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Abstract. Let p be an odd prime. Associated to a pair (E,F∞)
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of Q, is the p-primary Selmer group Selp∞(E/F∞) of E over F∞.
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1 Introduction

Given an elliptic curve E defined over a number field F , the Mordell–Weil
theorem states that the group of F -rational points, called the Mordell–Weil
group and denoted by E(F ), is finitely generated (see [Mor22, Wei29]). A
central question in the arithmetic of elliptic curves is the precise structure of
this group, in particular its rank. A motivating problem in Iwasawa theory
is the question of determining the growth of the Mordell–Weil rank in certain
infinite towers of number fields. Such questions were first studied by B. Mazur
in [Maz72], where he showed that for a class of elliptic curves defined over Q, the
Mordell–Weil rank remains bounded in the cyclotomic Zp-extension Qcyc/Q.
The proof of Mazur involved a thorough analysis of the p-primary Selmer group
of E over Qcyc. This result has been extended to all rational elliptic curves by
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K. Kato [Kat04] and D. Rohrlich [Roh88] who showed that given any elliptic
curve E defined over Q, the rank of E is bounded in Fcyc/F , where F/Q is an
abelian extension.
The study of Iwasawa theory in noncommutative p-adic Lie extensions was
initiated by M. Harris in [Har79, Har00]. In the late 1990’s and early 2000’s,
noncommutative Iwasawa theory became an active area of research, leading to a
series of breakthrough results (see [BH97, CH01, Ven02, OV02, CSS03, Gre03,
HV03, OV03, Ven03, CFK+05, CFKS10]). Such extensions are ubiquitous
and often arise naturally. One such example is the following. Let F be a
number field and E/F be an elliptic curve without complex multiplication (CM).
Consider the extension F∞/F given by the field of definition of the p-power
torsion points on E. By Serre’s Open Image Theorem [Ser72], the Galois group
Gal(F∞/F ) is isomorphic to a finite-index subgroup of GL2(Zp). Hence, it is
a non-abelian, p-adic Lie group of dimension 4. We will often specialize our
results to this widely-studied infinite extension, called the trivializing extension
of E. We emphasize that the methods of classical (abelian) Iwasawa theory do
not extend in any obvious fashion to the noncommutative theory and there are
several pitfalls if one follows such an approach, see [BH97, §2] for a discussion.
The main object of study in noncommutative Iwasawa theory is the Selmer
group defined over an infinite p-adic Lie-extension. In this article, we are
interested in investigating the cohomology groups of the Selmer group and cal-
culating the Euler characteristic, which is defined in terms of these cohomology
groups, see [How02, Zer09, Zer11] and Section 3. Under appropriate hypothe-
ses, the Euler characteristic of Selmer groups of elliptic curves over Qcyc can be
expressed in terms of invariants arising in the p-adic Birch–Swinnerton-Dyer
(BSD) formula, see Section 4. In the noncommutative setting, the formula is
more involved. In addition to the invariants arising from the BSD formula,
this formula has contributions from local Euler factors at specified auxiliary
primes, see Theorem 4.9. We shall study these new invariants from the point
of view of arithmetic statistics. The intricate relationship between the Euler
characteristic formula and Iwasawa theoretic invariants coming from noncom-
mutative Iwasawa theory gives rise to several new questions and provides us
with a fertile ground for investigation on the structure of Selmer groups via the
lens of arithmetic statistics. We explain this further in the coming paragraphs.
Throughout, E will denote an elliptic curve defined over Q with good ordinary
reduction at a prime p ≥ 5. Let F be a number field and F∞ be an infinite
Galois extension such that G := Gal(F∞/F ) is a uniform pro-p group of di-
mension d. Furthermore, it is assumed that G is admissible, i.e., F∞ contains
the cyclotomic Zp-extension of F , is ramified at only finitely many primes,
and G contains no non-trivial p-torsion. Structural properties of the p-primary
Selmer group Selp∞(E/F∞) have been studied by O. Venjakob in [Ven02]. The
Selmer group is a module over the Iwasawa algebra Λ(G), which is a noethe-
rian Auslander regular local ring. Much like modules over ZpJT K, the dimension
theory of modules over Λ(G) is well understood. A module is torsion (resp.
pseudonull) if the codimension of its annihilator in Λ(G) is < d+1 (resp. < d).
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In this article, we are interested in understanding how often the Selmer group
is pseudonull over a pro-p p-adic Lie extension.
In Propositions 4.14 and 4.15, we explain the relationship between the Euler
characteristic and the Akashi series (introduced in [CSS03]). For the Selmer
group over the cyclotomic Zp-extension, the Akashi series is simply the charac-
teristic element. This generalized invariant provides deep insight into the alge-
braic structure of the Selmer group. The Euler characteristic is closely related
to the leading term of the Akashi series (see Proposition 4.11). In the setting
where the elliptic curve has Mordell–Weil rank 0, we utilize this interplay be-
tween the different invariants to prove statistical results on the pseudonullity of
the Selmer group. One of the main deviations from the case of the cyclotomic
Zp-extension is that the extension F∞/Q is usually not pro-p. Consequently,
many results in noncommutative Iwasawa theory do not apply since one often
works with the Iwasawa algebra of a pro-p group. Nonetheless, even in the
non-pro-p setting, we can prove results about the Euler characteristics and the
Akashi series. In special cases, we can even infer that the p-primary Selmer
group is in fact trivial over the infinite extension. As a by-product, we obtain
examples where a conjecture of J. Coates and R. Sujatha on the pseudonullity
of fine Selmer groups is true, see [CS05, Conjecture B].
When the Mordell–Weil rank of E(F ) is 0, we will see in the course of this arti-
cle that there are instances when the Iwasawa invariants for the Selmer group
over F∞ vanish. Some results in this direction are proved in Theorems 8.2, 8.11,
and 10.10(2),(3). The arithmetic statistics of Iwasawa invariants of elliptic
curves for the cyclotomic Zp-extensions have been studied in [KR21a, KR21b]
by the first and third named authors of the present article. In [HKR21], these
results have also been extended to the anticyclotomic setting by the first and
third named authors in collaboration with J. Hatley. In subsequent work, these
methods shall be further developed to study statistics for the fine Selmer group
by the third named author. Unlike the cyclotomic Zp-extension, primes other
than p can ramify in F∞ in the noncommutative case. This makes the task of
determining Iwasawa invariants in the noncommutative case more challenging
and intricate than the cyclotomic case. Another diverging point from the cy-
clotomic theory is that it is possible to vary F∞ over certain natural infinite
families even when the prime p is fixed. As in the cyclotomic setting, we can
study the variation of Iwasawa invariants arising from the noncommutative set-
ting via statistical analysis. More precisely, given a triple (E, p,F∞), we study
the variation of the algebraic structure of the Selmer group Selp∞(E/F∞) in
three different contexts.

(a) We fix the pair (E, p) and let F∞ vary over a family of admissible exten-
sions.

(b) We fix a pair (p,F∞) and let E vary over a subset of elliptic curves E/Q of
rank 0.

(c) We fix an elliptic curve E and associate to each prime p, an extension F∞
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in a natural way. Then, we vary p over the primes at which E has good
ordinary reduction.

We study each of these three questions in three distinct settings.

1. First, we consider the Z2
p-extension of imaginary quadratic fields. This

is a 2-dimensional abelian extension and a metabelian extension over Q.
Through the course of our investigation, we see that this case parallels
the cyclotomic theory, see for example (6.1), which says that the Eu-
ler characteristics for the Z2

p-extension and the cyclotomic Zp-extension
coincide.

2. Next, we specialize to the simplest noncommutative 2-dimensional p-adic
Lie extension, namely the false Tate curve extension. Given primes p
and ℓ, we write

F∞ := Q(µp∞ , ℓ
1

pn : n = 1, 2, · · · ).

Let us explain the three questions of interest in this case.

(a) We fix an elliptic curve E of conductor NE and a prime p of good
ordinary reduction of E. We consider the family of false Tate curve
extensions obtained by varying ℓ ∤ NEp. In Theorem 8.11, we study
for what proportion of primes ℓ is the Selmer group trivial over F∞.

(b) We fix the primes p and ℓ, and let E vary over all elliptic curves
defined over Q ordered by height. In Theorem 9.6, we calculate an
upper bound for the proportion of elliptic curves for which the Selmer
group is not trivial.

(c) We fix a rank 0 non-CM elliptic curve E/Q, a good prime ℓ, and let
p vary over the primes at which E has good ordinary reduction. In
Proposition 10.6, we show that for at least half of the primes p, the G-
Euler characteristic coincides with the ΓF -Euler characteristic. When
E has good supersingular reduction at ℓ, we show that this happens
for exactly two-third of the primes p (see Proposition 10.8). For such
primes p, the Selmer group over the false Tate curve extension is
trivial if and only if that over the cyclotomic Zp-extension of Q(µp)
is trivial.

3. We consider the trivializing extension F∞/Q, generated by the p-primary
torsion points of a non-CM elliptic curve (denoted by A, E0 and E′ in
the three questions we study). Since G := Gal(F∞/Q) is not a pro-p
extension, our results on the G-Euler characteristic formula do not imply
pseudonullity of the Selmer group over the infinite extension. We prove
the following results.

(a) We fix a rank 0 elliptic curve E of conductor NE and a prime p of
good ordinary reduction of E. We consider the family of extensions
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obtained by varying a non-CM elliptic curve A/Q. In Theorem 8.16,
we show that for density 0 (but infinitely many) such elliptic curves A,
the G-Euler characteristic is trivial.

(b) We fix p and a non-CM elliptic curve E0/Q. This fixes the p-adic Lie
extension Q(E0[p

∞])/Q. As E varies over all elliptic curves defined
over Q and ordered by height, we calculate an upper bound for the
proportion of elliptic curves for which the G-Euler characteristic is
not trivial in Theorem 9.10.

(c) For a pair of elliptic curves (E,E′) such that E′ does not have CM,
we consider the Selmer group of E over the p-adic Lie extension
Q(E′[p∞])/Q as p varies. In Theorem 10.11, we show that for all
but finitely many primes, the GE′ -Euler characteristic is equal to the
ΓQ-Euler characteristic. This latter quantity is expected to be trivial
most of the time (see [KR21a, Conjecture 3.17]).

Similar to the cyclotomic setting discussed at the beginning of the introduction,
the structure of the Selmer group over a p-adic Lie extension plays a crucial
role in understanding the rate of growth of the Mordell–Weil rank of an elliptic
in towers of non-abelian extensions (see [Bha07, DT10, DL15, DL17, HL20,
LS20]). In some cases, the Mordell–Weil ranks can be described very precisely,
see in particular [DT10], where special cases of false Tate curve extensions
have been studied. More recently, the third named author has made progress
in proving refined asymptotic bounds on the growth of Mordell–Weil ranks in
general noncommutative towers, see [Ray21].
Let H := Gal(F∞/Fcyc). To study the structure of the Selmer group, it is
standard in noncommutative Iwasawa theory to assume the MH(G)-conjecture,
see Conjecture 4.7 for a precise statement. Conditional on this conjecture, in
[HL20], P. C. Hung and M. F. Lim have shown a close relationship between
the structural invariants of the Selmer group over F∞, the pseudonullity of a
certain quotient of the Selmer group over F∞, and the growth of Mordell–Weil
ranks of E inside this extension. These results allow us to distinguish between
the pseudonullity of the p-primary Selmer group and the aforementioned quo-
tient (see Remark 5.4), thereby allowing us to prove refined estimates on the
growth of Mordell–Weil ranks. In particular, we can show in some cases (see for
example, Proposition 8.22 and Corollary 9.7) that the p-primary Selmer group
is not pseudonull over a noncommutative admissible pro-p p-adic Lie extension
even when the cyclotomic Euler characteristic is trivial. In special cases (see
for example Corollaries 8.3 and 10.2), we prove how often the Mordell–Weil
rank remains bounded at every finite layer of an infinite extension.
The structure of the paper is as follows. Sections 2 to 7 are mostly reviews
in nature. Our main results are presented in Sections 8 to 10. In §2, we
introduce the notation and definitions that will be used throughout the article.
In particular, we review the definition of Selmer groups, Iwasawa algebras and
other related notions. Next, we review various notions and basic properties
in both commutative and noncommutative Iwasawa theory in §§3-5, including
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Euler characteristics, Akashi series, the MH(G)-conjecture, as well as recent
results on the asymptotic growth of Mordell–Weil ranks of an elliptic curve
inside a p-adic Lie extension. In §6, we discuss the three families of p-adic
Lie extensions over which we study the Iwasawa-theoretic properties of elliptic
curves. In §7, we review results on the behaviour of Tamagawa numbers under
extensions of number fields, used in later sections of the article. Our main
results are proved in §§8-10, where we study arithmetic statistics of a fixed
elliptic curve as the p-adic Lie extension varies, of families of elliptic curves
over a fixed p-adic Lie extension, and of a fixed elliptic curve over families
of p-adic Lie extensions as p varies, respectively. In Appendix A, we discuss
a classification of conjugacy classes in the finite group GL2(Z/pZ), which is
relevant to our discussion in §8.
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2 Preliminaries

2.1

Throughout this article, p ≥ 5 is a prime number and E is an elliptic curve
over Q with good ordinary reduction at p. The prime p is not fixed forever,
and in many settings, we shall vary p in a suitable sense. Moreover, even
when p is fixed, the estimates obtained in this article will crucially depend
on p. For n ∈ Z≥1, denote by E[pn] the pn torsion subgroup of E(Q̄). We
shall set E[p∞] to be the union of E[pn] as n ranges over Z≥1. Let S be a
finite set of prime numbers containing p and the primes at which E has bad
reduction. Denote by QS the maximal algebraic extension of Q at which all
primes ℓ /∈ S are unramified. Given a number field extension F of Q contained
in QS , set GF,S := Gal(QS/F ). Given a module M over GF,S , and i ≥ 0,
the cohomology group Hi(QS/F,M) is defined to be the discrete cohomology
group Hi(GF,S ,M). For n ≥ 0, let Q(n) be the unique degree pn-extension
of Q contained in Q(µpn+1). We use Q(n) instead of Qn to avoid conflict in
notation, since when n = ℓ is a prime, Qℓ also denotes the ℓ-adic numbers.
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Also, note that the role of p is suppressed in this notation. However, we shall
not suppress the role of p when we introduce the Selmer groups that are studied.
The cyclotomic Zp-extension of Q is taken to be the union

Qcyc :=
⋃

n≥0

Q(n).

The Galois group Gal(Qcyc/Q) will be denoted by Γ. For a number field F ,
we set Fcyc = F · Qcyc to be the cyclotomic Zp-extension of F and write
ΓF := Gal(Fcyc/F ). Its n-th layer is the unique sub-extension Fn such that
[Fn : F ] = pn. Note that Fn is contained in Fn+1 and there are isomorphisms
of topological groups

Gal(Fcyc/F )
∼−→ lim←−

n

Gal(Fn/F )
∼−→ Zp.

Further, when F ∩Qcyc = Q, Fn = F ·Q(n).
Henceforth, F∞/F denotes a pro-p, p-adic Lie extension of F . In other words,
as a topological group, G := Gal(F∞/F ) is isomorphic to a pro-p p-adic Lie
group. Furthermore, we shall require that F∞/F is admissible, i.e., the follow-
ing conditions are satisfied.

(a) F∞ contains Fcyc,

(b) F∞ is ramified at finitely many primes, and

(c) G does not contain any non-zero elements of order p.

Throughout, set H := Gal(F∞/Fcyc) and identify G/H with ΓF .

2.2

Without loss of generality, assume that S contains the set of primes that ramify
in F∞. Let L be a number field in QS . For ℓ ∈ S, define the local condition
at ℓ as follows

Jℓ(E/L) :=
⊕

w|ℓ

H1 (Lw, E) [p∞].

In the above sum, w runs through all primes of L above ℓ, and Lw denotes the
completion of L at w. The p-primary Selmer group of E over L is defined as
the kernel of the following restriction map

Selp∞(E/L) := ker



H1

(
QS/L,E[p∞]

) ΦE,L−−−→
⊕

ℓ∈S

Jℓ(E/L)



 .

Taking direct limits, the p-primary Selmer group of E over F∞ is defined to be

Selp∞(E/F∞) := lim−→
L⊆F∞

Selp∞(E/L),

where L runs through all number fields contained in F∞.
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2.3

The Iwasawa algebra Λ(G) is the inverse limit of group rings

Λ(G) := lim←−
U

Zp[G/U ],

where U runs through all normal finite index subgroups of G. The Iwasawa
algebra Λ(Γ) is defined similarly. On choosing a topological generator γ ∈ Γ,
we fix the ring-isomorphism Λ(Γ) ≃ ZpJT K identifying γ − 1 with T .
It is shown in [Ven02, Theorem 3.26] that Λ(G) is an Auslander regular local
ring. Thus, there is an adequate dimension theory for modules over Λ(G).
By a result of A. Neumann (see [Neu88]), it is known that the Iwasawa al-
gebra Λ(G) has no zero-divisors. Note that unlike in the commutative case,
it is possible that a noncommutative ring with no zero-divisors does not ad-
mit a skew field, see [Lam99, Chapter 4 §9B]. However, a well-known result of
M. Lazard asserts that Λ(G) is noetherian. As a result, Λ(G) admits a skew
field by [Lam99, Chapter 4, Sections 9 and 10], which we shall denote by Q(G).
Let M be a module over Λ(G), it is said to be finitely generated (resp. tor-

sion) if dimQ(G)

(
M ⊗Λ(G) Q(G)

)
is finite (resp. zero). The rank of M as a

Λ(G)-module is defined as

rankΛ(G) M := dimQ(G)

(
Q(G)⊗Λ(G) M

)
.

An application of Nakayama’s lemma shows that the Pontryagin dual

Selp∞(E/F∞)∨ := Hom(Selp∞(E/F∞),Qp/Zp)

is finitely generated as a Λ(G)-module. By the result of Kato mentioned in
the introduction, Selp∞(E/Fcyc)

∨ is a torsion Λ(Γ)-module if F/Q is abelian.
Throughout, we make an analogous assumption for the extension F∞.

Assumption 2.1. Assume that Selp∞(E/F∞)∨ is a torsion Λ(G)-module.

Remark 2.2. A result of P. N. Balister and S. Howson (see [BH97] or [HO10,
Lemma 2.6]) says that if G is a uniformly powerful, solvable group containing
a closed normal subgroup H such that G/H ≃ Zp, then a finitely generated
Λ(G)-module is torsion if MH is Λ(Γ)-torsion. This can be used to show that
if Selp∞(E/Fcyc) is Λ(Γ)-cotorsion, then Selp∞(E/F∞) is Λ(G)-cotorsion (see
[HO10, Theorem 2.3]).

For a finitely generated torsion Λ(G)-module M , let M(p) denote the p-primary
torsion subgroup of M and set

Mf := M/M(p).

Since the ring Λ(G) is noetherian, one can find r ∈ Z≥1 such that pr annihilates
M(p). Let Ω(G) denote the mod-p reduction of the Iwasawa algebra Λ(G). This
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group algebra has no non-trivial zero divisors and hence, admits a skew field of
fractions, see for example [DdSMS99]. This implies that the notion of Ω(G)-
rank makes sense. Now, following [How02], we define the µ-invariant of M
by

µp(M) :=
r∑

i=0

rankΩ(G)

(
piM(p)/pi+1

)
.

Henceforth, we denote by µp(E/F∞) the µ-invariant of the Selmer group
Selp∞(E/F∞)∨ as a Λ(G)-module.

3 The Euler Characteristic

If M is any discrete cofinitely generated p-primaryΛ(G)-module, we say that M
has finite G-Euler characteristic if the cohomology groups Hi(G,M) are finite
for all i ≥ 0. Then, the (classical) Euler characteristic χ(G,M) is defined as
follows

χ(G,M) =
∏

i≥0

(
#Hi(G,M)

)(−1)i

.

For ease of notation, set

χ(Γ, E, p) := χ
(
Γ, Selp∞(E/Fcyc)

)
and

χ(G,E, p) := χ
(
G, Selp∞(E/F∞)

)
.

When the cohomology groups Hi(G,M) are not finite, there is a generalization
of the above notion. When G = Γ, we identify H1(Γ,M) with the module of
co-invariants MΓ. There is an obvious map

ΦM : MΓ →MΓ

sending m to its residue class. The truncated Γ-Euler characteristic is well-
defined if both kerΦM and cokerΦM are finite, and it is given by

χt(Γ,M) :=
#kerΦM

#cokerΦM
.

Following the discussion on [Zer09, pp. 779-780], we recall the generalization
of this notion to Λ(G). For a discrete p-primary G-module M , let d0M be the
composite of the maps

d0M : H0(G,M) = H0(Γ,MH)
ΦM−−→ H1(Γ,MH) →֒ H1(G,M),

where the last map is the inflation. For j ≥ 1, define d
j
M as the composite

d
j
M : Hi(G,M)→ H0

(
Γ, Hi(H,M)

)

Φ
Hi(H,M)−−−−−−→ H1

(
Γ, Hi(H,M)

)
→֒ Hi+1(G,M).
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Let d−1
M denote the 0-map. Note that

(
Hi(G,M), djM

)
forms a complex, and

we denote its j-th cohomology group by hj .

Definition 3.1. The truncated (or generalized) Euler characteristic of a
cofinitely generated p-primary Λ(G)-module M is defined if the cohomology
groups hj are all finite. In this case, the truncated G-Euler characteristic is
defined as follows

χt(G,M) :=
∏

j

(#hj)
(−1)j .

The terminology ‘generalized Euler characteristic’ was introduced in [Zer09]. In
earlier works, such as [CSS03, CFK+05], it was referred to as ‘truncated Euler
characteristic’. We shall refer to this Euler characteristic as the truncated Euler
characteristic, which is also consistent with the terminology used by the third
named author in [RS20, RS21], where the behaviour of these invariants with
respect to congruences is studied.
When the cohomology groups Hi(G,M) are finite for all i ≥ 0, the trun-
cated Euler characteristic χt(G,M) coincides with the usual Euler characteris-
tic χ(G,M). We now give a criterion for the Γ-Euler characteristic for Selmer
groups over the cyclotomic Zp-extension to be well-defined.
As in the case with the classical Euler characteristic χ(·, ·), we adopt a similar
shorthand for the truncated Euler characteristic, setting

χt(Γ, E, p) := χt

(
Γ, Selp∞(E/Fcyc)

)
and

χt(G,E, p) := χt

(
G, Selp∞(E/F∞)

)
.

Lemma 3.2. Assume that X(E/F )[p∞] is finite. The following conditions are
equivalent.

1. The classical Γ-Euler characteristic χ(Γ, E, p) is well-defined.

2. Selp∞(E/Fcyc)
Γ is finite.

3. The Selmer group Selp∞(E/F ) is finite.

4. The Mordell–Weil group E(F ) is finite.

Proof. The proof presented in [KR21a, Lemma 3.2] can be adapted for any
number fields.

Let M be a cofinitely generated cotorsion Λ(Γ)-module. Express the charac-
teristic element of M∨, denoted by fM (T ), as a polynomial

fM (T ) = c0 + c1T + · · ·+ cd−1T
d−1 + T d.

Let rM denote the order of vanishing of fM (T ) at T = 0. For a, b ∈ Qp, we
write a ∼ b if there is a unit u ∈ Z×

p such that a = bu.
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Lemma 3.3. Let M be a cofinitely generated cotorsion Λ(Γ)-module. Assume
that the kernel and cokernel of ΦM are finite. Then,

1. rM = corankZp
(MΓ) = corankZp

(MΓ).

2. crM 6= 0.

3. crM ∼ χt(Γ,M).

Here, crM is the coefficient of T rM in fM (T ).

Proof. See [Zer09, Lemma 2.11].

4 Birch and Swinnerton-Dyer formulas and Akashi Series

Let E be an elliptic curve defined over Q. Fix a number field extension F/Q
and consider the base-change of E to E/F . Let ΓF denote the Galois group
Gal(Fcyc/F ). Recall that G is the Galois group Gal(F∞/F ) for some p-adic
Lie extension F∞ of F . We discuss explicit formulas for the truncated Euler
characteristic χt(ΓF , E, p) and χt(G,E, p). These formulas are motivated by
the p-adic Birch and Swinnerton-Dyer conjecture.

4.1

It follows from Lemma 3.3 that the truncated ΓF -Euler characteristic, when
defined, is always an integer. By Lemma 3.2, the ΓF -Euler characteris-
tic χ(ΓF ,M) is defined if and only if rM = 0. In this case, the con-
stant coefficient c0 of the characteristic element of Selp∞(E/Fcyc)

∨ satisfies
c0 ∼ χ(ΓF ,M). Furthermore, we have the following formula (see [CS10, Chap-
ter 3]):

χ(ΓF , E, p) ∼
#X(E/F )[p∞] ·∏v∤p c

(p)
v (E/F )

(
#E(F )[p∞]

)2 ·
∏

v|p

(
#Ẽ(κv)p∞

)2
.

Here, X(E/F ) is the Tate–Shafarevich group, which is assumed to be finite
throughout this article. At a finite prime v of F , the residue field is denoted
by κv. Let |·|p be the absolute value on Q̄p normalized by setting |p|−1

p = p. The

notation cv(E/F ) is used for the Tamagawa number at v ∤ p, and c
(p)
v (E/F ) is

its p-part, given by

c(p)v (E/F ) :=
∣∣cv(E/F )

∣∣−1

p
.

At a prime v|p, denote by Ẽ the reduction of E at v and Ẽ(κv) be the group of
κv-valued points on Ẽ. The next result provides conditions for the truncated
Γ-Euler characteristic to be defined.
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Lemma 4.1. Let M be a p-primary cotorsion Λ(Γ)-module. Let
f1(T ), . . . , fn(T ) be distinguished polynomials such that M∨

f is pseudo-

isomorphic to
⊕n

i=1 Λ(Γ)/(fi(T )). If T 2 ∤ fi(T ) for all i, then the kernel
and cokernel of ΦM are finite and the truncated Γ-Euler characteristic
χt(Γ,M) is defined. In particular, χt(Γ,M) is defined when rM ≤ 1.

Proof. It follows from the proof of [Zer09, Lemma 2.11].

4.2

When E has good ordinary reduction at p, there is a p-adic analog of the
usual height pairing, which was studied extensively by P. Schneider in [Sch82,
Sch85]. This p-adic height pairing is conjectured to be non-degenerate, and its
determinant is called the p-adic regulator (denoted by Regp(E/F )). In Iwasawa
theory, it is standard to use the following normalized p-adic regulator, which is
well-defined up to a p-adic unit

Rp(E/F ) =
Regp(E/F )

prankZ E(F )
.

The following result gives a formula for the truncated ΓF -Euler characteristic
of the p-primary Selmer group (when it is defined). In the CM case, this was
proven by B. Perrin-Riou (see [PR82]) and in the general case by Schneider
(see [Sch85]).

Theorem 4.2. Assume that the elliptic curve E has good ordinary reduc-
tion at p. The order of vanishing of the characteristic element fE(T ) of
Selp∞(E/Fcyc)

∨ at T = 0 is at least equal to rankZ E(F ). Furthermore, if

(i) Rp(E/F ) 6= 0,

(ii) X(E/F )[p∞] is finite,

then,
ordT=0 fE(T ) = rankZ E(F ).

Further, if the truncated ΓF -Euler characteristic χt(ΓF , E, p) is defined, then,
one has the following p-adic Birch and Swinnerton-Dyer formula for the trun-
cated Euler characteristic

χt(ΓF , E, p)

∼Rp(E/F )×
#X(E/F )[p∞]×∏v∤p c

(p)
v (E/F )×∏v|p

(
#Ẽ(κv)[p

∞]
)2

(
#E(F )[p∞]

)2 .

(4.1)

Corollary 4.3. Let E be an elliptic curve with good ordinary reduction at an
odd prime p and assume that
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(i) rankZE(F ) ≤ 1,

(ii) the p-adic regulator Rp(E/F ) is non-zero,

(iii) X(E/F )[p∞] is finite.

Then, the truncated Euler characteristic χt(ΓF , E, p) is defined and given
by (4.1).

Proof. By Theorem 4.2, the order of vanishing of fE(T ) is ≤ 1. Hence, by
Lemma 4.1, the truncated Euler characteristic is defined. Therefore, by The-
orem 4.2 the truncated ΓF -Euler characteristic up to a p-adic unit is given
by (4.1).

4.3

Following [Zer09], we introduce conditions under which the truncated G-Euler
characteristic χt(G,E, p) is defined, and give an explicit formula for it.

Assumption 4.4. Assume that the following conditions are satisfied.

(FinGL ob) : H
i(H,E(F∞)[p∞]) is finite for any i ≥ 0,

(Finloc) : For primes w|p of F∞ and i ≥ 0,

the group Hi
(
Hw, Ẽ(κ∞,w)[p

∞]
)

is finite.

Here, κ∞,w is the residue field of F∞,w and Hw is the decomposition group
of w in H . By [Zer09, Proposition 5.6], the local finiteness assumption (Finloc)
is satisfied in our current setting. The assumption (FinGL ob) is satisfied under
the following additional condition.

Proposition 4.5. If the Lie algebra of H is reductive, then, (FinGL ob) is
satisfied.

Proof. The result follows from [Zer09, Proposition 5.4].

In Section 6, we will show that these assumptions are indeed satisfied in the
cases of interest. Let G be any admissible p-adic Lie-extension, not necessarily
pro-p. Let M be the set of primes v ∤ p of F whose inertia group in G is infinite
and Lv(E, s) denotes the local L-factor at v. By definition, when E has good
reduction at v,

Lv(E, s) =
(
1− avq

−s
v + q1−2s

v

)−1

,

where qv is the order of the residue field κv and av = qv +1−#Ẽ(κv). Evalu-
ating this local Euler factor at s = 1 yields

Lv(E, 1) =
qv

#Ẽ(κv)
.
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When E has bad reduction,

Lv(E, s) = 1, (1− q−s
v )−1, and (1 + q−s

v )−1

according as E has additive, split multiplicative, and non-split multiplicative
reduction, respectively. When evaluated at s = 1 the Euler factors become

Lv(E, 1) = 1,
qv

qv − 1
, and

qv
qv + 1

,

respectively.
The following is an immediate consequence of the above calculations.

Lemma 4.6. Let v ∤ p, the prime p divides
∣∣Lv(E, 1)

∣∣
p

in precisely the following
situations

1. E has good reduction at v and p|#Ẽ(κv),

2. E has split multiplicative reduction at v and qv ≡ 1 mod p,

3. E has non-split multiplicative reduction at v and qv ≡ −1 mod p.

We now introduce an important conjecture in noncommutative Iwasawa theory,
which will be assumed throughout our discussion.

Conjecture 4.7 (Conjecture MH(G) [CFK+05, CS12]). Let E/F be an elliptic
curve with good ordinary reduction at all primes above p. Denote by X (E/F∞)
the Pontryagin dual of the Selmer group Selp∞(E/F∞) and define the quotient,

Xf (E/F∞) :=
X (E/F∞)

X (E/F∞)(p)
.

Set H := Gal(F∞/Fcyc). Then, Xf (E/F∞) is a finitely generated Λ(H)-
module, and hence it makes sense to speak of rankΛ(H)

(
Xf (E/F∞)

)
.

Remark 4.8. When G = Gal(F∞/F ) is a pro-p extension, E/F is an elliptic
curve with good ordinary reduction at all primves above p, and Selp∞(E/Fcyc) is
a cofinitely generated Zp-module, i.e., Selp∞(E/Fcyc) is Λ(ΓF )-cotorsion with
µp(E/Fcyc) = 0, it follows from [CS12, Theorem 2.1] (see also [HL20, para-
graph above Lemma 4.6]) that Selp∞(E/F∞) satisfies MH(G).

Next, we recall the explicit formula for the G-Euler characteristic χt(G,E, p)
in terms of the ΓF -Euler characteristic χt(ΓF , E, p).

Theorem 4.9. Let E be an elliptic curve and p ≥ 5 a prime at which E
has good ordinary reduction. Assume that all of the following conditions are
satisfied

(i) X(E/F )[p∞] is finite,

(ii) Selp∞(E/F∞)∨ satisfies MH(G), and
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(iii) both (FinGL ob) and (Finloc) hold.

Then χt(G,E, p) is defined if and only if χt(ΓF , E, p) is, and are related as
follows

χt(G,E, p) = χt(ΓF , E, p)×
∏

v∈M

∣∣Lv(E, 1)
∣∣
p
.

Proof. The result follows from [Zer09, Theorem 1.1]. In certain special cases,
this result has been proved separately. For example, in the case of false Tate
curve extension, this result was first proven in [HV03]. In the GL2-setting, this
was proved in [CSS03].

Definition 4.10. Assume that F∞ is an admissible p-adic Lie extension and
that M is a (compact) finitely generated Λ(G)-module satisfying MH(G). It
follows that the homology groups Hi(H,M) are all finitely generated torsion
Λ(Γ)-modules for all i ≥ 0 (see [CFK+05, Lemma 3.1]). Let gM,i denote its
characteristic element. The Akashi series is defined as follows

AkM :=
∏

i≥0

g
(−1)i

M,i .

When M = Selp∞(E/F∞)∨, we write

AkE/F∞
:= AkSelp∞ (E/F∞)∨ .

The next result relates AkM and the truncated G-Euler characteristic of M∨.

Proposition 4.11. Suppose that M is a finitely generated Λ(G)-module that
satisfies MH(G) and that the truncated G-Euler characteristic χt(G,M∨) is
defined. Let r denote the alternating sum

r :=
∑

i≥0

(−1)icorankZp

(
Hi(H,M∨)Γ

)
.

Then, the leading term of AkM is αMT r, where

|αM |−1
p = χt(G,M∨).

Proof. This is [Zer09, Proposition 2.10].

Definition 4.12. A p-adic Lie extension F∞/F is strongly admissible if it
is admissible and for each prime v|p in F , the extension F∞,w contains the
unramified Zp-extension of Fv for all w|v.
Theorem 4.13. Suppose that F∞/F is strongly admissible and that G has no
element of order p. Let E/Q be an elliptic curve with good ordinary reduction
at p and Selp∞(E/F∞)∨ satisfies MH(G). Then, the following relation holds

AkE/F∞ ≡ CharΛ(Γ)

(
Selp∞(E/Fcyc)

∨
)

×
∏

v∈S′

CharΛ(Γ)

(
Jv(Fcyc)

∨
)

mod Λ(Γ)×,
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where S′ is the set of primes of F not dividing p such that the inertia group
of v in G is infinite and Jv(Fcyc) is defined to be

⊕
w|p H

1(Fcyc,w, E[p∞]).

Proof. See [Zer11, Theorem 1.3]. Our assumption that E has good ordinary
reduction at p means that the factor T r in loc. cit. is trivial.

Next, we consider the special case when G is pro-p and AkM is a unit in Λ(Γ).

Proposition 4.14. Let G be a compact pro-p, p-adic Lie group and H be a
closed normal subgroup of G with G/H ≃ Zp. Let M be a finitely generated
Λ(G)-module which lies in MH(G). If AkM is a unit in Λ(Γ), then M is
a pseudonull Λ(G)-module. Further, if M contains no non-trivial pseudonull
submodules, then AkM is a unit if and only if M = 0.

Proof. See [Lim15, Proposition 5.9].

For an elliptic curve defined over Q, the next result gives a criterion for the
dual Selmer group Selp∞(E/F∞)∨ to be pseudonull as a Λ(G)-module.

Proposition 4.15. Let E be an elliptic curve defined over Q and F be a
number field. Let F∞/F be a strongly admissible pro-p, p-adic Lie extension
of F . Assume that all of the following conditions are satisfied

(i) rankZE(F ) = 0,

(ii) X(E/F )[p∞] is finite,

(iii) Selp∞(E/F∞)∨ satisfies MH(G), and

(iv) the Lie algebra of H is reductive.

Then the following are equivalent

1. χ(G,E, p) = 1.

2. AkE/F∞ is a unit in Λ(ΓF ) and Selp∞(E/F∞)∨ is a pseudonull Λ(G)-
module.

Proof. We first prove (1)⇒(2). By Proposition 4.5, the assumption (FinGL ob) is
satisfied. Since rankZE(F ) = 0, the normalized regulatorRp(E/F ) = 1. Thus,
the conditions of Theorem 4.2 are satisfied, whereby ordT=0fE(T ) = 0. It fol-
lows that the ΓF -Euler characteristic χ(ΓF , E, p) is defined. Moreover, accord-
ing to Theorem 4.9, the G-Euler characteristic is defined. Since χ(G,E, p) = 1,
it follows from Proposition 4.11 that the leading term of AkE/F∞ is a unit.
Therefore, in order to show that AkE/F∞ is a unit in Λ(ΓF ), it suffices to show
that ordT=0 AkE/F∞ = 0. It follows from [Zer11, Remark 1.4] that

ordT=0 AkE/F∞ = ordT=0fE(T ) = 0.

Hence, the Akashi series AkE/F∞ is a unit in Λ(ΓF ). By Proposition 4.14, the
dual Selmer group Selp∞(E/F∞)∨ is a pseudonull Λ(G)-module.
Finally, the implication (2)⇒(1) follows from Proposition 4.11.
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5 Growth of Mordell–Weil ranks

Let F∞ be an admissible p-adic Lie extension of dimension d ≥ 2, and assume
that G = Gal(F∞/F ) is a uniform pro-p group. For n ≥ 0, we write Gn = Gpn

,
Hn = Hpn

, and define Fn = FGn . In particular, Fn/F is a finite extension of
degree pdn.
Throughout, we assume that Selp∞(E/Fcyc)

∨ is Λ(ΓF )-torsion and that
Selp∞(E/F∞)∨ satisfies MH(G). As before, define

X (E/F∞)f := Selp∞(E/F∞)∨/ Selp∞(E/F∞)∨(p).

We are interested in the Λ(H)-rank of X (E/F∞)f . As discussed in the in-
troduction (see also [How02, CSS03]), for a finitely generated Λ(G)-module
M satisfying MH(G), the Λ(H)-rank of Mf can be regarded as the higher-
dimensional analogue of the λ-invariant. In [Maz72], Mazur proved that the
λ-invariant of Selp∞(E/Fcyc)

∨ gives a bound on the rank of the Mordell–Weil
groups of E over sub-extensions inside Fcyc. More recently, P. C. Hung and
M. F. Lim proved the following higher-dimensional generalization of Mazur’s
result.

Theorem 5.1. Suppose that Hi(Hn, Selp∞(E/F∞)∨) is finite for every i ≥ 1
and n ≥ 0. Then,

rankZ E(Fn) ≤ rankΛ(H) X (E/F∞)f · p(d−1)n + d corankZp
E(F∞)(p).

Proof. See [HL20, Theorem 3.2].

The hypothesis on the finiteness of Hi(Hn, Selp∞(E/F∞)∨) is known to hold
in the settings we will study in subsequent sections. As detailed in the remark
right after [HL20, Theorem 3.2], when d = 2 or 3, this has been proved in
[Lim15] and [DL15]. More generally, it holds under the hypotheses (Finglob)
and (Finloc) by [Zer09, Lemma 4.3].

Remark 5.2. For elliptic curve without CM, we know that E(F∞)[p∞] is finite
if E[p∞] is not rational over F∞, see [LM14, Lemma 6.2].

The following result gives an explicit relation between the Λ(H)-rank of
X (E/F∞)f and the cyclotomic λ-invariant, λp(E/Fcyc).

Proposition 5.3. Given a prime v of F , define

Zv =

{
E(Fv)(p) if v ∤ p,

Ẽ(κv)(p) otherwise.

Denote by v the rational prime below a prime w of Fcyc. Then, we have that

rankΛ(H) X (E/F∞)f = λp(E/Fcyc)+
∑

w∈S(Fcyc),
dimHw≥1

corankZp
H0(Fcyc,w, Zv). (5.1)
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Here, S is the set of rational primes ℓ consisting of p, the set of primes at
which E has bad reduction, and the primes that are ramified in F∞; S(Fcyc)
consists of all primes w of Fcyc that lie above the set S.

Proof. See [HL20, Proposition 4.1].

Remark 5.4. If M is a finitely generated Λ(H)-module, by [CSS03, p. 208] we
know that

rankΛ(H) M = 0 if and only if M is Λ(G)-pseudonull. (5.2)

If X (E/F∞) lies in MH(G), then the above statement holds for M =
X (E/F∞)f . On the other hand, there are a large class of p-adic Lie extensions
such that M = X (E/F∞) is a finitely generated Λ(H)-module. In particular,
for p-adic Lie extensions of interest (see §6), it is known that X (E/F∞) is
a finitely generated Λ(H)-module if and only if X (E/Fcyc) is a finitely gener-
ated Zp-module, see [HV03, Theorem 3.1(i)] and [CH01]. In such cases, (5.2)
holds for both M = X (E/F∞) and X (E/F∞)f . From our earlier discussion in
Proposition 4.15, we know that

χ(G,E, p) = 1⇒ X (E/F∞) is pseudonull.

The following implication is straightforward,

rankΛ(H) X (E/F∞) = 0⇒ rankΛ(H) X (E/F∞)f = 0.

This shows that if the G-Euler characteristic of the Selmer group is a p-adic
unit, then X (E/F )f is Λ(H)-torsion. However, as pointed out to us by the
referee, the converse is not true in general. Consider the elliptic curve with
Cremona label 11a1 or 11a2 and p = 5. It is known that X (E/Fcyc) has
positive µ-invariant but trivial λ-invariant, see [CS10, Chapter 5]. Let F∞ =

Fcyc(5
5−∞

). An application of [CFK+05, Lemma 5.6] shows that MH(G)-
conjecture is satisfied in this case. Therefore, by [Lim15, Theorem 3.1] we
know that

µG

(
X (E/F∞)

)
= µΓ

(
X (E/Fcyc)

)
> 0.

By the previous proposition, we also know that

rankΛ(H)

(
X (E/F∞)

)
f
= 0.

However, the G-Euler characteristic is pµG(X (E/F∞)), see [AW06].

From here on, we set Zv(Fcyc,w) to simply denote H0(Fcyc,w, Zv). We may
describe the coranks of the local terms Zv(Fcyc,w) explicitly as follows.

Lemma 5.5. Let S(Fcyc) be the set of primes described in Proposition 5.3.
Then,

corankZp
Zv(Fcyc,w) =





2 w ∤ p, E has good reduction at w, E(Fv)[p
∞] 6= 0,

1 w ∤ p, E has split multiplicative reduction at w,

0 otherwise.
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Proof. When w ∤ p, then Zv(Fcyc,w) is described in [HM99, Proposition 5.1].
When w|p, Zv(Fcyc,w) is in fact always finite. See the discussion in [Lim21,
§5].

Remark 5.6. The case F = Q(µp) and F∞ = F (µp∞ , p∞
√
m) is discussed in

[HV03, Theorem 3.1] under the hypothesis that Selp∞(E/Fcyc) is a cofinitely
generated Zp-module.

6 p-adic Lie Extensions of Interest

In this section, we discuss examples of p-adic Lie-extensions for which the
results of the previous sections apply. Recall that these assumptions are:

• Assumption 2.1, which asserts that Selp∞(E/F∞)∨ is torsion as a Λ(G)-
module.

• The global (resp. local) finiteness assumption (FinGL ob) (resp. (Finloc))
from Assumption 4.4.

6.1

Let F = Q(
√
−d) be an imaginary quadratic field and F∞ be the compositum

of all Zp-extensions over F . Note that G := Gal(F∞/F ) is isomorphic to Z2
p.

In this setting, Remark 2.2 guarantees that Selp∞(E/F∞) is a cotorsion Λ(G)-
module. Recall that M is the set of primes v ∤ p of F whose inertia group
in G is infinite. It is a simple exercise to show that F∞ is unramified at all
primes v ∤ p. Hence, the set M is empty. Since H = Gal(F∞/Fcyc) ≃ Zp, the
global hypothesis (FinGL ob) holds by Proposition 4.5. For the local hypothesis,
if Ẽ(F∞,w)[p

∞] is finite then there is nothing to prove; else, it follows from
[Zer09, Proposition 5.6]. Thus, Theorem 4.9 simplifies to give

χt(G,E, p) = χt(ΓF , E, p). (6.1)

We review a result of R. Greenberg [Gre16, Proposition 4.1.1] regarding suf-
ficient conditions for Selp∞(E/F∞)∨ to admit no non-trivial pseudonull sub-
module. Let T = Tp(E) ⊗ Λ(G)ι, where ι is the involution on Λ(G) sending a
group-like element to its inverse. We write D = T ⊗Λ(G) Λ(G)∨.
In the notation of [Gre16, §2.1], the condition RFX(D), which asserts that T
is a reflexive Λ(G)-module holds since it is free over Λ(G). The condition
LEO(D) says that

ker


H2(FS/F,D)→

∏

v∈Σ

H2(Fv,D)




is a cotorsion Λ(G)-module. Recall from [Gre06, Theorem 3] that there is an
isomorphism of Λ(G)-modules H2(FS/F,D) ∼= H2(FS/F∞, E[p∞]).
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Recall that Selp∞(E/F∞)∨ is Λ(G)-torsion by Remark 2.2. Further,

rankΛ(G)

⊕

ℓ∈S

Jℓ(E/F∞)∨

= rankΛ(G) H
1(FS/F∞, E[p∞])− rankΛ(G) H

2(FS/F∞, E[p∞]) = 2

by [OV03, Theorems 3.2 and 4.1]. A standard argument with Poitou–Tate
exact sequence then tells us that H2(FS/F∞, E[p∞]) is cotorsion over Λ(G),
whereas H1(FS/F∞, E[p∞]) is of corank two. In particular, LEO(D) holds.
The condition CRK(D,L), which says that

corankΛH1(FS/F∞, E[p∞]) = corankΛ Selp∞(E/F∞)+corankΛ
⊕

ℓ∈S

Jℓ(E/F∞)

also holds since both sides equal to 2 in our current setting.
We now consider the conditions LOC

(i)
v (D), i = 1, 2. Let T ∗ = Hom(D, µp∞).

The conditions say that for v ∈ S, we have (T ∗)GFv = 0 and T ∗/(T ∗)GFv is a
reflexive Λ(G)-module, respectively. Since p 6= 2, we have (T ∗)GFv = 0 when v
is an archimedean prime. Furthermore, if v is a non-archimedean prime, it does
not split completely in F∞. By [Gre10, Lemma 5.2.2], (T ∗)GFv = 0. As T ∗ is

a free Λ(G)-module, the conditions LOC
(1)
v (D) and LOC

(2)
v (D) both hold for

all v ∈ S.
We can now state the following result due to Greenberg.

Proposition 6.1. If E(F ) has no element of order p, then Selp∞(E/F∞)∨

admits no non-trivial pseudonull submodule.

Proof. We have verified the hypotheses RFX(D), LEO(D), CRK(D,L),
LOC

(1)
v (D), and LOC

(2)
v (D) hold for all v ∈ S. Next, the condition D[m]

admits no quotient isomorphic to µp for the action of GF (assumption (b) in
loc. cit.) is equivalent to E(F )[p] = 0 via the Weil pairing (see the last para-
graph on p. 248 of op. cit.). Therefore, the result is a direct consequence of
[Gre16, Proposition 4.1.1].

6.2

We now move on to noncommutative p-adic Lie extensions. A prototypical
example of a noncommutative p-adic Lie extension is the false Tate curve ex-
tension. This extension is obtained by adjoining the p-power roots of a fixed
(p-power free) integer m > 1 to the cyclotomic Zp-extension of F = Q(µp).
More precisely,

F∞ = Q
(
µp∞ , m

1
pn : n = 1, 2, . . .

)
.

Recall that G := Gal(F∞/F ) and H := Gal(F∞/Fcyc). There is a section to
the quotient map G→ ΓF , thus G is a semi-direct product H ⋊ ΓF . Fix non-
canonical isomorphisms H ≃ Zp and ΓF ≃ Zp. By Kummer theory, the action
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of ΓF on H is via the cyclotomic character. It follows from [HV03, Lemma 7.3]
that

rankΛ(G) Selp∞(E/F∞)∨ ≤ rankΛ(ΓF ) Selp∞(E/Fcyc)
∨.

Since Kato’s result guarantees that Selp∞(E/Fcyc) is Λ(ΓF )-cotorsion,
Selp∞(E/F∞) is thus Λ(G)-cotorsion.
To discuss the precise formula for the G-Euler characteristic of Selp∞(E/F∞),
we need to introduce two sets of primes in F . Define

P1(E,F∞) :={v ∤ p : v|m and E has split multiplicative reduction at v.},

P2(E,F∞) :={v ∤ p : v|m,E has good ordinary reduction at v,

and E(Fv)[p
∞] 6= 0}.

(6.2)

By [HV03, §4.1], we know that the set M appearing in Theorem 4.9 is given
by

M = M(E,F∞) = P1(E,F∞) ∪ P2(E,F∞). (6.3)

Since H ≃ Zp, the Lie algebra of H is reductive, and (FinGL ob) is true by
Proposition 4.5.
For the false Tate curve extension, it is known that the Selp∞(E/F∞)∨ has no
non-zero pseudonull submodules. We record this result below.

Theorem 6.2. Let p be an odd prime and E/Q be an elliptic curve with good
ordinary reduction at p. Then, Selp∞(E/F∞)∨ has no non-zero pseudonull
submodules.

Proof. See [HV03, Theorem 2.6 and proof of Theorem 2.8].

6.3

Consider a pair of elliptic curves (E,A) both defined over Q. Assume that A
does not have CM. Let F := Q(A[p]) and consider the pro-p p-adic Lie extension
F∞,A := Q(A[p∞]) with corresponding Galois group GA. For the remainder of
this section we assume that p ≥ 5 to ensure that GA has no p-torsion. Then
F∞/F is an admissible pro-p, p-adic Lie extension. We shall study the Selmer
group Selp∞(E/F∞) as a Λ(GA)-module.
We can describe the set M explicitly in this setting. By [Coa99, Lemma 2.8(i)],
the decomposition group at v ∤ p has dimension 1 (resp. 2) if v is a prime of
potentially good reduction (resp. potentially multiplicative reduction) for A.
Hence, the primes of potentially multiplicative reduction are ramified in the
trivializing extension and their inertia group is infinite. Therefore, the set
M consists of precisely the primes at which A has potentially multiplica-
tive reduction (or those primes for which the j-invariant of A has nega-
tive valuation), see [CSS03, Theorem 3.1]. Finally, we remark that since
H = HA = Gal(F∞,A/Fcyc) is semi-simple, it follows from [Zer09, Lemma 5.4]
that (FinGL ob) holds. However, we are not aware of any unconditional results
on Assumption 2.1 in this setting.
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We end this section with the following remark which allows us to relate the
Euler characteristic formula to the characteristic element, in our p-adic Lie
extensions of interest.

Remark 6.3. Let F be a number field which is not totally real, and F∞/F be a
pro-p strongly admissible extension. For our p-adic Lie extensions of interest,
both conditions are satisfied. If E/Q is an elliptic curve satisfying the condi-
tions of Proposition 4.15 and F∞/F is such that Selp∞(E/F∞)∨ admits no
non-zero pseudonull submodules, then it is possible to draw conclusions about
the characteristic element required in the formulation of the main conjectures
of noncommutative Iwasawa theory. In particular, it follows from [Lim15, The-
orem 5.11 and Proposition 6.2] that the Euler characteristic is a p-adic unit if
and only if the characteristic element is a unit as well.

7 Tamagawa number calculations

In this section, we will perform routine calculations on Tamagawa numbers
upon base-change. These results will be required in subsequent discussions.
Throughout, p ≥ 5 is fixed. For a rational prime ℓ 6= p, set

τℓ = τ
(Q)
ℓ := c

(p)
ℓ (E/Q) and τ

(F )
ℓ :=

∏

v|ℓ

c(p)v (E/F ).

In this section, the goal is to compute how the Tamagawa numbers behave
when the base field is changed from Q to F . We remind the reader that by
[Sil09, p. 448], cℓ is divisible by p ≥ 5 precisely when the Kodaira type of E
at ℓ is In with p|n.

7.1

Let E/Q be an elliptic curve with good ordinary reduction at fixed p ≥ 5 and
conductor NE . Consider the imaginary quadratic field F = Q(

√
−d) as d varies

over all positive square-free numbers coprime to pNE . We write τ
(d)
ℓ in place

of τ (F )
ℓ . The main result in this direction is the following.

Theorem 7.1. With notation as above, let ℓ be a prime such that ℓ|NE and
τℓ = 1. Then, the following assertions hold.

1. If ℓ 6= 2 then τ
(d)
ℓ = 1 for ℓ ∤ d.

2. If ℓ = 2 then τ
(d)
ℓ = 1 for all d.

Proof. The proof follows from that of [HKR21, Theorem 7.2], where the asser-
tion is made when d is a prime number. The result holds even in this more
general setting.
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7.2

Consider the case when F = Q(µp). By the assumption on p, it follows that
the degree [F : Q] = p − 1 ≥ 4. The only prime that ramifies in F is p, and
this prime is totally ramified. Fix a prime ℓ 6= p, and denote by Tbase the
Kodaira symbol of E over Qℓ. In [Kid03], M. Kida studied the variation of the
reduction type under a finite extension Fv/Qℓ. For ℓ ≥ 5, the Kodaira symbol
of the base-change E/Fv

is determined by Tbase and the ramification index of
Fv/Qℓ, as we now explain.

(a) If ℓ is completely split in F , then Fv = Qℓ. It is immediate that τ (F )
ℓ = τℓ.

(b) Otherwise, let v|ℓ in F . Since ℓ is unramified in F , the ramification index
of v is e = 1. Varying over all extensions Fv with v|ℓ, we read off the “new”
Kodaira type Tnew from [Kid03, Table 1, pp. 556-557]. According to this
table, base changing from Qℓ to Fv, the Tamagawa number cv becomes
divisible by p precisely when

Tbase = In such that p|n.

8 Results for fixed E/Q and p as F∞ varies

We remind the readers that E is defined over Q with good ordinary reduction
at p. This will be the standing assumption throughout this section. We are
interested in answering the following related questions

(a) Is the truncated Euler characteristic χt(G,E, p) a p-adic unit?

(b) What can be said about the Akashi series AkE/F∞?

(c) Suppose rankZE(Q) = 0. When is the Selmer group Selp∞(E/F∞)∨

pseudonull as a Λ(G)-module? When is it equal to 0?

(d) What can be said about the growth of rankE(Fn) as n→∞?

In this section, we make progress on such questions on average, which is to say
that we fix the pair (E, p) and let F∞ vary over certain families of extensions.
As F∞ varies over the family, the number field F does not need to be fixed.
Though there is no formal definition of a family of extensions we are aware of,
the families we study are quite natural to consider.
In §8.1, we vary over all imaginary quadratic fields F = Q(

√
−d) and con-

sider the (unique) Z2
p-extension F (d)

∞ /F . The main result in this section is
Theorem 8.2 which provides equivalent criteria for the (p-adic) triviality of
the G-Euler characteristic. This allows the formulation of Conjecture 8.6. A
result on the variation of the Mordell–Weil rank growth is recorded in Corol-
lary 8.3. In §8.2, we fix the field F = Q(µp) and consider a family of false Tate
curve extensions. In Theorem 8.11, we study the question pertaining to how
often the G-Euler characteristic is a p-adic unit. We study the variation of the

Documenta Mathematica 27 (2022) 89–149



112 D. Kundu, A. Lei, A. Ray

Λ(H)-corank of the Selmer group and the growth of the Mordell–Weil ranks
in §8.2.1. In §8.3, we vary over non-CM elliptic curves A/Q to obtain a family
of GL2(Zp)-extensions. Under some reasonable hypotheses, we show that the
GA-Euler characteristic is a p-adic unit for infinitely many (but density 0) el-
liptic curves A/Q. In §8.3.2, we make some observations on the Λ(H)-coranks
of Selmer groups.

8.1

Let d range over all positive square-free numbers coprime to the conductor
NE . In this section, we write F = F (d) to denote the imaginary quadratic field
Q(
√
−d). Let F (d)

∞ be the Z2
p-extension obtained from taking the composite of

all Zp-extensions of F (d). It is easy to see that F (d)
∞ is a strongly admissible ex-

tension of F (d). Set G(d) := Gal(F (d)
∞ /F (d)) and ΓF = Γ(d) := Gal(F

(d)
cyc/F (d)).

We want to understand how often the G(d)-Euler characteristic χt(G
(d), E, p)

is equal to 1 as d varies over all positive square-free numbers. Throughout, we
shall impose the following standard hypotheses.

• X(E/F (d))[p∞] is finite,

• The normalized p-adic regulator Rp(E/F (d)) is non-zero.

The second hypothesis is satisfied whenever rankZ E(F (d)) = 0, in which case
the normalized p-adic regulator is equal to 1 by definition. The following result
shall motivate the next assumption on E.

Lemma 8.1. Let F be a number field with [F : Q] prime to p. Assume
that χt(ΓQ, E, p) and χt(ΓF , E, p) are both defined. Then, χt(ΓQ, E, p) divides
χt(ΓF , E, p).

Proof. Under the assumption that χt(ΓQ, E, p) and χt(ΓF , E, p) are defined, it
follows that Selp∞(E/Qcyc)

∨ and Selp∞(E/Fcyc)
∨ are both torsion over their

respective Iwasawa algebra. Let f(E/Qcyc) (resp. f(E/Fcyc)) be the charac-
teristic element of Selp∞(E/Qcyc)

∨ (resp. Selp∞(E/Fcyc)
∨) as a Λ(ΓQ)-module

after identifying ΓQ with ΓF . Since [F : Q] is coprime to p, it follows that the
map induced by restriction

Selp∞(E/Qcyc)→ Selp∞(E/Fcyc)

is injective, and hence, f(E/Qcyc) divides f(E/Fcyc). Therefore, the leading
coefficient of f(E/Qcyc) divides that of f(E/Fcyc). The result now follows from
Lemma 3.3.

If p divides χt(ΓQ, E, p), then p must divide χt(Γ
(d), E, p) for all d. By (6.1), we

know that χt(G
(d), E, p) is equal to χt(Γ

(d), E, p). Thus for all d, the Γ(d)-Euler
characteristic χt(Γ

(d), E, p) is divisible by p. On the other hand, it is indeed
possible for p to divide χt(G

(d), E, p) when χt(Γ, E, p) = 1. We study the case
when rankZ E(Q) = 0 and we assume that the following equivalent conditions
hold for E

Documenta Mathematica 27 (2022) 89–149



Arithmetic Stats & Noncom Iwasawa Theory 113

(a) χ(ΓQ, E, p) = 1,

(b) µp(E/Qcyc) = 0 and λp(E/Qcyc) = 0,

(c) Selp∞(E/Qcyc) = 0.

When the residual representation on E[p] is irreducible, it has been conjectured
by Greenberg that µp(E/Qcyc) = 0, see [Gre99, Conjecture 1.11]. We have the
following result.

Theorem 8.2. Let E be an elliptic curve defined over Q with conductor NE

and p ≥ 5 a prime for which the following hypotheses are satisfied

(i) E has good ordinary reduction at p,

(ii) rankZE(Q) = 0 and E(Q)[p∞] = 0,

(iii) χ(ΓQ, E, p) = 1,

(iv) E has good reduction at ℓ = 2, 3.

Let F (d) := Q(
√
−d) be an imaginary quadratic field, for which the following

conditions are satisfied

(i) rankZE(F (d)) = 0,

(ii) Selp∞(E/F (d)
∞ )∨ satisfies MH(G),

(iii) ap(E) 6≡ −1 mod p if p is inert in F (d),

(iv) gcd(NE , d) = 1.

Then, the following are equivalent

1. X(E/F (d))[p∞] = 0.

2. E(F (d))[p∞] = 0 and χt(G
(d), E, p) = 1.

3. E(F (d))[p∞] = 0 and the Akashi-series Ak
E/F

(d)
∞

is a unit in Λ(Γ) and

Selp∞(E/F (d)
∞ ) is pseudonull.

4. E(F (d))[p∞] = 0 and Selp∞(E/F (d)
∞ ) = 0.

Proof. First, we note that Selp∞(E/F (d)
∞ )∨ is torsion as a Λ(G(d))-module.

This follows from the argument given in [HV03, Remark 2.2]. By Proposi-
tion 4.15, statements (2) and (3) are equivalent. Statement (3) implies that

Selp∞(E/F (d)
∞ )∨ is pseudonull as a Λ(G(d))-module. Thus, by Proposition 6.1,

Selp∞(E/F (d)
∞ ) = 0. Hence, (3) and (4) are equivalent. It suffices to prove that

statements (1) and (2) are equivalent.
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First assume that (2) holds, i.e., that χ(G(d), E, p) = 1. By (6.1), we have the
following equality relating the Euler characteristic for G(d) with that over for
Γ(d)

χt(G
(d), E, p) = χt(Γ

(d), E, p).

By the Euler characteristic formula,

χt(Γ
(d), E, p)

=
#X(E/F (d))[p∞]×∏v c

(p)
v (E/F (d))×∏v|p #

(
Ẽ(κv)[p

∞]
)2

(
#E

(
F (d)

)
[p∞]

)2 .
(8.1)

Since the Euler characteristic is an integral power of p, it suffices to show
that the terms in the numerator are all equal to 1. First, by assumption,
#X(E/F (d))[p∞] = 1. Next, it is assumed that χ(ΓQ, E, p) = 1. It follows

that c
(p)
ℓ (E/Q) = 1 for all primes ℓ 6= p. Since d is assumed to be coprime

to the level NE, by Theorem 7.1, the Tamagawa product
∏

v∤p c
(p)
v (E/F (d)) is

equal to 1. Once again, since χ(ΓQ, E, p) = 1, it follows that ap(E) 6≡ 1 mod p.
This also implies that p ∤ #Ẽ(Fp2).
Conversely, suppose that E(F (d))[p∞] is trivial and χt(Γ

(d), E, p) = 1. Then
the terms in the numerator of (8.1) are all equal to 1. In particular,
#X(E/F (d))[p∞] = 1.
The last assertion of the theorem follows from Propositions 6.1 and 4.14.

Corollary 8.3. Let E/Q be a fixed elliptic curve of conductor NE and set

F (d) = Q(
√
−d). Suppose that d is a square-free integer coprime to NE with

the properties that the conditions of Theorem 8.2 hold for the pair (E,F (d))
and that #X(E/F (d))[p∞] = 0. As d varies over all such square-free integers,

the Mordell–Weil rank of E(F
(d)
n ) = 0, for all n, where F

(d)
n is the unique

sub-extension of F (d)
∞ with Gal(F

(d)
n /F (d)) ≃ (Z/pn)2.

Proof. By Theorem 8.2, Selp∞(E/F (d)
∞ ) = 0 for all d ∤ NE . Consequently,

E(F (d)
∞ ) is finite since E(F (d)

∞ ) ⊗ Qp/Zp injects into Selp∞(E/F (d)
∞ ). Thus,

E(F
(d)
n ) is also finite for all n.

Remark 8.4. More generally, the following is true. The only primes that
ramify in the unique Z2

p-extension above F , are the primes above p. Therefore,
S(Fcyc) is the set of primes of Fcyc lying above the primes above p and the
primes where E has bad reduction in F . Also, for any prime w ∤ p, it is known
that dimHw = 0. From (5.1), we deduce that

rankΛ(H) X (E/F∞)f = λp(E/Fcyc).

It follows from (5.1) that

rankZ E(Fn) ≤ λp(E/Fcyc)p
n + 2 corankZp

E(F∞)(p).
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In the non-CM case, E(F∞)(p) is finite; hence corankZp
E(F∞)(p) = 0. In the

CM case, this need not be true. But the recent result in [Ray21] implies that
even in this case,

rankZ E(Fn) ≤ λp(E/Fcyc)p
n.

Theorem 8.2 provides insight into how often the Selmer group Selp∞(E/F (d)
∞ )

is zero. As before, consider the imaginary quadratic field F (d) := Q(
√
−d), and

the associated character χd : Gal(F (d)/Q) → {±1}. Let E(−d) be the elliptic
curve over Q defined by the twist of E by the character χd. Then, we have
that

rankZ E(F (d)) = rankZ E(Q) + rankZ E
(−d)(Q).

Since we have assumed that rankZ E(Q) = 0, it follows that rankZ E(F (d)) =
rankZ E

(−d)(Q).

Conjecture 8.5 (Goldfeld). For x > 0 and r ∈ Z≥1, define

Nr(E, x) := #{|d| < x| rankan(Ed) = r}.

Then for r ∈ {0, 1},
Nr(E, x) ∼ 1

2

∑

|d|<x

1

as x→∞, and the sum is over all square-free integers d.

As d ranges over all positive square-free integers for which p splits in F (d),
it is reasonable to expect that for 1/2 of the values of d, upon base-change,
rankZ E(F (d)) = 0. Explicit calculations show that given an imaginary
quadratic field K and an elliptic curve E/Q for which X(E/Q)[p∞] = 0, it
is rare for X(E/K)[p∞] 6= 0 (in both the variation of K and the prime p).
The reader is referred to [HKR21, Table 1] for data on the growth of the X-
group upon base-change by an imaginary quadratic field. Therefore, putting
everything together, Theorem 8.2 shows that for elliptic curves for which
the hypotheses are satisfied, it is a rare occurrence for the Selmer group
Selp∞(E/F (d)

∞ ) to be non-zero as d varies over all positive square-free integers.
We are led to make the following conjecture.

Conjecture 8.6. Let E be an elliptic curve defined over Q and p ≥ 5 a prime
such that the hypotheses of Theorem 8.2 are satisfied. Let D be the set of all
positive square-free integers d such that p splits in Q(

√
−d). Then, for an

infinite subset D′ contained in D, the Selmer group Selp∞(E/F (d)
∞ ) = 0 for all

d ∈ D′.

Remark 8.7. When E/Q and F = Q(
√
−d), a refinement of H. Yu’s result by

D. Qiu (see [Qiu14, p. 5051]) proves that if E has no p-torsion over Q, then

#X(E/Q)[p∞] ·#X(E(−d)/Q)[p∞] = #X(E/F )[p∞].
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In particular, given E/Q, for all but finitely many primes, we have

#X(E(−d)/Q)[p∞] = #X(E/F )[p∞].

It is conjectured that for all primes p, the Tate–Shafarevich group of the twisted
elliptic curve X(Es/Q) has an element of order p for a positive proportion
of s ∈ Q× \ Q×2, when the elliptic curves are ordered by height [BKLOS21,
Conjecture 1.1].

8.2

The next family we consider arises from false Tate curve extensions. Let F :=
Q(µp) and define the false Tate curve extension as follows

F (m)
∞ = Q

(
µp∞ , m

1
pn : n = 1, 2, . . .

)
.

Let G(m) := Gal(F (m)
∞ /F ). As m ∤ NEp varies over all primes, {F (m)

∞ } is viewed
as a family of noncommutative admissible pro-p, p-adic Lie extensions of the
fixed number field F . We assume that the truncated ΓF -Euler characteristic
χt(ΓF , E, p) is equal to 1.
Recall that

χt(G
(m), E, p) = χt(ΓF , E, p)×

∏

v∈M

∣∣Lv(E, 1)
∣∣
p
=
∏

v∈M

∣∣Lv(E, 1)
∣∣
p
,

where M = Mm = P1(E,F (m)
∞ ) ∪ P2(E,F (m)

∞ ) (introduced in (6.2)). Since E
and p are fixed, the truncated ΓF -Euler characteristic remains unchanged upon
varying m. Therefore, to study the variation of the truncated G(m)-Euler
characteristic, we must study the variation of the local Euler factors. For all
but finitely many m, the set P1 = ∅. This is because E is fixed and hence
the primes of split multiplicative reduction (call them ℓ1, . . . , ℓk) are also fixed.
Thus, P1 6= ∅, precisely when m = ℓi for some i.
Next, we analyze the set P2. First, we evaluate the proportion of primes m
such that E(κv)[p] = 0 for all primes v|m of Q(µp). Here, κv is the residue field
at v, and κv = Fmf , where f is the smallest positive integer such that mf ≡ 1
mod p. The value of f is a divisor of p − 1 = [Q(µp) : Q]; it equals 1 if m
splits completely in Q(µp) and equals p− 1 if it is inert in Q(µp), see [Was97,
Theorem 2.13].
Consider the Galois group GE,p := Gal(Q(E[p])/Q), and note that GE,p may
be viewed as a subgroup of GL2(Z/pZ) via the residual representation

ρ̄E,p : GE,p →֒ GL2(Z/pZ).

Assume that m is coprime to the conductor of E. In particular, m is unramified
in Q(E[p]). Let σm ∈ GE,p be the Frobenius at m. The trace and determinant
of ρ̄(σm) are as follows

trace ρ̄(σm) = am(E) = m+ 1−#Ẽ(Fm), and det ρ̄(σm) = m.
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For the prime v|m of Q(µp), the field κv = Fmf . According to a formula of
A. Weil (see [Sil09, Theorem V.2.3.1]),

#E(κv) = mf + 1− αf − βf ≡ 2− αf − βf mod p,

where α and β are the eigenvalues of ρ̄(σm). This brings us to the following
definition. For g ∈ GE,p, let f(g) be the smallest integer f ∈ Z≥1 such that
detρ̄(g)f = 1.

Definition 8.8. Let HE,p consist of all g ∈ GE,p such that the eigenvalues
α, β ∈ F̄p of ρ̄(g) satisfy

αf(g) + βf(g) 6= 2.

Since (αβ)f(g) = mf(g) = 1, this condition is equivalent to αf(g) 6= 1.

Lemma 8.9. For a prime m 6= p, let v be the prime of Q(µp) above m, and κv

be the residue field at v. The density of primes m, coprime to the conductor

of E, for which E(κv)[p] = 0 is
(

#HE,p

#GE,p

)
.

Proof. It follows from the definition of HE,p that σm ∈ HE,p if and only if
E(κv)[p] = 0. The result follows from the Chebotarev density theorem.

Corollary 8.10. Let E/Q be an elliptic curve and p be an odd prime. Let
F := Q(µp) and assume that the following conditions hold.

(i) X(E/F )[p∞] is finite.

(ii) The truncated Euler characteristic χt(ΓF , E, p) is defined and equal to 1.

(iii) The MH(G) conjecture is true for Selp∞(E/F (m)
∞ ) at every prime m 6= p.

Then, the density of primes m ∤ NEp for which χt(G
(m), E, p) = 1 is at least(

#HE,p

#GE,p

)
.

Proof. Note that the assumptions made in the statement of this result ensure
that the hypotheses in Lemma 8.9 hold. The proof is immediate from the
aforementioned lemma.

Theorem 8.11. Let E/Q be an elliptic curve such that rankZ E(Q(µp)) = 0
and such that the conditions of Corollary 8.10 are satisfied. Then, the density

of primes m ∤ NEp for which Selp∞(E/F (m)
∞ ) = 0 is at least

(
#HE,p

#GE,p

)
.

Proof. Let m be a prime number for which χt(G
(m), E, p) = 1. Then, it fol-

lows from Proposition 4.15 that Selp∞(E/F (m)
∞ )∨ is pseudonull as a Λ(G)-

module and the associated Akashi series is a unit. However, we have noted in
Theorem 6.2, that Selp∞(E/F (m)

∞ )∨ has no non-trivial pseudonull submodules.

Hence, it follows from Proposition 4.14 that Selp∞(E/F (m)
∞ ) = 0. The assertion

is now immediate from Corollary 8.10.
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Remark 8.12. In the above theorem, if the residual representation

ρ̄ : Gal(Q̄/Q)→ GL2(Fp)

on E[p] is surjective, it follows from Remark A.1 that
(

#HE,p

#GE,p

)
≥ p2

2(p2−1) >
1
2 .

Recall that if E is an elliptic curve without CM, then ρ̄ is surjective for p≫ 0.
Therefore, on combining Remarks A.1 and A.2, we have

lim inf
p→∞

(
#HE,p

#GE,p

)
≥ 5

8
.

Similar to Corollary 8.3, combining Theorem 8.11 and Remark 8.12 gives

Corollary 8.13. Let E/Q be a non-CM elliptic curve with rankZ E(Q(µp)) =
0 and such that the conditions of Corollary 8.10 are satisfied. Furthermore,
suppose that the residual representation on E[p] is surjective. For at least half
of the prime numbers m not dividing pNE, we have rankZ E(Fn) = 0 at each

finite layer of F (m)
∞ /F .

We illustrate this corollary via an explicit example. Consider the rank 0 elliptic
curve with LMFDB label 11.a1 with good ordinary reduction at p = 3. Now,
consider the quadratic field extension F = Q(µ3) = Q(

√
−3). The base-change

curve is 121.1-a1; it can be checked that the order of the Shafarevich–Tate group
is trivial and so is the Mordell–Weil rank. The Tamagawa number τ11 = 1.
Since 3 is coprime to the conductor of E, Theorem 7.1 asserts that τ

(F )
11 = 1.

On the other hand, #Ẽ(F3) = 5. Hence, by the Euler characteristic formula,
χ(ΓF , E, p) = 1. As m varies over all primes (not equal to 3, 11), for at least
9
16 of the primes, rankZ(E(F

(m)
n )) = 0 at each finite layer of F (m)

∞ /F .

8.2.1

We now analyze the Λ(H)-rank of the Selmer group and the growth of the
Mordell–Weil rank of the elliptic curve over a false Tate curve extension of the
cyclotomic number field, Q(µp). In this case, (5.1) is

rankΛ(H) X (E/F (m)
∞ )f = λp(E/Fcyc) +

∑

v|ℓ, ℓ|NE , ℓ|m
ℓ split multiplicative

1 +
∑

q|m,
v|q,E(Fv)[p

∞] 6=0

2.

(8.2)
Here we have used that dimHw = 1 for precisely those primes (away from p)

which ramify in the false Tate curve extension, F (m)
∞ /F .

Corollary 8.14. Let E/Q be a non-CM elliptic curve. As m ∤ pNE varies
over all primes, for at least half of such primes,

rankZ E(Fn) ≤ λp(E/Fcyc)p
n

at each finite layer of F (m)
∞ /F .
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Proof. By choosing m such that gcd(m,NE) = 1, we have

∑

ℓ|NE, ℓ|m
ℓ split multiplicative

1 = 0.

Next, as m ∤ pNE varies over all primes, Lemma 8.9 in conjunction with Re-
mark 8.12 implies that for at least half of the primes

rankΛ(H) X (E/F (m)
∞ )f = λp(E/Fcyc).

The result is immediate from Theorem 5.1 and Remark 5.2.

8.3

We fix a prime p ≥ 5 and an elliptic curve E/Q with good ordinary reduction
at p. Consider the pair (E,A) such that A varies over a twist-equivalent fam-
ily of non-CM elliptic curves over Q. This gives rise to (varying) extensions
F∞,A = Q(A[p∞]) of dimension 4 over Q. We set GA := Gal(F∞,A/Q) and
study the variation of the truncated Euler characteristic χt(GA, E, p), i.e., we
study how often this quantity is equal to 1.

Remark 8.15. In this case, GA is not a pro-p extension. Even though we can
apply Theorem 4.9 to study how often the truncated GA-Euler characteristic
is a unit, it gives no information on pseudonullity of the p-primary Selmer
group over F∞,A. However, it provides information regarding the Akashi se-
ries, since the Euler characteristic is equal to 1 if and only if the leading term
of the Akashi series is a unit (in Zp). The extension F∞,A is a pro-p ex-
tension of FA = Q(A[p]), i.e., the Galois group GA = Gal(F∞,A/FA) is a
pro-p group. Unfortunately, it is difficult to study the ΓF -Euler characteristic
χt(ΓF , E, p) on average. The main difficulty is in studying the behaviour of the
Tate–Shafarevich group over Q(A[p]).

The question is simple to answer when p divides the truncated ΓQ-Euler char-
acteristic χt(ΓQ, E, p). Indeed, the same reasoning as Lemma 8.1 shows that
χt(ΓF , E, p) is divisible by p. Therefore, we assume that χt(ΓQ, E, p) = 1. In
view of results proven in [KR21a, Section 3], the aforementioned hypothesis is
satisfied most of the time. Our main result on the question is the following,
which we prove at the end of this section.

Theorem 8.16. Let E/Q be an elliptic curve and p ≥ 5 be a prime of good
ordinary reduction of E. Assume that the following equivalent conditions are
satisfied

(i) µp(E/Qcyc) = 0 and λp(E/Qcyc) = rankZ E(Q),

(ii) χt(ΓQ, E, p) = 1.
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Then, there are infinitely many non-CM elliptic curves A/Q such that

χt(GA, E, p) = 1.

Remark 8.17. Suppose in addition that E does not have CM and has Mordell–
Weil rank 0. Then for 100% of the primes p where E has good ordinary reduc-
tion, the conditions of Theorem 8.16 are satisfied, see [Gre99, Theorem 5.1].

Recall that

χt(GA, E, p) = χt(ΓQ, E, p)×
∏

v∈MA

∣∣Lv(E, 1)
∣∣
p
=

∏

v∈MA

∣∣Lv(E, 1)
∣∣
p
, (8.3)

where M = MA consists of precisely those primes v 6= p for which the inertia
group in GA is infinite. Note that v 6= p is contained in MA if and only if A has
potentially multiplicative reduction at v, see [CSS03, Theorem 3.1]. Lemma 4.6
gives a criterion for p to divide

∣∣Lv(E, 1)
∣∣
p
. In this section, we vary over all

F∞,A/Q and the goal is to estimate how often is χt(GA, E, p) = 1. The above
theorem asserts that such a property holds for infinitely many non-CM elliptic
curves A/Q. However, it will follow from Lemma 8.18 and the estimates in
Lemma 8.21 that the proportion of such elliptic curves is 0%.
Define

T :={v 6= p : E has good reduction at v and p ∤ #Ẽ(κv)}∪
{v 6≡ 1 (mod p) : E has split multiplicative reduction at v}∪
{v 6≡ −1 (mod p) : E has non-split multiplicative reduction at v}∪
{v 6= p : E has additive reduction at v}.

This is precisely the set of primes in Q where
∣∣Lv(E, 1)

∣∣
p
= 1. Since the set of

bad primes of E is finite, it follows that T has natural density

lim
x→∞

#{v ∈ T | v ≤ x}
π(x)

= 1− 1

p
,

see [Coj04, Theorem 1]. Here, π(x) denotes the prime counting function.

Lemma 8.18. Let E/Q be an elliptic curve satisfying the hypotheses of Theo-
rem 8.16, and A/Q be any elliptic curve. Then, the following conditions are
equivalent

1. MA is contained in T,

2. χt(GA, E, p) = 1.

Proof. According to (8.3), χt(GA, E, p) = 1 if and only if
∣∣Lv(E, 1)

∣∣
p
= 1 for

all primes v ∈MA. Moreover,
∣∣Lv(E, 1)

∣∣
p
= 1 if and only if v ∈ T. Hence, the

result follows.
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Proof of Theorem 8.16. One needs to show that there are infinitely many non-
CM elliptic curves A/Q such that MA is contained in T. Observe that a curve A
for which the j-invariant is an integer has potentially good reduction at all
primes; hence MA = ∅ and χt(GA, E, p) = 1 for all pairs (E, p) satisfying the
assumptions of the theorem.
Let A0 be the elliptic curve with Cremona label 128a2. This is a non-CM
elliptic curve with j-invariant, j(A0) = 27; hence, MA0 = ∅. For any odd prime
q ∈ T \MA, let Aq be the quadratic twist of A by the non-trivial quadratic
character ramified only at q. Since MAq

is contained in T, we deduce that
χt(GAq

, E, p) = 1. This completes the proof.

8.3.1

One way of expressing density results is to define the height function of a long
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with integer coefficients a = (a1, a2, a3, a4, a6) ∈ Z5 to be

ht(a) = max
i
|ai|1/i ,

and then order such equations by height. The proportion of curves that lie in
a set S ⊆ Z5 is then given by

d(S) = lim
x→∞

#
{
a ∈ S | ht(a ≤ x)

}

#
{
a ∈ Z5 | ht(a ≤ x)

} .

We now show that if we arrange all elliptic curves over Q by height, the pro-
portion of elliptic curves A/Q in Theorem 8.16 has density 0. The set MA

consists precisely of the primes of potentially multiplicative reduction of A/Q

and Lemma 8.18 asserts that χt(GA, E, p) = 1 if and only if MA is contained
in T. Thus, to count the proportion of A/Q such that χt(GA, E, p) = 1, it
suffices to count elliptic curves A/Q with good reduction or potentially good
reduction at all the primes in the complement of T (say, T′).
The following proposition will be useful for the estimates established in this
section.

Lemma 8.19. Let q be any prime. Suppose we order all elliptic curves defined
over Q by height. Of all such curves,

1. the proportion with multiplicative reduction at q is q8(q−1)
q10−1 .

2. the proportion with potentially multiplicative reduction (but not multi-

plicative reduction) at q is q3(q−1)
q10−1 .

3. the proportion with additive reduction at q is q8−1
q10−1 .
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4. the proportion with good reduction at q is q9(q−1)
q10−1 .

Proof. See [CS21, Propositions 2.2 and 2.6].

Remark 8.20. If we restrict our attention to minimal Weierstrass equations

then we have to multiply each proportion in Lemma 8.19 by q10−1
q10 . We will

often do so in Section 9.

Lemma 8.21. Let T′ be a fixed subset of primes in Q. The proportion of elliptic
curves defined over Q ordered by height with potentially good reduction at all
primes qi ∈ T′ is

∏

qi∈T′

(
1− q3i (qi − 1)(q5i + 1)

q10i − 1

)
.

Furthermore, if T′ has positive density, then, the proportion of such elliptic
curves is 0.

Proof. For each prime qi ∈ T′, the proportion of elliptic curves with either
good or potentially good reduction at qi is given by the complement of the
proportion of elliptic curves with multiplicative or potentially multiplicative
reduction at qi. It follows from Lemma 8.19 that this proportion is

1− q8i (qi − 1)

q10i − 1
− q3i (qi − 1)

q10i − 1
= 1− q3i (qi − 1)(q5i + 1)

q10i − 1
.

The first assertion now follows, see [CS21, Section 3].
To prove the second assertion, observe that for qi ≫ 0,

1− q3i (qi − 1)(q5i + 1)

q10i − 1
≤ 1− 1

2qi
.

It is an easy exercise to show that
∏

qi∈T′

(
1− 1

2qi

)
= 0 if and only if

∑
qi∈T′

1
qi

diverges. Since the density of T′ is positive, it follows that
∑

qi∈T′
1
qi

diverges.

8.3.2

In Remark 8.15, we mentioned that it has not been possible for us to study
the GA-Euler characteristic directly. However, we now make some observations
on the Λ(H)-rank of X (E/F∞)f which will shed some light on the GA-Euler
characteristic formula.
Consider the pair of elliptic curves (E,A), both defined over Q and such that A
is not a CM elliptic curve. Throughout, p ≥ 5 is a fixed prime with good
reduction at p and the base field is F = FA = Q(A[p]). Denote the pro-p
p-adic Lie extension by F∞ = F∞,A = Q(A[p∞]). The corresponding Galois
group is GA, and write H = HA = Gal(F∞,A/Fcyc).
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For any prime w|v (where v ∤ p in F ), dimHw ≥ 1 precisely when the reduc-
tion type is potentially multiplicative, see [Coa99, Lemma 2.8(i)]. Thus, (5.1)
becomes

rankΛ(H) X (E/F∞)f = λp(E/Fcyc) +
∑

v∤p,
v pot. mult. for A

corankZp
Zv(Fcyc,w).

Let SM denote the primes of split multiplicative reduction of E. For simplicity,
we assume that SM 6= ∅ and contains a prime ≥ 5. As A varies over all elliptic
curves defined over Q (ordered by height) with good reduction at p, the base
field FA = Q(A[p]) varies. We would like to calculate for what proportion of
A/Q does the following inequality hold,

rankΛ(HA) X (E/F∞,A)f > λp(E/FA,cyc) ≥ 0.

In other words, as A varies we want to find how often is
∑

v∤p,
v pot. mult. for A

corankZp
Zv(Fcyc,w) > 0.

The above inequality holds for all A/Q with potentially multiplicative reduction
at at least one prime in SM. Therefore, to get a lower bound on the density of
such elliptic curves, we require that A has potentially multiplicative reduction
at at least one prime of SM.
Since A has potentially multiplicative reduction at at least one prime ≥ 5, it
automatically follows that such elliptic curves are non-CM. Indeed, if p divides
the discriminant of a quadratic order O, then all curves with endomorphism
ring isomorphic to O have additive reduction at p, see [CP19, p. 1]. By an
application of Lemma 8.19, we conclude that the proportion of such elliptic
curves is

1−
∏

ℓ∈SM

(
1− ℓ3(ℓ− 1)(ℓ5 + 1)

ℓ10 − 1

)
.

We record this observation below.

Proposition 8.22. Let E/Q be a fixed elliptic curve with good ordinary reduc-
tion at a fixed prime p ≥ 5. Suppose further that E has at least one prime
(≥ 5) of split multiplicative reduction. Then, as A varies over all elliptic
curves over Q, for a positive proportion of A, we have

rankΛ(HA) X (E/F∞,A)f > 0.

9 Results for fixed F∞ and p as E/Q varies

We fix a prime p ≥ 5, and an admissible p-adic Lie-extension F∞ of Q. In this
section, we are once again interested in studying the related questions discussed
in §8. But now, the pair (F∞, p) are fixed and the elliptic curve E varies.
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The arguments of this section rely on short Weierstrass equations, hence we use
a modified notion of height. Any elliptic curve E/Q admits a unique Weierstrass
equation,

E : Y 2 = X3 + aX + b (9.1)

where a, b are integers and gcd(a3, b2) is not divisible by any twelfth power.
Since p ≥ 5, such an equation is minimal. Recall that the height of E satisfying

the minimal equation (9.1) is given by Hmin(E) := max
(
|a|3 , b2

)
. Let E be

the set of isomorphism classes of elliptic curves defined over Q. For any subset
S ⊂ E , let S(x) consist of all E ∈ S such that Hmin(E) < x. The density of S
(if it exists) is defined as the following limit

d(S) := lim
x→∞

#S(x)
#E(x) .

The upper density d̄(S) (resp. lower density d(S)) is defined by replacing the
above limit by lim supx→∞

#S(x)
#E(x) (resp. lim infx→∞

#S(x)
#E(x) ). As E ranges over

the set of elliptic curves, we study the variation of invariants associated to the
Selmer group Selp∞(E/F∞).

Remark 9.1. In this section, we restrict ourselves to minimal Weier-
strass equations because for our main theorems here, we rely on a result of
H.W. Lenstra (see [LJ87, Proposition 1.8]), where such an assumption is made.

In §9.1, we consider the case of the (unique) Z2
p-extension over a fixed imaginary

quadratic field, F . Our results in this section indicate that most of the time, the
truncated G-Euler characteristic is a p-adic unit. Furthermore, we study the
variation of the Mordell–Weil rank growth at finite layers of the Z2

p-extension
and supplement our results with a concrete example. In §9.2, we consider the
case of false Tate curve extensions. The main results are Theorems 9.6 and 9.8,
where we estimate the upper density of the proportion of rank 0 elliptic curves
over Q with non-trivial G-Euler characteristic (resp. G-Euler characteristic). In
the pro-p situation, we study a finer question pertaining to Λ(H)-ranks. In §9.3
we fix a non-CM elliptic curve E0/Q and consider the extension Q(E0[p

∞])/Q.
As E/Q varies over rank 0 elliptic curves with good ordinary reduction at p,
We prove analogous estimates for the GE0 -Euler characteristic and variation
of Λ(H)-ranks (in the pro-p situation) in this four-dimensional non-abelian
extension.

9.1

Let p ≥ 5 be a fixed prime and F = Q(
√
−d) be a fixed imaginary quadratic

field. Consider the unique Z2
p-extension F∞/F and set G = Gal(F∞/F ). As

discussed previously,
χt(ΓF , E, p) = χt(G,E, p).

Let EFp ⊂ E be the subset of elliptic curves E/Q such that
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(a) rankZE(F ) = 0,

(b) E has good ordinary reduction at p,

(c) E has good reduction at ℓ = 2, 3,

(d) χt(ΓF , E, p) 6= 1.

In this section, we show that there is an upper bound on the upper-
density d̄(EFp ). The methods employed here extend those in [HKR21, Sec-
tion 8.2], where we studied how often the anticyclotomic Euler characteristic
χ(Gal(F ac/F ), E, p) is equal to 1. The results we prove in the current set-
ting require more detailed analysis of Euler characteristics, which translate to
explicit estimates.
We consider the following terms

• Xp(E/F ) := #X(E/F )[p∞],

• τp(E/F ) :=
∏

v c
(p)
v (E/F ),

• αp(E/F ) :=
∏

p|p #Ẽ(kp)[p
∞].

Definition 9.2. Let E/Q be an elliptic curve. We say that E satisfies (†) if
the Kodaira type at ℓ = 2, 3 is not of the form In for some n divisible by p.

We remark that an elliptic curve with good reduction at ℓ = 2, 3 satisfies (†).
Definition 9.3. Let E1,F (x), E2,F (x), and E3,F (x) be the subset of ellip-
tic curves E ∈ E(x) with rankZ(F ) = 0, satisfying (†), for which p divides
Xp(E/F ), τp(E/F ), and αp(E/F ), respectively.

Before stating the main theorem in this section, we have to introduce some
additional notation. For κ = (a, b) ∈ Fp × Fp with ∆(κ) := 4a3 + 27b2 non-
zero, we write Eκ for the elliptic curve defined by the Weierstrass equation

Eκ : y2 = x3 + ax+ b.

This tuple κ is not uniquely determined by the isomorphism class of Eκ. If p
is split in F , the residue field κv of F at any prime v|p is equal to Fp. Denote
by Sp the set of pairs κ = (a, b) ∈ Fp × Fp such that Eκ contains a point of
order p over Fp. When p is inert, the residue field is Fp2 . Denote by Ap the set

of pairs κ = (a, b) ∈ Fp × Fp such that p divides #Ẽ(Fp2). Define

b(p) :=

{
#Ap if p is inert in F,

#Sp otherwise.

Note that p divides #Ẽ(Fp2) if and only if ap ≡ ±1 (mod p) (see [HKR21,
Lemma 8.17]). Since the curves with ap = 1 are quadratic twists of curves for
which ap = −1, the numbers of curves with ap = 1 and ap = −1 are the same.
Therefore, #Ap = 2#Sp, see [HKR21, p. 22 last paragraph].
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Theorem 9.4. With the notation as before,

d̄(EFp ) < d̄(E1,F ) +
(
ζ(p)− 1

)
+ ζ(10) · b(p)

p2
.

Proof. The proof of [HKR21, Theorem 8.19] goes through verbatim.

The heuristics for lim supx→∞
#E1,F (x)
#E(x) are due to C. Delaunay [Del07] and can

be considered as an analogue of the Cohen–Lenstra heuristics for the Tate–
Shafarevich group of an elliptic curve. We explain it briefly.
Let E denote the set of isomorphism classes of elliptic curves defined over Q
with rank 0. For x > 0, set E (x) to be the subset of E consisting of E such that
Hmin(E) ≤ x. Assume that for every elliptic curve E/Q, the p-primary part of
the Tate-Shafarevich group X(E/F )[p∞] is finite. The heuristic of Delaunay
states that

lim sup
x→∞

#{E ∈ E (x) |X(E/F )[p] 6= 0}
#E (x)

= f0(p),

where f0(p) is given by

f0(p) = 1−
∞∏

j=1

(
1− 1

p2j−1

)
=

1

p
+

1

p3
− 1

p4
+

1

p5
− 1

p6
. . . .

These values get smaller as p gets larger. For a brief summary of the Cohen-
Lenstra philosophy, see the discussion preceding [HKR21, Heuristic 9.2 and
Theorem 9.3].
Assuming the heuristic, it follows that

lim sup
x→∞

#E1,F (x)
#E(x) ≤ f0(p). (9.2)

In [HKR21, Table 2], values of #Sp/p
2 for the primes 7 ≤ p < 150 are noted.

However, we are now able to say more about these values.
Let Fq be a finite field of characteristic p 6= 2, 3. Denote by N(t) the number of
Fq-isomorphism classes of elliptic curves that have exactly q+1−t points. This
quantity can be computed explicitly in terms of the Kronecker class number
(written as H(·)) when q is not a square (see [Sch87, p. 184]). More precisely,
when q is not a square, for all t ∈ Z,

N(t) =

{
H(t2 − 4q) if t2 < 4q and p ∤ t

H(−4p) if t = 0.
(9.3)

Lemma 9.5. With the notation as above,

#Sp ≤
(
p− 1

2

)
H(1− 4p) ≤ Cp

3
2 log p (log log p)

2
,

Documenta Mathematica 27 (2022) 89–149



Arithmetic Stats & Noncom Iwasawa Theory 127

where C is an effectively computable positive constant. In particular,

lim
p→∞

#Sp

p2
= 0.

Proof. Let Ea,b denote the elliptic curve Y 2 = X3+aX+b with (a, b) ∈ Fp×Fp.
Then Ea,b is isomorphic to Ea′,b′ over Fp if and only if

a′ = c4a and b′ = c6b

for some element c ∈ F×
p . Thus, the number of curves Ea′,b′ that are isomorphic

to Ea,b is at most p−1
2 . The number of elliptic curves up to isomorphism with

#Ẽ(Fp) = p is N(1) = H(1− 4p). This proves the first inequality.
The second inequality is proven in [LJ87, Proposition 1.8]. The assertion that

lim
p→∞

#Sp

p2
= 0

is an immediate consequence.

Putting these assertions together and assuming the Cohen–Lenstra type heuris-
tic for p|#X(E/F ) discussed in (9.2), we have

lim sup
x→∞

#EFp (x)

#E(x)

< 1−
∏

j≥1

(
1− 1

p2j−1

)
+ (ζ(p) − 1) + ζ(10)Cp

−1
2 log p (log log p)

2
.

In particular, the Cohen–Lenstra type heuristics indicate that

lim sup
p→∞

d̄(EFp ) = 0.

This leads to the realization that χt(G,E, p) = 1 is the generic case. In other
words, one expects that most of the time p ∤ χt(G,E, p). Whereas, it rarely
happens that for a rank-zero elliptic curve over Q, p|χt(G,E, p). In other words,
Cohen–Lenstra heuristics for the Tate–Shafarevich group indicates that most
of the time, the Akashi series AkE/F∞ is unit in Λ(ΓF ) = ZpJT K. Therefore, the
Selmer group Selp∞(E/F∞) is Λ(G)-pseudonull. It follows from Proposition 6.1
that Selp∞(E/F∞) = 0.
We now discuss some implications on the growth of the Mordell–Weil rank in
Z2
p-extensions. As E/Q varies over all elliptic curves, it follows from Theorem 5.1

and (5.1) that

rankZ E(Fn) ≤ λp(E/Fcyc)p
n + 2 corankZp

E(F∞)(p).

A question of interest is to find the proportion of elliptic curves for which
the Mordell–Weil rank remains bounded in the Z2

p-extension. Under standard
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hypothesis and the Cohen–Lenstra heuristic for divisibility of the order of the
Tate–Shafarevich by p, we have seen that as p→∞, the proportion of elliptic
curves such that λp(E/Fcyc) 6= rE approaches 0.
Let A/Q be a fixed non-CM rank 0 elliptic curve of conductor NA. Further,
suppose that it has rank 0 over F . As s varies over all integers coprime to NA,
there exists an elliptic curve Es/Q with conductor s2NA. In fact, Es can be
realized as a quadratic twist of the elliptic curve A/Q and has additive reduction
at s. For each such elliptic curve Es as well, we have

rankZ Es(Fn) ≤ λp(Es/Fcyc)p
n.

If further Es/F is also of rank 0, then in the generic case one expects
λp(Es/Fcyc) = 0. In particular, the Mordell–Weil rank of Es remains 0 at
each finite layer of the Z2

p-extension.
We now illustrate this with an example. Let A be the elliptic curve 11a2
(Cremona label). Fix p = 7, and suppose that s = 5. Then, the elliptic curve
E5 = 275b3 is a rank 0 elliptic curve over Q with additive reduction at 5.
When we consider its twist by −3, we get the curve E

(−3)
5 /Q which is 2475h3

(Cremona label). Therefore, one can check that

rankZ E5(F ) = rankZE5(Q) + rankZ E
(−3)
5 (Q) = 0 + 0 = 0.

Since E5/Q has no 7-torsion and #X(E5/Q)[7∞] = 1, it follows from Re-
mark 8.7 that

#X(E
(−3)
5 /Q)[7∞] = X(E5/F )[7∞] = 1.

The prime 7 is not an anomalous prime for E5 which can be checked from the
q-expansion. Finally, since the Kodaira symbol at the prime 11 is of type I1,
we know that upon base-change to F , the Tamagawa number does not become
divisible by 7. Therefore,

χ(ΓF , E5) = 1.

Equivalently, µ7(E5/Fcyc) = λ7(E5/Fcyc) = 0. In particular, the Mordell–Weil
rank of E5 remains 0 at each finite layer of the Z2

p-extension of Q(
√
−3).

9.2

Let p ≥ 5 be a fixed prime and F = Q(µp). For simplicity, fix m to be a prime
number (say ℓ) and suppose that ℓ ≡ 1 mod p. Note that ℓ splits completely

in F . Let F∞ = Q
(
µp∞ , ℓ

1
pn : n = 1, 2, . . .

)
be the false Tate curve extension.

For the pro-p extension G = Gal(F∞/F ),

χt(G,E, p) = χt(ΓF , E, p)×
∏

v∈ME

∣∣Lv(E, 1)
∣∣
p
,

where ME = P1(E,F∞) ∪ P2(E,F∞) is a set of primes in F that lie above ℓ.
The Euler characteristic χt(G,E, p) = 1 when all of the following conditions
hold.
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(a) Rp(E/F ) is a unit in Zp.

(b) X(E/F )[p∞] = 0.

(c) p is not an anomalous prime for E.

(d) p ∤ τ
(F )
ℓ ; equivalently p ∤ τ

(Q)
ℓ .

(e) At ℓ, the elliptic curve has additive reduction or non-split multiplicative
reduction or good reduction with p ∤ #Ẽ(Fℓ). (Note that since ℓ splits in
F , the reduction type does not change from ℓ to a prime v|ℓ of F .)

Note that the last two conditions are not independent. The condition on ℓ
not being a prime of split multiplicative reduction automatically implies that p
does not divide τ

(Q)
ℓ = τ

(F )
ℓ .

The proportion of Weierstrass equations (ordered by height) over Q with mul-
tiplicative reduction was recorded in Lemma 8.19(1). Only half of these
have split multiplicative reduction type (see [CS21, Theorem 5.1(1)]). By Re-
mark 8.20, the proportion of Weierstrass equations which are globally minimal
and have split multiplicative reduction at ℓ is given by (ℓ−1)

2ℓ2 . Having assumed

that ℓ ≡ 1 (mod p), the condition of p ∤ #Ẽ(Fℓ) is equivalent to aℓ(E) 6≡ 2
(mod p). The same argument as in Lemma 9.5 proves that the number of
isomorphism classes of elliptic curves over Fℓ such that p|#E(Fℓ) is given by

⌊ 2
√

ℓ
p

⌋∑

j=−⌊ 2
√

ℓ
p

⌋

N(2 + pj)

=

⌊ 2
√

ℓ
p

⌋∑

j=−⌊ 2
√

ℓ
p

⌋

H((2 + pj)2 − 4ℓ)

≤C
(
4
√
ℓ

p
+ 1

)
√
ℓ log ℓ (log log ℓ)2

(9.4)

for some effectively computable constant C.
Let EFp be the set of elliptic curves over Q such that the following conditions
are satisfied

(a) E has good ordinary reduction at p,

(b) E has good reduction at ℓ = 2, 3,

(c) rankZE(F ) = 0,

(d) χ(G,E, p) 6= 1.
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Let E(1)p be the set of all elliptic curves over Q such that p divides the order of
#X(E/F ). Since p and F are fixed throughout and in view of the heuristics
mentioned in (9.2), it makes sense to assume that

d(E(1)p ) = 1−
∏

i≥1

(
1− 1

p2i−1

)
.

We have the following result which follows immediately from the previous dis-
cussion.

Theorem 9.6. With notation as above, there is an effective constant C > 0
such that

d̄(EFp ) < d̄(E(1)p ) + (ζ(p) − 1) +
(ℓ − 1)

2ℓ2

+ζ(10)C

(
4
√
ℓ

p
+ 1

)
√
ℓ log ℓ (log log ℓ)2 .

Proof. It follows from the definition of upper density that

d̄(EFp ) < d̄(E(1)p ) + d̄(E(2)p ) + d̄(E(3)p ),

where E(2)p (resp. E(3)p ) is the set of all elliptic curves over Q such that p divides

τ
(F )
ℓ (resp. #Ẽ(Fℓ)). From earlier discussion in this section, p|τ (F )

ℓ if and only

if p|τ (Q)
ℓ . Therefore, the estimate for the upper density of E(2)p is ζ(p)−1, just as

was calculated previously. Finally, the estimate for d̄(E(3)p ) follows from (9.4).
This completes the proof of the theorem.

The above theorem counts the proportion of elliptic curves with non-trivial G-
Euler characteristic. In view of Propositions 4.14 and 4.15, we can count how
often the Selmer group is not pseudonull. Rephrased in terms of the Λ(H)-rank,
the above theorem answers the question how often is

rankΛ(H) X (E/F∞) > 0?

Next, we discuss a finer question pertaining to the Λ(H)-rank of X (E/F∞)f .

Corollary 9.7. Let p > 3 be a fixed prime and fix another prime ℓ ≡ 1

(mod p). Consider the false Tate curve extension F∞ = F (ℓ)
∞ . Varying over all

elliptic curves (over Q) with good reduction at ℓ and good ordinary reduction
at p, the upper density of elliptic curves with

rankΛ(H) X (E/F∞)f > λp(E/Fcyc) ≥ 0

is at most

(ℓ− 1)

2ℓ2
+ ζ(10)C

(
4
√
ℓ

p
+ 1

)
√
ℓ log ℓ(log log ℓ)2,

where C is an effective positive constant.

Documenta Mathematica 27 (2022) 89–149



Arithmetic Stats & Noncom Iwasawa Theory 131

Proof. In this case, note that (5.1) gives

rankΛ(H) X (E/F∞)f = λp(E/Fcyc) +
∑

v|ℓ,
ℓ split multiplicative

1 +
∑

Ẽ(Fℓ)[p] 6=0

2.

Observe that for any elliptic curve with

rankΛ(H) X (E/F∞)f > λp(E/Fcyc) ≥ 0,

either of the following properties must hold:

(a) E has split multiplicative reduction at ℓ, or

(b) p|Ẽ(Fℓ).

The result now follows from our previous calculations.

We now prove an alternative result for the G-Euler characteristic, where G :=
Gal(F∞/Q). Since this extension is not pro-p, even if the associated Akashi
series over G is a unit, we cannot deduce that the Selmer group Selp∞(E/F∞)
is pseudonull as a Λ(G)-module. In this setting, m is a p-power free natural
number. We have

χt(G, E, p) = χt(ΓQ, E, p)×
∏

v∈ME

∣∣Lv(E, 1)
∣∣
p
.

Now, ME = P1∪P2 is a set of primes in Q. How often χt(G, E, p) = 1 requires
studying for what proportion of elliptic curves do the following properties hold
simultaneously.

(a) The normalized p-adic regulator (over Q) is a p-adic unit.

(b) X(E/Q)[p] = 0.

(c) p is not an anomalous prime for E.

(d) p ∤
∏

ℓ 6=p cℓ(E/Q).

(e) At all primes ℓ|m, the elliptic curve has either additive reduction or non-
split multiplicative reduction or good reduction with p ∤ #Ẽ(Fℓ).

Let E ′p be the set of rank 0 elliptic curves with good reduction at ℓ = 2, 3,
good ordinary reduction at p, and χ(G, E, p) 6= 1. The above discussion can be
summarized as below.
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Theorem 9.8. Assume Delaunay’s heuristic for the Tate–Shafarevich group.
Then, there are effective constants C1, C2 > 0 for which

d̄(E ′p) < 1−
∏

j≥1

(
1− 1

p2j−1

)
+ (ζ(p) − 1)

+ ζ(10)C1p
−1
2 log p (log log p)

2
+
∑

ℓ|m

(ℓ− 1)

2ℓ2

+
∑

ℓ|m

ζ(10)C2

(
4
√
ℓ

p
+ 1

)
√
ℓ log ℓ (log log ℓ)

2
.

Sketch of the proof. As in the proof of Theorem 9.6, the upper bound for d̄(E ′p)
is evaluated by obtaining estimates for the proportion of (rank 0) elliptic curves
over Q ordered by height for which at least one of the properties (b)–(e) is not
satisfied. The estimate for each of these quantities is calculated as before.

Remark 9.9. Assuming Delaunay’s heuristics, we find that as p→∞,

lim sup
p→∞

(
d̄(E ′p)

)
<
∑

ℓ|m

(ℓ− 1)

2ℓ2
+
∑

ℓ|m

ζ(10)C2

√
ℓ log ℓ (log log ℓ)2 .

9.3

Let p ≥ 5 be a fixed prime number and E0/Q a fixed non-CM elliptic curve
with good reduction at p. This elliptic curve determines the extension F∞ =
Q(E0[p

∞]). Write GE0 = Gal(F∞/Q). Then,

χt(GE0 , E, p) = χt(ΓQ, E, p)×
∏

v∈ME0

∣∣Lv(E, 1)
∣∣
p
,

where ME0 is the finite set of primes of multiplicative or potentially multiplica-
tive reduction of E0. Note that ME0 is a fixed set.
We would like to calculate the proportion of elliptic curves E/Q with good
ordinary reduction at p, ordered by height, for which χt(GE0 , E, p) is a p-
adic unit. Since the p-adic Lie extension of interest is not pro-p, even if the
associated Euler characteristic is a p-adic unit, we will not be able to deduce
the pseudonullity of Selp∞(E/F∞) as a Λ(GE0)-module. As in the previous
case, we need to find the proportion of elliptic curves for which the following
properties hold simultaneously.

(A) The normalized p-adic regulator (over Q) is a p-adic unit.

(B) X(E/Q)[p] = 0.

(C) p is not an anomalous prime for E.

(D) p ∤
∏

ℓ 6=p cℓ(E/Q).
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(E) At each ℓ ∈ ME0 , the elliptic curve has one of the following reduction
types

(a) additive reduction or

(b) split multiplicative reduction if ℓ 6≡ 1 (mod p) or

(c) non-split multiplicative reduction if ℓ 6≡ −1 (mod p) or

(d) good reduction with p ∤ #Ẽ(Fℓ).

If the elliptic curves are stipulated to have rank 0, then the p-adic regulator is
a unit in Zp. Let E ′p be the set of rational elliptic curves with rankZE(Q) = 0,
good reduction at ℓ = 2, 3, good ordinary reduction at p, and χ(GE0 , E, p) 6= 1.
The next result can be proven in the same way as Theorem 9.8. The only
difference in the formula stems from how often the local Euler factor is not a
p-adic unit.

Theorem 9.10. Assume Delaunay’s heuristic for the Tate–Shafarevich group.
Then, there exist effective constants C1, C2 > 0 for which

d̄(E ′p) < 1−
∏

j≥1

(
1− 1

p2j−1

)
+ (ζ(p) − 1)

+ ζ(10)C1p
−1
2 log p (log log p)

2

+
∑

ℓ∈ME0 ,

ℓ≡1 (mod p)

(ℓ − 1)

2ℓ2
+

∑

ℓ∈ME0 ,

ℓ≡−1 (mod p)

(ℓ − 1)

2ℓ2

+
∑

ℓ∈ME0

ζ(10)C2

(
4
√
ℓ

p
+ 1

)
√
ℓ log ℓ (log log ℓ)2 .

Shifting focus, we record our observations regarding the Λ(H)-rank of the
Selmer group when H is a pro-p group. Fix a non-CM elliptic curve E0/Q

with good reduction at p ≥ 5, such that F = Q(E0[p]) = Q(µp) and
F∞ = Q(E0[p

∞]). The set of primes of potentially multiplicative reduction is
determined explicitly. Call this set PM0. For simplicity, suppose that primes
in PM0 split completely in F . Such examples exist. Choose E0 to be the
elliptic curve with Cremona label 11a1 and set p = 5. In this case, F = Q(µ5)
and F∞/F is a pro-p extension. Also, since 11 ≡ 1 (mod 5), it is clear that 11
splits in F .

Proposition 9.11. Suppose that E varies over all globally minimal Weierstrass
equations with good ordinary reduction at p and good reduction at 2, 3. The
proportion of such elliptic curves with the additional property that

rankΛ(H) X (E/F∞)f > λp(E/Fcyc)
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has an upper density

∑

ℓ∈PM0

ℓ− 1

2ℓ2
+

∑

ℓ∈PM0

ζ(10)C

(
4
√
ℓ

p
+ 1

)
√
ℓ log ℓ(log log ℓ)2,

where C > 0 is an effectively computable constant.

Proof. In this case, (5.1) is precisely

rankΛ(H) X (E/F∞)f = λp(E/Fcyc) +
∑

ℓ∈PM0

corankZp
Zv(Fcyc,w).

The proportion of elliptic curves E such that

rankΛ(H) X (E/F∞)f > λp(E/Fcyc),

must satisfy the property that for some ℓ ∈ PM0, the elliptic curve has either

(a) split multiplicative reduction or

(b) good reduction with E(Fℓ)[p] 6= 0.

The claim follows from calculations identical to earlier results.

10 Results for a fixed E/Q as p varies

Recall from previous sections that G = Gal(F∞/F ) and G = Gal(F∞/Q).
Thus, G is pro-p, which G is not (unless F/Q is a p-extension). Given an
elliptic curve E/Q, the question of interest is the following: as p varies over
all primes of good ordinary reduction of E, for what proportion of primes is
χt(G,E, p) (or χt(G, E, p)) a p-adic unit. Note that as p varies, so does the
extension F∞, as we shall see below.
In §10.1, we fix a rank 0 elliptic curve E/Q and an imaginary quadratic field F .
The goal is to study the variation of the Mordell–Weil rank at each finite layer
of the Z2

p-extension as p varies. In §10.2, we fix a square-free integer m and

consider the false Tate curve extension F∞ = Q(µp∞ ,m
1

p∞ ) as p varies. The
analysis is carried out in three steps depending on the reduction type of the fixed
elliptic curve E at a prime ℓ|m. The results are summarized in Theorem 10.10.
In §10.3, we fix a pair of elliptic curves (E,E′) both defined over Q and such
that E′ is non-CM. We study the variation of truncated GE′ -Euler characteristic
and that of the Λ(H)-corank of the Selmer group, as p varies.

10.1

Let F = Q(
√
−d) be a fixed imaginary quadratic field and we consider the

unique Z2
p-extension F∞/F . In this case, M = ∅.
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Proposition 10.1. Let E/Q be a fixed elliptic curve of Mordell–Weil rank 0
without complex multiplication. Suppose that it remains of rank 0 upon base-
change to F . Further, assume that #X(E/F ) is finite. Then, χ(G,E, p) = 1
for all primes p at which E has good ordinary primes outside a set of density
zero.

Proof. For the extensions Qcyc/Q (as p varies), the result was proven by Green-
berg [Gre99, Proposition 5.1]. For cyclotomic Zp-extensions of a general num-
ber field, the statement follows from a result of V. K. Murty [Mur97], and
this was observed by the first named author in her thesis, see [Kun20, Theo-
rem 5.1.1] for details.
The result for Z2

p-extensions F∞/F of an imaginary quadratic field F follows
from the same argument as aforementioned results. Consider the formula for
the Euler characteristic

χ(G,E, p) = χ(ΓF , E, p)

∼
#X(E/F )[p∞] ·∏v∤p c

(p)
v (E/F )

(
#E(F )[p∞]

)2 ·
∏

v|p

(
#Ẽ(κv)[p

∞]
)2

.

It follows from our assumptions on E that the above Euler characteristic is
defined. Clearly all terms in the above formula are p-adic units for all but

finitely many primes p, except possibly the term
∏

v|p

(
#Ẽ(κv)[p

∞]
)
. The

result of [Mur97] states that p ∤
∏

v|p

(
#Ẽ(κv)[p

∞]
)

for all primes outside a set

of density zero. This sparse set of primes at which p divides
∏

v|p

(
#Ẽ(κv)[p

∞]
)

is the set of anomalous primes. In conclusion, χ(G,E, p) = 1 for all primes p
outside a density zero set of primes.

Corollary 10.2. With the same setting as Proposition 10.1, for all good ordi-
nary primes outside a set of density zero, rankZ E(Fn) = 0 at each finite layer
of the Z2

p-extension.

Proof. Combining Proposition 10.1 and Remark 5.2, we know that for density 1
good ordinary primes the following inequality holds,

rankZ E(Fn) ≤ λp(E/Fcyc) · pn = 0.

In particular, the Mordell–Weil rank of E(Fn) = 0 in each finite layer of the
Z2
p-extension for all good ordinary primes p outside a subset of density 0.

10.2

We fix an elliptic curve E/Q and a square-free integer m. We vary p over all
primes where E has good ordinary reduction. Let F = Q(µp) and consider the
false Tate curve extension

F∞ := Q(µp∞ , m
1

p∞ ),

Documenta Mathematica 27 (2022) 89–149



136 D. Kundu, A. Lei, A. Ray

which varies as p varies (m fixed). As noted in (6.3), the primes in the set M

divide m. We begin the discussion with a few basic remarks.

Case 1: Suppose that ℓ is a prime divisor of m and v|ℓ is a prime of F . If E has
either non-split multiplicative reduction or additive reduction of E, then v 6∈M.
It follows from Theorem 4.9 that such primes do not contribute to the G-Euler
characteristic. More precisely, if E has non-split multiplicative reduction or
additive reduction at all the primes dividing m then for all primes p,

χ(G,E, p) = χ(ΓF , E, p).

In this case, (8.2) simplifies considerably and becomes

rankΛ(H) X (E/F∞)f = λp(E/Fcyc).

Now, Theorem 5.1 asserts that

rankZ(E/Fn) ≤ λp(E/Fcyc)p
n.

Case 2: When ℓ is a prime of split multiplicative reduction we have the follow-
ing:

Proposition 10.3. Consider the false Tate curve extension F∞ = F (m)
∞ . Let

E/Q be a fixed elliptic curve with split multiplicative reduction at a prime
dividing m. As p varies over all primes of good ordinary reduction of E, the
G-Euler characteristic is always non-trivial.

Proof. Suppose that ℓ is a prime divisor of m and v|ℓ is a prime of split mul-
tiplicative reduction of E. Since ℓ 6= p, we have that v ∈ M. Recall that
Lemma 4.6(2) asserts that

∣∣Lv(E, 1)
∣∣
p
6= 1 if and only if qv ≡ 1 (mod p).

We have qv = |Fℓf | where f = fp is the degree of inertia of ℓ in F = Q(µp).
Recall from our discussion in §8.2 that f is the smallest positive integer such
that ℓf ≡ 1 (mod p). Therefore, we conclude that varying over all primes p,
the G-Euler characteristic is always non-trivial for an elliptic curve E/Q with
split multiplicative reduction at ℓ|m.

Remark 10.4. The growth of Mordell–Weil ranks inside F∞ has been studied
using Heegner points by H. Darmon and Y. Tian in [DT10] under certain
hypotheses (see also [DL17]). Their results tell us that the Mordell–Weil ranks
are expected to be unbounded inside F∞.

Case 3: If ℓ is a prime divisor of m and v|ℓ is a prime of good reduction of E, we
need to analyse two cases. If ℓ = p, then v 6∈M and there is no contribution to
the G-Euler characteristic from the local Euler factor. Otherwise, by definition,

v ∈M if and only if E(Fv)[p
∞] 6= 0.
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We would like to evaluate for what proportion of primes p is E(Fv)[p] 6= 0 for a
fixed ℓ. Equivalently (see [Sil09, Proposition VII.3.1]), how often does p divide
Ẽ(κv)? Recall that

#Ẽ(κv) = ℓf + 1− av ≡ 2− av (mod p),

where f is the smallest positive integer such that ℓf ≡ 1 (mod p) as in the
proof of Proposition 10.3. Thus, the condition

∣∣Lv(E, 1)
∣∣
p
6= 1 holds precisely

when av ≡ 2 (mod p).

Proposition 10.5. Let E/Q be a non-CM elliptic curve with good reduction
at ℓ ≥ 5. As p varies over all primes (distinct from ℓ), consider the number
field F = Q(µp) and the base-change of E to F . Then, for at least half of the
primes p where E has good ordinary reduction, we have

av 6≡ 2 (mod p).

Proof. Since E is assumed to be non-CM, it has been proved by Serre [Ser68]
that the set of primes where E has good supersingular reduction has density
zero. Therefore, it is enough to consider all primes p, not just those where E
has good ordinary reduction. Since E/Q and ℓ are fixed, the value of aℓ is
determined precisely. Let α and β be the roots of X2− aℓX + ℓ in Q and let ᾱ
and β̄ be the roots of X2 − aℓX + ℓ in Fp. Then av = αf + βf ≡ 2 mod p if
and only if ᾱf = 1 since (αβ)f = ℓf ≡ 1 mod p.
When p 6= ℓ, the constant term of the polynomial X2 − aℓX + ℓ is not zero
modulo p. In particular, this tells us that ᾱ 6= 0. Thus, if ᾱ /∈ Fp, then
ᾱp−1 6= 1. As f |(p− 1) by definition, we have furthermore ᾱf 6= 1.
Note that ᾱ /∈ Fp if and only if the polynomial X2 − aℓX + ℓ is irreducible
over Fp. When p is odd, this in turn is equivalent to the discriminant a2ℓ − 4ℓ
not being a square modulo p. By the Hasse–Weil bound, a2ℓ − 4ℓ < 0, so it
is not a square in Q. Therefore, Chebotarev density theorem tells us that for
exactly half of the primes p, a2ℓ − 4ℓ is not a square modulo p. Therefore, the
result follows.

Proposition 10.6. Let m be a fixed prime number and consider the false Tate

curve extension F∞ = F (m)
∞ . Let E/Q be a fixed non-CM elliptic curve with

good reduction at m. As p varies over all primes of good ordinary reduction
of E, for at least half of the primes,

χt(G,E, p) = χt(ΓF , E, p).

Proof. The proof is immediate from Theorem 4.9 and Proposition 10.5.

We consider the following special case.

Proposition 10.7. Suppose that m = ℓ is a prime number and that E is a
non-CM curve with good supersingular reduction at ℓ with aℓ(E) = 0. Let v
denote a prime above ℓ in F . For exactly two-third of the primes p, we have
av 6≡ 2 (mod p).
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Proof. As in the proof of Proposition 10.5, it is enough to consider all primes p.
We have (see [Sil09, Exercise 5.15])

#Ẽ(κv) =





ℓf + 1 if f is odd,(
ℓf/2 − (−1)f/2

)2
if f is even.

In particular, p|#Ẽ(κv) if and only if f ≡ 2 (mod 4). The latter condition is
satisfied precisely one-third of the time by [CM03, Theorem 1.1 with l = 2].
Hence the result.

Similar to Proposition 10.6, this implies the following.

Proposition 10.8. Let m be a fixed prime number and consider the false Tate

curve extension F∞ = F (m)
∞ . Let E/Q be a fixed non-CM elliptic curve with

good supersingular reduction at m and am(E) = 0. As p varies over all primes
of good reduction of E, for exactly two-third of the primes,

χt(G,E, p) = χt(ΓF , E, p).

Remark 10.9. However, when studying the G(m)-Euler characteristic, M is a
(finite) set of rational primes. If ℓ|m is a prime of good reduction,

∣∣Lv(E, 1)
∣∣
p
6= 1 if and only if #Ẽ(Fℓ) = qv +1−aℓ = ℓ+1−aℓ ≡ 0 (mod p).

As p varies, we count how often aℓ ≡ ℓ+ 1 (mod p). By an application of the
Hasse-bound |aℓ| ≤ 2

√
ℓ. Thus,

∣∣Lv(E, 1)
∣∣
p

is a p-adic unit for all but finitely
many primes p.

The above discussion can be summarized as follows.

Theorem 10.10. Let E/Q be a fixed elliptic curve and m be a fixed positive
integer. Let F = Q(µp) and F∞ be the false Tate curve extension. As p varies
over all primes of good reduction of E, the following assertions hold.

1. If E has split multiplicative reduction at ℓ|m, then the G-Euler charac-
teristic is never a p-adic unit.

2. If E has non-split multiplicative reduction or additive reduction or good
reduction with E(Fv)[p

∞] = 0 at all primes ℓ|m, then

χt(G,E, p) = χt(ΓF , E, p).

In particular, if E has Mordell–Weil rank 0 over Q and F then,
χ(G,E, p) = 1 as p varies over all good ordinary primes outside a set
of density 0.
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3. If m = ℓ is a fixed prime number, and E is non-CM with good supersin-
gular reduction at ℓ with aℓ(E) = 0, then for two-thirds of the primes p

χt(G,E, p) = χt(ΓF , E, p).

In particular, if E has Mordell–Weil rank 0 over Q and F then,
χ(G,E, p) = 1 for all such primes p.

4. If E has good reduction reduction at all primes ℓ|m then the G-Euler
characteristic is given by

χt(G, E, p) = χt(ΓQ, E, p).

for all but finitely many primes p.

We conclude this section with some remarks about the Λ(H)-ranks of
X (E/F∞)f . We know from (8.2) that

rankΛ(H) X (E/F∞)f = λp(E/Fcyc) +
∑

ℓ|NE, ℓ|m
ℓ split multiplicative

1 +
∑

v|ℓ, ℓ|m,
E(Fv)[p] 6=0

2.

Therefore, if the fixed elliptic curve has a prime of split multiplicative reduction
at a prime divisor of m, then for all primes p,

rankΛ(H) X (E/F∞)f > λp(E/Fcyc).

By the same argument as before, one can also deduce the following. Suppose
that m is a prime number such that E has good reduction at m, then for at
most half of the primes p,

rankΛ(H) X (E/F∞)f > λp(E/Fcyc).

10.3

Fix a pair of elliptic curves (E,E′), both defined over Q and suppose that
E′/Q is a non-CM elliptic curve. Let F = Q(E′[p]) and consider the p-adic Lie
extension F∞ = Q(E′[p∞]). By the Weil pairing, we know that F ⊇ Q(µp).
Let GE′ := Gal

(
Q(E′[p∞])/Q

)
. We will study for what proportion of all primes

is χt(GE′ , E, p) a p-adic unit. For us, ME′ is a set of primes over Q. By
definition, this set contains precisely the primes of potentially multiplicative
reduction of E′.
Suppose that v ∈ ME′ is a prime of split (resp. non-split) multiplicative
reduction of E. By Lemma 4.6(2) (resp. Lemma 4.6(3)) we know that

∣∣Lv(E, 1)
∣∣
p
6= 1 if and only if qv = ℓ ≡ 1 (mod p)

(resp.
∣∣Lv(E, 1)

∣∣
p
6= 1 if and only if qv = ℓ ≡ −1 (mod p)).
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In either case, ℓ is a prime which is independent of p. As p varies over all
primes, either of the congruence conditions can be satisfied by at most finitely
many primes p.
If v ∈ME′ is a prime of good reduction of E, then Lemma 4.6(1) asserts that

∣∣Lv(E, 1)
∣∣
p
6= 1 if and only if #Ẽ(Fℓ) = ℓ+ 1− aℓ ≡ 0 (mod p).

As before, we see that
∣∣Lv(E, 1)

∣∣
p

is a p-adic unit for all but finitely many
primes p.
We have the following theorem.

Theorem 10.11. Let (E,E′) be a pair of elliptic curves over Q where E′ is a
non-CM curve. For all but finitely many primes p where E has good ordinary
reduction,

χt (GE′ , E, p) = χt

(
ΓQ, E, p

)
.

The proportion of primes for which χt(ΓQ, E, p) = 1 was studied in detail
[KR21a, Section 3]. It was conjectured in [KR21a, Conjecture 3.17] that
χt(ΓQ, E, p) = 1 should be true for 100% of the primes of good ordinary reduc-
tion.
To study the GE′ -Euler characteristic, we consider the base-change curve E/F .
Since F ⊇ Q(µp) the arguments of Section 10.2 imply that qv ≡ 1 (mod p) for
all values of p. Indeed, this is because the inertia degree of ℓ for the extension
Q(µp)/Q divides the of inertia degree of ℓ for the extension F/Q.
This means, if ℓ is a prime of potentially multiplicative reduction of E′ which is
also a prime of split multiplicative reduction of E, then the GE′ -Euler charac-
teristic of E is never trivial. This is well-known in the special case E = E = E′.
It was shown in [CH01, Theorem 1.5] that the p-primary Selmer group is infinite
dimensional for all p ≥ 5.
Suppose that we fix the two distinct elliptic curves E and E′ (both defined over
Q) such that the following properties hold:

(a) E′ is a non-CM elliptic curve.

(b) E has additive reduction or non-split multiplicative reduction at the primes
above potentially multiplicative reduction of E′.

Then, the contribution of the local Euler factors to the GE′ -Euler characteristic
of E is trivial. Equivalently,

χt (GE′ , E, p) = χt (ΓF , E, p) .

When F/Q is a number field and rankZ E(F ) ≥ 1, the analysis of the Euler
characteristic formula is more subtle. The difficulty arises from our lack of
knowledge regarding the normalized p-adic regulator and the p-part of the
Tate–Shafarevich group over number fields. Also, when [F : Q] is “large”,
computations are expensive and it is hard to obtain meaningful heuristics.
However, it is still possible to make some brief remarks about the Mordell–
Weil rank growth of E in the extension F∞/F .
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Proposition 10.12. Suppose E,E′ are two fixed elliptic curves chosen as
described above with conductors N1, N2, respectively. Then, for all primes
p ∤ N1N2,

rankΛ(H) X (E/F∞)f = λp(E/Fcyc).

Proof. The hypothesis on E and E′ guarantee that E[p∞] is not rational over
Q(E′[p∞]). As p varies over all odd primes away from the divisors of N1N2,
the base field F = Q(E′[p]) varies as well. It follows from (5.1) and Lemma 5.5
that

rankΛ(H) X (E/F∞)f = λp(E/Fcyc).

Remark 10.13. In particular, Theorem 5.1 asserts that

rankZ E(Fn) ≤ λp(E/Fcyc)p
3n.

A Classifying conjugacy classes in GL2(Z/pZ)

The results in this appendix are used in obtaining precise estimates of quantities
arising in Corollary 8.10 and Theorem 8.11. See in particular Remark 8.12.
Given a prime p, write Gp = GL2(Z/pZ). Given a matrix σ ∈ Gp, denote
by α = α(σ) and β = β(σ) the two eigenvalues of σ. Here, α and β are
interchangeable, however, assume that each σ comes with a choice of α and β.
As is well known,

∣∣Gp

∣∣ = (p2− 1)(p2− p) = p(p− 1)2(p+1). Given an element
σ ∈ Gp, write f(σ) for the smallest integer f ∈ Z≥1 such that det(σ)f = 1.
Let Hp be the subset of Gp consisting of elements σ ∈ Gp such that αf(σ) =
β−f(σ) 6= 1, where α and β are the eigenvalues of σ. We divide Gp into the
following conjugacy classes. (See [Lan02, Chapter XVIII, Table 12.4].)

• Let Ca,b be the set of diagonalizable matrices with eigenvalues a, b ∈ Fp
×

with a 6= b. We have (p− 1)(p− 2)/2 choices of Ca,b and for each choice,
#Ca,b = p(p+ 1).

• Let Ca be the set of non-diagonal matrices with one single eigenvalue
a ∈ Fp

×. There are (p−1) choices for Ca and for each choice, #Ca = p2−1.

• Let Da =

{(
a 0
0 a

)}
, a ∈ F×

p . Then, there are (p− 1) choices for a and

for each choice #Da = 1.

• Let Eλ be the set of matrices whose eigenvalues are λ and λ′, where
λ ∈ Fp2 \ Fp and λ′ is the conjugate of λ. There are p(p − 1)/2 choices
for λ and for each choice of λ, #Eλ = p2 − p.

Given an element a ∈ F̄×
p , we write o(a) for the order of a, i.e., the minimal

value of N ∈ Z≥1 such that aN = 1. Also, let ϕ denote Euler’s totient function,
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where ϕ(n) is the number of positive integers m < n that are coprime to n.
Recall that ϕ(n) = n

∏
ℓ

(
1− 1

ℓ

)
, where ℓ runs through all prime divisors of n

and that
∑

d|n ϕ(d) = n.

A.1 Contributions from Eλ

Let σ ∈ Eλ for some λ ∈ Fp2 \Fp. Since λλ′ ∈ F×
p , it follows that f(σ) = o(λλ′)

has to be a divisor of p−1. However, the fact that λ /∈ F×
p implies that λp−1 6= 1.

Thus, σ ∈ Hp. In particular, this gives that the number of elements are

∑

λ

#Eλ = p2(p− 1)2/2.

A.2 Contributions from Da and Ca
Let σ ∈ Da or Ca for some a ∈ F×

p , then note that f(σ) = o(a2). As we shall
see, in this case, σ ∈ Hp if and only if o(a) is even. First suppose that o(a)
is even, then, we have that o(a)/2 = f(σ). Therefore, af(σ) = −1, and hence,
σ ∈ Hp, since af(σ) 6= 1. Else, when o(a) is odd, then it is easily checked that
σ /∈ Hp.
It remains to determine which a ∈ F×

p has o(a) ∈ 2Z. Suppose that p−1 = 2en,
where n is an odd integer. Then, o(a) is odd if and only if o(a)|n. Therefore,
we have in total

p− 1−
∑

r|n

ϕ(r) = p− 1− n = (p− 1)(1− 2−e)

choices of a. It follows that the number of elements in Hp is given by

(1 + (p2 − 1))(p− 1)(1− 2−e) = p2(p− 1)(1− 2−e).

Remark A.1. Since e ≥ 1, on combining the contributions from Eλ, Da

and Ca, we have

#Hp

#Gp
≥ p2(p− 1)2/2 + p2(p− 1)/2

p(p− 1)2(p+ 1)
=

p2

2(p2 − 1)
.

A.3 Contributions from Ca,b

Given a ∈ F×
p , we would like to find b such that o(ab) is not a multiple of o(a).

Recall that for each d|(p−1), there are ϕ(d) elements of order d in F×
p . Therefore

the number of choices of ab is
∑

o(a)∤d|p−1

ϕ(d) = p− 1−
∑

o(a)|d|p−1

ϕ(d).

But {ab : b ∈ F×
p } = F×

p . Therefore, we have the same number of choices
for b. Excluding those choices where a = b (there are (p − 1)(1 − 2−e) such
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possibilities, where e = ord2(p− 1)) and repetitions (swapping a and b), there
are in total

1

2



∑

r|p−1

ϕ(r)



p− 1−
∑

r|d|p−1

ϕ(d)



 − (p− 1)(1− 2−e)




=
1

2



(p− 1)2 −
∑

r|d|p−1

ϕ(r)ϕ(d) − (p− 1)(1− 2−e)





=
1

2


(p− 1)(p− 2 + 2−e)−

∑

d|p−1

dϕ(d)




=
1

2


(p− 1)(p− 2 + 2−e)−

∑

d|p−1

ϕ(d2)




classes of Ca,b belonging to Hp. In total, the number of elements are

1

2



(p− 1)(p− 2 + 2−e)−
∑

d|p−1

ϕ(d2)



 p(p+ 1).

Remark A.2. Writing p−1 =
∏

i q
ni

i , where qi are distinct primes and ni ≥ 1,
we have

∑

d|p−1

ϕ(d2) =
∏

i




ni∑

m=0

ϕ(q2mi )


 =

∏

i




2ni∑

m=0

(−1)mqmi




=
∏

i

q2ni

i

1 + q−2ni−1
i

1 + q−1
i

= (p− 1)2
∏

i

1 + q−2ni−1
i

1 + q−1
i

.

Let us write κp =
∏

i
1+q

−2ni−1

i

1+q−1
i

, which is a constant strictly smaller than 1.

Then the proportion of elements in Hp coming from Ca,b is

1
2

(
(p− 1)(p− 2 + 2−e)− (p− 1)2κp

)
p(p+ 1)

p(p− 1)2(p+ 1)
=

1

2

(
p− 2 + 2−e

p− 1
− κp

)
.

Observe that

κp ≤
1 + 2−2e−1

1 + 2−1
=

2 + 2−2e

3
.
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Therefore, for p ≥ 7, we have

1

2

(
p− 2 + 2−e

p− 1
− κp

)
≥ 1

2

(
p− 2 + 2−e

p− 1
− 2 + 2−2e

3

)

=
1

2

(
p− 2

p− 1
− 2

3
+

2−e

p− 1
− 2−2e

3

)

≥ 1

2

(
2p− 3

2(p− 1)
− 3

4

)
,

which tends to 1/8 as p → ∞. The inequality in the second last line follows

from the fact that the real function f(x) = x
p−1 − x2

3 attains a minimum at

x = 1/2 in the interval (0, 1/2] when p ≥ 7.
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