property in A.C / (Theorem 5.6), fj1 D h0 C
P
i2I gi for

some h0� h and gi � fi , with i 2 I . Let us choose h00; hi 2 A.C / such that hD h0C h00

and fi D gi C hi for all i 2 I (Lemma 5.2). Label the canonical generators of the Cu-cone
Œ0;1�N1 , where N1 D nC jI j C 1, with the set

¹Ej W j D 1; : : : ; n; j ¤ j1º [ ¹Gi W i 2 I º [ ¹H;H
0
º:

Define a Cu-cone morphism Q1W Œ0;1�
nC1 ! Œ0;1�N1 as follows:

Q1Ej D Ej for j 2 J n¹j1º;

Q1Ej1 D H
0
C

X
i2I

Gi ;

Q1Ei D Ei CGi for i 2 I;

Q1H D H CH
0;

Next, define a Cu-cone map  1W Œ0;1�N1 ! Lsc� .C / by

 1Ej D fj for j 2 J n¹j1º;

 1Ei D hi ; for i 2 I;

 1Gi D gi ; for i 2 I;

 1H D h
00 and  1H

0
D h0:
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Now  1Q1Ej D fj for j 2 J n¹j1º, and

 1Q1Ej1 D  1

�
H 0 C

X
i2I

Gi

�
D h0 C

X
i2I

gi D fj1 :

Also,
 1Q1Ei D  1.Ei CGi / D hi C gi D fi ; for i 2 I:

Finally,  1Q1H D h0 C h00 D h. Thus, we have checked that  1Q1 D �. Clearly, Q1
maps integer-valued vectors to integer-valued vectors.

Let us examine the degree of . 1;Q1.x CH/;Q1y/. We have that

Q1.x CH/ D
X

j2Jn¹j1º

xjEj C
X
i2I

xj1Gi C xj1H
0
C

X
i2I

xi .Ei CGi /C .H CH
0/

D

X
j¤j1

xjEj C
X
i2I

.xj1 C xi /Gi CH C .xj1 C 1/H
0:

Similarly, we compute that

Q1y D
X
j¤j1

yjEj C
X
i2I

.yj1 C yi /Gi CH C yj1H
0:

We claim that the deg. 1;Q1.x CH/;Q1y/ < deg.�; x; y/. To show this we check that
for the pair .Q1.x CH/;Q1y/ we have that:

(1) the maximum coordinates difference for the indices i such that xi > yi (number
M1 above) is strictly less than M2,

(2) the maximum coordinates difference for the indices where yj > xj is at mostM2,

(3) the number of indices for which M2 is attained (number n2 above) has decreased
relative to the pair .x; y/.

The first two points are straightforward to check. The last point follows from the fact that
we have removed the coordinate j1, and that for the new coordinates that we have added
we have

.yj1 C yi / � .xj1 C xi / DM2 C .yi � xi / 2 Œ0;M2 � 1�;

yj1 � .xj1 C 1/ DM2 � 1 < M2:

Observe that

. 1Q1/.x CH/ D hC �.x/ D .1 � "/�.y/� �.y/ D  1Q1y:

Hence, by the induction hypothesis, there exist Q2 and  2 satisfying that

 1 D  2Q2 and Q2Q1.x CH/ � Q2Q1y:

ThenQDQ2Q1 and D 2 are as desired, thus completing the step of the induction.
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Theorem 6.3. Let �W Œ0;1�n ! Lsc� .C / be a Cu-cones morphism. Let F � Œ0;1/n be
a finite set. Then there exist N 2 N and Cu-cones morphisms

Œ0;1�n
Q
�! Œ0;1�N

 
�! Lsc� .C /;

such that  Q D �,

�x � �y ) Qx � Qy for all x; y 2 F;

and Q maps Œ0;1�n \ Zn to Œ0;1�N \ ZN .

Proof. We start by noting that given elements x D .xi /niD1 and y D .yi /niD1 in Œ0;1�n,
we have x � y if and only if xi < yi or xi D yi D 0 for all i D 1; : : : ; n.

Suppose first that F D ¹x; yº � Œ0;1/n and that �.x/� �.y/. Choose " > 0 such
that .1 C "/�.x/ � .1 � "/�.y/. Choose x0; y0 2 Œ0;1/n \ Qn such that x � x0 �

.1C "/x and .1� "/y � y0� y. Then �.x0/� �.y0/. Letm 2N be such thatmx0;my0 2
Œ0;1/n \Zn. By Lemma 6.2, there existQ; such that �D Q andQ.mx0/�Q.my0/,
i.e., Qx0 � Qy0. Then

Qx � Qx0 � Qy0 � Qy:

Lemma 6.2 also guarantees that Q maps integer-valued vectors to integer-valued vectors.
Thus, Q and  are as desired.

To deal with an arbitrary finite set F � Œ0;1/n, choose x; y 2 F such that �.x/�
�.y/ and obtainQ1; 1 such that � D  1Q1 andQ1x�Q1y. Set F1 DQ1F and apply
the same argument to a new pair x0; y0 2 F1 to obtain maps Q2;  2. Continue inductively
until all pairs have been exhausted. Set Q D Qk � � �Q1 and  D  k .

6.2. Building the inductive limit

Theorem 6.4. Let C be an extended Choquet cone that is strongly connected and has
an abundance of co-compact idempotents. Then Lsc� .C / is an inductive limit in the Cu-
category of an inductive system of Cu-cones of the form Œ0;1�n, n2N, and with Cu-cones
morphisms that map integer-valued vectors to integer-valued vectors. Moreover, if C is
metrizable, then this inductive system can be chosen over a countable index set.

Proof. For each n D 1; 2; : : :, choose an increasing sequence .A.n/
k
/1
kD1

of finite subsets
of Œ0;1/n with dense union in Œ0;1�n.

We will construct an inductive system of Cu-cones ¹SF ; �G;F º, where F; G range
through the finite subsets of A.C /, such that SF Š Œ0;1�nF for all F . We also construct
Cu-cones morphisms  F W SF ! Lsc� .C / for all F , finite subset of A.C /, making the
overall diagram commutative. We follow closely the presentations of the proof of the
Effros–Handelman–Shen theorem in [16, Section 3] and [26, Chapter 3], adapted to the
category of Cu-cones.

For each f 2 A.C /, define S¹f º D Œ0;1� and  ¹f ºW Œ0;1�! Lsc� .C / as the Cu-
cones morphism such that  ¹f º.1/D f . Fix a finite set F � A.C /. Suppose that we have
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defined SG and  G for all proper subsets G of F . Set SF WD
Q
G SG , where G ranges

though all proper subsets of F . Define �F WSF ! Lsc� .C / as

�F
�
.sG/G

�
D

X
G

 G.s
G/:

Next, we constructQWSF ! SF and  WSF ! Lsc� .C / using Theorem 6.3. Here is how:
For each G, proper subset of F , let nG be such that SG Š Œ0;1�nG . Let A D

Q
G A

.nG/

k
,

where k D jF j and where G ranges through all proper subsets of F . Then A is a finite
subset of SF . Let us apply Theorem 6.3 to �F and the set A, in order to obtain maps
QWSF ! SF Š Œ0;1�

nF and  WSF ! Lsc� .C / such that �F D  Q and

�F .x/� �F .y/) Qx � Qy for all x; y 2 A:

Set  F D  , and for each proper subset G of F , define �G;F WSG ! SF as the composi-
tion of the embedding of SG in SF with the map Q:

SG ,! SF
Q
�! SF :

Observe that �G;F maps Œ0;1�nG \ ZnG to Œ0;1�nF \ ZnF , as both SG ,! SF and Q
map integer-valued vectors to integer-valued vectors. Continuing in this way we obtain an
inductive system ¹SF ; �G;F º, indexed by the finite subsets of A.C /, and maps  F WSF !
Lsc� .C / for all F . By construction, the overall diagram is commutative. To show that
Lsc� .C / is the inductive limit in the Cu-category of this inductive system, we must check
that

(1) every element in Lsc� .C / is supremum of an increasing sequence contained in
the union of the ranges of the maps  F ,

(2) for each finite set F (index of the system) and elements x0; x; y 2 SF such that
x0 � x and  G.x/ �  G.y/ in Lsc� .C /, there exists F 0 � F such that

�F;F 0.x
0/� �F;F 0.y/:

Let us check the first property. By construction, if F D ¹f º then f is contained in the
range of  F . Examining the construction of  F for arbitrary F , it becomes clear that F
is contained in the range of  F . Thus, as F ranges through all finite subsets of A.C /,
the union of the ranges of the maps  F contains A.C /. Moreover, by Theorem 4.4, every
function in Lsc� .C / is the supremum of an increasing sequence in A.C /.

Suppose that x0; x; y 2 SF are such that  F .x/ �  F .y/ and x0 � x. Then x0 2
Œ0;1/nF and  F .x0/�  F .y/. Choose y0� y and x0� x00� x such that  F .x00/�
 F .y

0/. Next, choose v;w 2 A.nF /
k

for some k, such that x0� u� x00 and y0� v� y.
Observe then that  F .u/�  F .v/. Let F 0 � A.C / be a finite set such that F � F 0 and
jF 0j � k. Then, by our construction of the inductive system, we have that �F;F 0.u/�
�F;F 0.v/. This implies that �F;F 0.x0/� �F;F 0.y/, thus proving the second property of
an inductive limit.
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Let us address the second part of the theorem. Suppose that C is metrizable. By The-
orem 4.5, there exists a countable set B � A.C / such that every function in Lsc� .C / is
the supremum of an increasing sequence in B . The construction of the inductive limit for
Lsc� .C / in the preceding paragraphs can be repeated mutatis mutandis, letting the index
set of the inductive limit be the set of finite subsets of B , rather than the finite subsets of
A.C /. The resulting inductive limit is thus indexed by a countable set.

We are now ready to prove Theorem 1.1 from the introduction.

Proof of Theorem 1.1. (i))(iv): An AF C �-algebra has real rank zero, stable rank one,
and is exact (these properties hold for finite-dimensional C �-algebras and are passed on
to their inductive limits). Thus, (i) implies (iv) by Proposition 3.1.

(iv))(iii): Suppose that we have (iv). By Theorem 6.4, Lsc� .C / is an inductive limit
in the Cu-category of Cu-cones of the form Œ0;1�n, with n 2 N. We have F.Œ0;1�n/ Š
Œ0;1�n via the map

F
�
Œ0;1�n

�
3 � 7!

�
�.E1/; : : : ; �.En/

�
2 Œ0;1�n;

where E1; : : : ; En are the canonical generators of Œ0;1�n. Applying the functor F.�/ to
the inductive system with inductive limit Lsc� .C / we obtain a projective system in the
category of extended Choquet cones where each cone is isomorphic to Œ0;1�n for some
n. By the continuity of the functor F.�/ [13, Theorem 4.8], and the natural isomorphism
F.Lsc� .C // Š C (Theorem 5.3), we get (iii).

(iii))(ii): Suppose that we have (iii). Say C D lim
 �i2I

.Œ0;1�ni ; ˛i;j /. Observe that
˛i;j maps Œ0;1/ni to Œ0;1/nj . Indeed, the support idempotent of an element in Œ0;1/ni

is 0. By continuity of ˛i;j , the same holds for the image of these elements; thus, they
belong to Œ0;1/nj . It follows then that ˛i;j is given by multiplication by a matrix Mi;j

with non-negative finite entries: ˛i;j .v/ DMi;j v for all v 2 Œ0;1�ni (inMi;j v we regard
v as a column vector and use the rule 0 � 1 D 0). The transpose matrix M t

i;j can then
be regarded as a map from Rnj to Rni . Let us form an inductive system of dimension
groups whose objects are Rni , endowed with the coordinatewise order, with i 2 I , and
with maps M t

i;j WR
nj ! Rni . This inductive system of dimension groups gives rise to

the original system after applying the functor Hom. � ; Œ0;1�/ to it, and making the iso-
morphism identifications Hom.RniC ; Œ0;1�/ Š Œ0;1�ni . Let G be its inductive limit in
the category of dimension groups (G is in fact a vector space). By the continuity of the
functor Hom. � ; Œ0;1�/, we have Hom.GC; Œ0;1�/ Š C . Thus, (iii) implies (ii).

(ii))(iv): This is Proposition 3.5.
Suppose now that C is metrizable and satisfies (iv). Then, in the proof of (iv))(iii)

above, Theorem 6.4 allows us to start with an inductive limit for Lsc� .C / over a countable
index set. Applying the functor F.�/, we get a projective limit for C over a countable
index set. Moreover, the Cu-cones morphisms in the inductive system of Theorem 6.4 map
integer-valued vectors to integer-valued vectors. Thus, the matrices Mi;j implementing
these morphisms have nonnegative integer entries. Thus, in the proof of (iii))(ii) we start
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with C D lim
 �i2I

.Œ0;1�ni ; ˛i;j /, where ˛i;j is implemented by a matrix with nonnegative
integer entries. We can then construct an inductive system .Zni ;Mi;j /i;j2I , in the category
of dimension groups, whose inductive limit is a countable dimension group G such that
Hom.GC; Œ0;1�/ Š C . Thus, G in (ii) may be chosen countable.

Finally, let us prove that (ii))(i) in the case that C is metrizable. As argued above, in
this case the group G such that Hom.GC; Œ0;1�/ Š C may be chosen countable. By the
Effros–Handelman–Shen theorem, G is the sequential inductive limit of ordered groups
of the form .Zn;ZnC/. Moreover, by [12], there exists then an AF C �-algebra A whose
Murray–von Neumann monoid of projections V.A/ is isomorphic to GC. The result now
follows from the fact, well known to experts, that T .A/ Š Hom.V .A/; Œ0;1�/ for an AF
A. Let us sketch a proof of this fact here: Since AF C �-algebras are exact, we have by
Haagerup’s theorem that 2-quasitraces on A, and on the ideals of A, are traces. We apply
here the version due to Blanchard and Kirchberg that includes densely finite lower semi-
continuous 2-quasitraces; see [6, Remark 2.29 (i)]. Thus, T .A/ DQT.A/, whereQT.A/
denotes the cone of lower semicontinuous Œ0;1�-valued 2-quasitraces on A. Further, by
[13, Theorem 4.4], QT.A/ Š F.Cu.A// for any C �-algebra A. Thus, we must show that
F.Cu.A// Š Hom.V .A/; Œ0;1�/ when A is an AF C �-algebra. Let Cuc.A/ denote the
submonoid of Cu.A/ of compact elements, i.e., of elements e 2 Cu.A/ such that e � e.
By [8, Theorem 3.5] of Brown and Ciuperca, for stably finite A the map from V.A/ to
Cu.A/ assigning to a Murray–von Neumann class Œp�MvN the Cuntz class Œp�Cu 2 Cu.A/
is a monoid isomorphism with Cuc.A/. This holds in particular for A AF. Thus, we must
show that F.Cu.A// Š Hom.Cuc.A/; Œ0;1�/. This isomorphism is given by the restric-
tion map. Indeed, since A has real rank zero and stable rank one, every element of Cu.A/
is supremum of an increasing sequence of compact elements [9, Corollary 5]. This shows
that � 7! �jCuc.A/ is injective. To prove surjectivity, suppose that we have a monoid mor-
phism � WCuc.A/! Œ0;1�. Define

�.x/ D sup
®
�.e/ W e � x; e 2 Cuc.A/

¯
:

Then � is readily shown to be a functional on Cu.A/ that extends � . Finally, from the
characterization of convergent nets in the topology of F.Cu.A//, it is evident that a con-
vergent net .�i /i in F.Cu.A// converges pointwise on compact elements of Cu.A/. This
shows that the map � 7! �jCuc.A/ is continuous. Since it is a bijection between compact
Hausdorff spaces, its inverse is also continuous. In summary, we have the following chain
of extended Choquet cones isomorphisms when A is AF:

T .A/ D QT.A/ Š F.Cu.A// Š Hom
�

Cuc.A/; Œ0;1�
�
Š Hom

�
V.A/; Œ0;1�

�
:

7. Finitely generated cones

A cone C is called finitely generated if there exists a finite set X � C such that for every
x 2 C we have x D

Pn
iD1 ˛ixi for some ˛i 2 .0;1/ and xi 2 X . In this section we give
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a direct construction of an ordered vector space (over R) .V; V C/ with the Riesz prop-
erty and such that Hom.V C; Œ0;1�/ is isomorphic to a given finitely generated, strongly
connected, extended Choquet cone C . Here Hom.V C; Œ0;1�/ denotes the monoid mor-
phisms from V C to Œ0;1�. These maps are automatically homogeneous with respect to
scalar multiplication; thus, they are also cone morphisms.

Lemma 7.1. Let C be a finitely generated extended Choquet cone. Then Idem.C / is finite
and for each w 2 Idem.C / the sub-cone Cw is either isomorphic to ¹0º or to Œ0;1/nw for
some nw 2 N. (Recall that we have defined Cw D ¹x 2 C W ".x/ D wº.)

Proof. Let Z be a finite set that generates C . Let w 2 C be an idempotent, and write
w D

Pn
iD1 ˛ixi , with xi 2 Z and ˛i 2 .0;1/. Multiplying both sides by a scalar ı > 0

and passing to the limit as ı ! 0, we get that w is the sum of support idempotents of
elements in Z. It follows that Idem.C / is finite.

Next, let w 2 Idem.C /. Define Zw D ¹x C w W x 2 Z and ".x/ � wº, which is a
finite subset of Cw . We claim that Zw generates Cw as a cone. Indeed, let x 2 Cw and
write x D

Pn
iD1 ˛ixi , with xi 2 Z and ˛i 2 .0;1/. Adding w on both sides we get

x D
Pn
iD1 ˛i .xi C w/. Since ".xi / � ".x/ D w, the elements xi C w are in Zw . If

Zw D¹wº thenCw is isomorphic to ¹0º. Suppose thatZw ¤¹wº. Sincew is a co-compact
idempotent, Cw has a compact base K which is a Choquet simplex (Theorem 2.11). Fur-
ther, K is finitely generated (by the set .0;1/ � Zw \ K). Hence, K has finitely many
extreme points, which in turn implies that Cw Š Œ0;1/nw for some nw 2 N.

For the remainder of this section we assume that C is a finitely generated, strongly
connected, extended Choquet cone. Thus, each idempotent w 2 Idem.C / is co-compact
and, by strong connectedness, Cw ¤ ¹wº for all w ¤ 1 (here 1 denotes the largest
element in C ).

Letw 2 Idem.C / and x 2 Cw . If z 2 C is such that zCw D x, we call z an extension
of x. The set of extensions of x is downward directed: if z1 and z2 are extensions of x,
then so is z1 ^ z2. Consider the element Qx D inf¹z 2 C W z C w D xº. By the continuity
of addition, Qx is also an extension of x, which we call the minimum extension.

Lemma 7.2. Let w 2 Idem.C /. Let x 2 Cwn¹wº be an element generating an extreme
ray in Cw , and let Qx denote the minimum extension of x.

(i) Qx generates an extreme ray in C". Qx/.

(ii) If y; z 2 C are such that y C z D Qx, then either y � z or z � y.

Proof. Set v D ". Qx/.
(i) Let y; z 2 Cv be such that y C z D Qx. Adding w on both sides we get .y C w/C

.zCw/D x. Since yCw;zCw 2Cw , and x generates an extreme ray inCw , both yCw
and zCw are either positive scalar multiples of x or equal to w. Assume that y Cw D w
and z C w D x. The latter says that z is an extension of x. Hence y C z D Qx � z in Cv .
By cancellation in Cv (Lemma 2.8), we get y D v and z D Qx. Suppose on the other hand
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that y C w D ˛x and z C w D ˇx for positive scalars ˛, ˇ such that ˛ C ˇ D 1. Then
y=˛ and z=ˇ are extensions of x. We deduce that ˛ Qx � y and ˇ Qx � z. Hence,

˛ Qx C z � y C z D Qx D ˛ Qx C ˇ Qx:

By cancellation in Cv , z � ˇ Qx, and so z D ˇ Qx. Similarly, y D ˛ Qx. Thus, Qx generates an
extreme ray in Cv .

(ii) The argument is similar to the one used in (ii). After arriving at y C w D ˛x and
z Cw D ˇx, we assume without loss of generality that ˛ � 1

2
� ˇ. Using again that Qx is

the minimum extension of x, we get z � Qx=2 � y=2C z=2, and applying Lemma 2.8 (ii),
we arrive at z=2 � y=2.

Remark 7.3. The property of Qx in Lemma 7.2 (ii) says that Qx is an irreducible element of
the cone C in the sense defined by Thiel in [25].

Next, we construct a suitable set of generators of C . For each w 2 Idem.C /, let Xw
denote the set of minimal extensions of all elements x 2 Cwn¹wº that generate an extreme
ray in Cw . Consider the set

S
w2Idem.C/ Xw , which is closed under scalar multiplication.

We form a set X by picking a representative from each ray in
S
w2Idem.C/Xw .

Proposition 7.4. Let X � C be as described in the paragraph above. Each y 2 C has a
unique representation of the form

y D

nX
iD1

˛ixi C w;

where xi 2 X and ˛i 2 .0;1/ for all i , and w 2 Idem.C / is such that ".xi / � w but
xi — w for all i .

Proof. Let y 2 C , and set w D ".y/. If y D w then its representation is simply y D w.
Suppose that y ¤ w. In Cw , express y as a sum of elements that lie in extreme rays
(Lemma 7.1). By the construction of X , these elements have the form ˛i .xi C w/, with
xi 2 X and ˛i 2 .0;1/. We thus have that

y D

nX
iD1

˛i .xi C w/ D

nX
iD1

˛ixi C w:

We have xi C w 2 Cwn¹wº for all i ; equivalently, ".xi / � w and xi — w for all i . Thus,
this is the desired representation.

To prove uniqueness of the representation, suppose that

y D
X
i2I

˛ixi C w D
X
j2J

ǰxj C w
0:

Since ".xi / � w for all i , the support of y is w. Thus, w D w0. We can now rewrite the
equation above as

y D
X
i2I

˛i .xi C w/ D
X
j2J

ǰ .xj C w/:
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This equation occurs in Cw Š Œ0;1/nw . Further, xi C w and xj C w generate extreme
rays of Cw for all i; j . It follows that I D J and that the two representations are the same
up to relabeling of the terms.

7.1. Constructing the vector space

We continue to denote by X the subset of C defined in the previous subsection. For each
w 2 Idem.C /, define

Ow D ¹x 2 X W x — wº:

Lemma 7.5. Let w1; w2 2 Idem.C /. Then

(i) Ow1 [Ow2 D Ow1^w2 .

(ii) Ow1 \Ow2 D Ow1Cw2 .

(iii) Ow1 � Ow2 if and only if w1 � w2.

Proof. (i) It is more straightforward to work with the complements of the sets: x …Ow1^w2
if and only if x � w1 ^w2, if and only if x � w1 and x � w2, i.e., x … Ow1 and x … Ow2 .

(ii) Again, we work with complements. Let us show that Ocw1Cw2 � O
c
w1
[Ocw2 (the

opposite inclusion is clear). Let x 2 Ocw1Cw2 , i.e., x � w1 C w2. Choose z such that
x ^w1C z D x. Recall that the elements ofX are minimal extensions of non-idempotent
elements that generate an extreme ray. Thus, by Lemma 7.2 (ii), either x ^ w1 � z or
z � x ^ w1. If z � x ^ w1, then

x D x ^ w1 C z � 2.x ^ w1/ � w1:

Hence x 2Ocw1 , and we are done. Suppose that x ^w1 � z. It follows that 2.x ^w1/� x.
Now repeat the same argument with x and w2. We are done unless we also have that
2.x ^w2/ � x. In this case, adding the inequalities we get 2.x ^w1/C 2.x ^w2/ � 2x,
i.e., x ^ w1 C x ^ w2 � x. But x � x ^ w1 C x ^ w2 (since x � w1 C w2). Hence,

x D x ^ w1 C x ^ w2:

Applying Lemma 7.2 (ii) again we get that either x � 2.x ^w1/�w1 or x � 2.x ^w2/�
w2. Hence, x 2 Ocw1 [O

c
w2

, as desired.
(iii) Suppose that Ow1 � Ow2 . By (i), Ow1^w2 D Ow1 [ Ow2 D Ow2 . Assume, for

the sake of contradiction, that w1 ^w2 ¤ w2. Since C is strongly connected, there exists
x 2Cw1^w2 n ¹w1 ^w2º such that x �w2. We can choose x in an extreme ray of Cw1^w2 ,
since the set of all x 2Cw1^w2 such that x �w2 is a face. Consider the minimum extension
Qx of x. Adjusting x by a scalar multiple, we may assume that Qx 2 X . Now Qx � w2, i.e.,
Qx … Ow2 . But we cannot have Qx � w1 ^ w2, since this would imply that

x D Qx C w1 ^ w2 D w1 ^ w2:

Thus, x 2 Ow1^w2 . This contradicts that Ow1^w2 D Ow2 .



M. Moodie and L. Robert 1316

Let w 2 Idem.C /. Define

Pw D
®
x 2 Ow W ".x/ � w

¯
;

zPw D Pw [O
c
w D

®
x 2 X W ".x/ � w

¯
:

Observe that if y 2 C , and y D
Pn
iD1 ˛ixi C w is the representation of y described in

Proposition 7.4, then xi 2 Pw for all i; 1 � i � n.

Lemma 7.6. Let w1; w2 2 Idem.C /. The following statements hold:

(i) zPw1^w2 D
zPw1 \

zPw2 .

(ii) If w1 � w2 then Pw1nOw2 ¤ ¿.

Proof. (i) This is straightforward: ".x/�w1 and ".x/�w2 if and only if ".x/�w1 ^w2.
(ii) Suppose thatw1 6�w2. Letw3Dw1Cw2. By Lemma 7.5 (ii),Ow1 \Ow2 DOw3 .

Also w1 � w3 and w1 ¤ w3. Since C is strongly connected, there exists y 2 Cw1 n ¹w1º
such that w1 � y � w3. Choose y on an extreme ray (always possible, since the set of all
y 2 Cw1 such that y �w3 is a face) and adjust it by a scalar so that its minimum extension
Qy belongs to X . Since Qy C w1 2 Cw1n¹w1º, we have that Qy — w1 and ". Qy/ � w1. That
is, Qy 2 Pw1 . Since Qy � w3, we also have that Qy 2 Ocw3 � O

c
w2

. We have thus obtained an
element Qy 2 Pw1 nOw2 .

Let us say that a function f WX!R is positive provided that there existsw 2 Idem.C /
such that f .x/D 0 for x … Ow and f .x/ > 0 for x 2 Pw . We call w the support of f and
denote it by supp.f /.

Lemma 7.7. The support of a positive function is unique. Further, if f; gWX ! R are
positive then supp.f C g/ D supp.f / ^ supp.g/.

Proof. Let w1;w2 2 Idem.C / both be supports of f . Suppose that w1 ¤ w2, and without
loss of generality, thatw1 6�w2. Then there exists x 2Pw1 \O

c
w2

(by Lemma 7.6). On one
hand, x 2 Pw1 implies that f .x/ > 0. On the other hand, x 2 Ocw2 implies that f .x/D 0,
a contradiction. Thus w1 D w2, whereby proving the first part of the lemma.

To prove the second part, assume that f and g are positive functions onX , and set vD
supp.f / andw D supp.g/. Clearly f C g vanishes onOcv \O

c
w DO

c
v^w . Let x 2 Pv^w .

Then, by Lemma 7.6 (i), x 2 zPv \ zPw . Thus, x is in one of the following sets: Pv \ Pw ,
P� \O

c
w , or Pw \Oc� . In all cases we see that .f C g/.x/ > 0. Indeed, if x 2 P� \ Pw

then f .x/; g.x/ > 0; if x 2 P� \Ocw then f .x/ > 0 and g.x/ D 0; if x 2 Pw \Oc� then
f .x/ D 0 and g.x/ > 0. Therefore supp.f C g/ D v ^ w.

Let us denote by VC the vector space of R-valued functions on X and by V CC the set
of positive functions in VC .

Theorem 7.8. The pair .VC ; V CC / is an ordered vector space having the Riesz interpola-
tion property.
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Proof. By the previous lemma, V CC is closed under addition. Clearly, V CC is closed under
multiplication by positive scalars. Since the pointwise strictly positive functions belong to
V CC and span VC , we have

V CC � V
C

C D VC :

Also, V CC \ �V
C

C D ¹0º, for if f and �f are positive then, by the previous lemma,

supp.f / � supp.f C�f / D supp.0/ D1;

which implies that f D 0. Thus, .VC ; V CC / is an ordered vector space.
In [20], Maloney and Tikuisis obtained conditions guaranteeing that the Riesz inter-

polation property holds in a finite-dimensional ordered vector space. The properties of the
sets Pw obtained in Lemma 7.6 (i) and (ii) are precisely those properties in [20, Corollary
5.1] shown to guarantee that the Riesz interpolation property holds in .VC ; V CC /.

Let us define a pairing .�; �/WC � V CC ! Œ0;1� as follows: for each y 2C and f 2 V CC ,
write y D

Pn
iD1 ˛ixi Cw, the representation of y described in Proposition 7.4, and then

set

.y; f / D

8̂<̂
:

nP
iD1

˛if .xi / if w � supp.f /;

1 otherwise:

Theorem 7.9. The pairing defined above is bilinear. Moreover, the map x 7! .x; �/, from
C to Hom.V CC ; Œ0;1�/, is an isomorphism of extended Choquet cones.

Proof. Let x; y 2 C and f 2 V CC . Write

x D

mX
iD1

˛ixi C v;

y D

nX
jD1

ǰyj C w;

with v;w 2 Idem.C / and xi ; yj 2 X as in Proposition 7.4. Then

x C y D

mX
iD1

˛ixi C

nX
jD1

ǰyj C v C w:

Observe that ".xi /; ".yj / � v C w and that ˛i ; ǰ 2 .0;1/ for all i; j . Thus, the sum
on the right side is the representation of x C y described in Proposition 7.4, except for
the possible repetition of elements of X appearing both among the xi s and the yj s. If
v C w � supp.f /, then v � supp.f / and w � supp.f /, and so

.x; f /C .y; f / D

mX
iD1

˛if .xi /C

nX
jD1

ǰf .yj / D .x C y; f /:
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If, on the other hand, v C w — supp.f /, then either v — supp.f / or w — supp.f /, and
in either case .x; f / C .y; f / D 1 D .x C y; f /. This proves additivity on the first
coordinate. Homogeneity with respect to scalar multiplication follows automatically from
additivity.

Let f; g 2 V CC and w 2 Idem.C /. Then w � supp.f C g/ if and only if w � supp.f /
and w � supp.g/ (Lemma 7.7). This readily shows linearity on the second coordinate.

For each x 2C , letƒx 2Hom.V CC ; Œ0;1�/ be defined by the pairing above:ƒx.f /D
.x; f / for all f 2 V CC . Let ƒWC ! Hom.V CC ; Œ0;1�/ be the map given by y 7! ƒy for
all y 2 C . To prove that ƒ is injective, suppose that y; z 2 C are such that ƒy D ƒz .
Choose any f 2 V CC such that supp.f /D ".y/. If ".y/ 6� ".z/ thenƒy.f / is finite, while
ƒz.f / D 1. This contradicts that ƒy D ƒz . Hence ".y/ � ".z/. By a similar argument
".z/ � ".y/, and so we get equality. Set w D ".y/ D ".z/. Then we can write

y D

mX
iD1

˛iyi C w;

z D

nX
iD1

ˇizi C w

with yi ; zi 2 Pw for all i . Let f 2 VC be such that supp.f / D w. Then f .yi /; f .zi / > 0
and

mX
iD1

˛if .yi / D ƒy.f / D ƒz.f / D

nX
iD1

ˇif .zi /: (7.1)

Let V Cw D ¹f 2 V CC W supp.f / D wº, i.e., f 2 V Cw if f is positive on Pw and zero
outsideOw . It is clear that V Cw � V

C
w consists of all the functions onX that vanish outside

Ow . It then follows from (7.1) that n D m and that, up to relabeling, yi D zi for all
1 � i � n. Consequently y D z.

Let us show that ƒ is surjective. Let � 2 Hom.V CC ; Œ0;1�/. By Lemma 7.7, the set®
w 2 Idem.C / W w D supp.f / for some f 2 V CC such that �.f / <1

¯
is closed under infima. Since this set is also finite, it has a minimum element w. We claim
that for each f 2 V CC we have

�.f / <1, w � supp.f /:

Indeed, from the definition of w it is clear that if �.f / <1 then w � supp.f /. Suppose
on the other hand that f 2 V CC is such that w � supp.f /. Let f0 2 V Cw be such that
�.f0/ < 1. Then f̨0 � f is positive (with support w) for a sufficiently large scalar
˛ 2 .0;1/. Thus, �.f / � ˛�.f0/ <1.

Let us extend � by linearity to the vector subspace Vw WD V Cw � V
C
w . As remarked

above, Vw consists of all the functions f WX ! R vanishing on the complement of Ow .
That is, Vw D span.¹1x W x 2 Owº/, where 1x denotes the characteristic function of ¹xº.
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If x 2 Pw , then 1x C "1Pw 2 V
C
w for all " > 0; here 1Pw denotes the characteristic

function of Pw . It follows that �.1x C "1Pw /� 0, and letting "! 0, that �.1x/� 0 for all
x 2 Pw . If x 2 OwnPw , then �.1Pw � ˛1x/ � 0 for all ˛ 2 R. It follows that �.1x/ D 0
for all x 2 Ow n Pw . Thus

�.f / D
X
x2Pw

�.1x/f .x/

for all f 2 Vw . Since V Cv � Vw for any idempotent v such that w � v, the formula above
holds for all f 2 V CC such that w � supp.f /.

Define
y D

X
x2Pw

�.1x/x C w:

By the previous arguments, �.f /Dƒy.f / for all f such thatw � supp.f /. On the other
hand,

�.f / D1 D ƒy.f /

for all f such that w — supp.f /. Hence, � D ƒy .
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