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Abstract.

It is a well established fact that the notions of quasi-abelian categories
and tilting torsion pairs are equivalent. This equivalence fits in a wider
picture including tilting pairs of t-structures. Firstly, we extend this
picture into a hierarchy of n-quasi-abelian categories and n-tilting tor-
sion classes. We prove that any n-quasi-abelian category E admits a
“derived” category D(E) endowed with a n-tilting pair of t-structures
such that the respective hearts are derived equivalent. Secondly, we
describe the hearts of these t-structures as quotient categories of co-
herent functors, generalizing Auslander’s Formula. Thirdly, we apply
our results to Bridgeland’s theory of perverse coherent sheaves for
flop contractions. In Bridgeland’s work, the relative dimension 1 as-
sumption guaranteed that f∗-acyclic coherent sheaves form a 1-tilting
torsion class, whose associated heart is derived equivalent to D(Y ).
We generalize this theorem to relative dimension 2.
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150 L. Fiorot

1 Introduction

In [7, 3.3.1] Beilinson, Bernstein and Deligne introduced the notion of a t-
structure obtained by tilting the natural one on D(A) (derived category of an
abelian categoryA) with respect to a torsion pair (X ,Y). In [24] Happel Reiten
and Smalø developed this procedure, they proved the Tilting Theorem: when-
ever X is a tilting torsion class (2.2) on A there is a triangulated equivalence
D(H) ≃ D(A) where H is the heart of the tilted t-structure.
In [49] J.-P. Schneiders associated to any quasi-abelian category E (2.11) a
triangulated category D(E) endowed with a 1-tilting pair of t-structures (R,L)
(2.9) such that E = HR ∩HL.
Rump in [45], followed by Bondal and Van den Bergh in [9, App. B], established
an equivalence between the previous notions: given an additive category E , the
following properties are equivalent: 1) E is a 1-quasi-abelian category, 2) E
is a 1-tilting torsion class, 3) E is a 1-cotilting torsion-free class, 4) E is the
intersection of the hearts of a 1-tilting pair of t-structures (R,L) on D(E).

This paper contains three main results.

We propose an higher analog of the previous equivalence: given an additive
category E , the following properties are equivalent: 1) E is a n-quasi-abelian
(7.6), 2) E is a n-tilting torsion class (7.7), 3) E is a 1-cotilting torsion-free
class, 4) E is the intersection of the hearts of a n-tilting pair of t-structures
(R,L) on D(E).
In particular, we prove that the derived category of an n-quasi-abelian category
E has two canonical t-structures (the left and the right one). We can view the
hearts of these t-structures as canonical abelian envelopes for E .

We establish a new description for the hearts of these t-structures as Gabriel
quotients of the category of coherent functors with respect to a suitable Serre
subcategory of effaceable functors (7.11). For an abelian (0-quasi-abelian) cat-
egory this result reduces to the Auslander’s Formula of H. Krause [37].

Our main application is the generalization of Bridgeland’s theory of perverse

coherent sheaves. Let consider Y
f
→ X a flop contraction with X and Y

varieties over C, Y smooth and Y + f+

→ X its flop. The Bondal-Orlov conjecture
predicts that the derived categories D(Y ) and D(Y +) (of coherent O-modules)
are equivalent. Bridgeland proved the Bondal-Orlov conjecture for threefolds
([12]) and Van den Bergh proposed a different proof relaxing some hypotheses,
but always assuming that f has relative dimension 1 ([57]).
Bridgeland considered the t-structures on D(Y ) obtained by tilting the natural
t-structure with respect to the 1-tilting torsion classes

T0 := {T ∈ coh(Y ) |Rf∗T ≃ f
∗T } and T−1 := {T ∈ coh(Y ) | f∗f∗T

ηT
։ T }.

He denoted by 0Per(Y/X) and −1Per(Y/X) their respective hearts. These
categories form the first main ingredient in Bridgeland’s and Van den Bergh’s
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N-Quasi-Abelian Categories 151

proofs of the Bondal-Orlov conjecture in the relative dimension 1 case. In
these proofs the use of 1-tilting torsion classes is dictated by the geometry of
the problem since the fibers of the flops have dimension ≤ 1. In the case of
relative dimension n

T0 := {T ∈ coh(Y ) |Rf∗T ≃ f
∗T } and T−1 := {T ∈ T0 | f

∗f∗T
ηT
։ T }

are n analogues of the previous classes. We prove that for n = 2, these are
2-tilting torsion classes. We denote by iPer(Y/X)) the respective hearts and
we prove that D(Y ) ≃ D(0Per(Y/X)) ≃ D(−1Per(Y/X)).

Acknowledgements

We are grateful to P. Jørgensen who sent us useful comments and remarks on
the first redaction of this work. We thank the anonymous referee for valuable
comments which helped us to improve the presentation of the article.

2 1-tilting torsion classes

In what follows any full subcategory C′ of an additive category C will be strictly
full (i.e., closed under isomorphisms) and additive. We will use the notation
C′ ⊆ C to indicate such a subcategory. Any functor between additive categories
will be an additive functor.

2.1. Torsion pairs in abelian categories ([18]). A torsion pair in an
abelian category A is a pair (X ,Y) of full subcategories of A such that:
A(X,Y ) = 0, for every X ∈ X (torsion class) and Y ∈ Y (torsion-free class),
and ∀C ∈ A there exists a short exact sequence 0 → X → C → Y → 0 in A
with X ∈ X and Y ∈ Y.
Hence the “inclusion” functor iX : X → A has a right adjoint τ , while iY :
Y → A has a left adjoint φ. The class X (resp. Y) is closed under extensions,
quotients (resp. subobjects) representable direct sums (resp. direct products).
As observed in [9, 5.4] both X and Y admit kernels and cokernels such that:
KerX = τ ◦KerA, CokerX = CokerA; KerY = KerA and CokerY = φ ◦CokerA.

Definition 2.2. ([24]) A torsion pair (X ,Y) is called tilting if X cogenerates
A (i.e., every object in A is a subobject of an object in X ) and X is called a
1-tilting torsion class (in A). Dually (X ,Y) is cotilting if Y generates A (i.e.,
every object in A is a quotient of an object in Y) and Y is called a 1-cotilting
torsion-free class.

Lemma 2.3. Let A be an abelian category. The full subcategory E
iE
→֒ A is a

1-tilting torsion class if and only if

1. E cogenerates A;

2. E is closed under extensions in A;
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152 L. Fiorot

3. E is closed under representable direct sums in A;

4. for any exact sequence 0 → A → X → B → 0 in A with X ∈ E and
A,B ∈ A we have B ∈ E;

5. E has kernels.

Proof. Any tilting torsion class satisfies these conditions. On the other side let

E
iE
→֒ A be a full subcategory satisfying the previous conditions. Hence, by the

first property, we can co-present any A ∈ A as A = KerA f with X1
f
→ X2

and Xi ∈ E for i = 1, 2 and so, since the functor Mod-E ∋ A(iE( ), A) ∼=
E( ,KerE f), we can define τ(A) := KerE f (using the last property) which
gives a right adjoint for the functor iE . We remark that the functoriality of this
construction is guaranteed by the fact that, if we change the co-presentation of

A as A = KerA g with Y1
g
→ Y2 and Yi ∈ E for i = 1, 2, there exists a unique

isomorphism KerE f
φ
≃ KerE g such that the following triangle commutes:

KerE f
φ

//

&&◆
◆◆◆

◆◆
KerE g

xx♣♣♣
♣♣♣

A

The fourth property implies that for any A ∈ A the co-unit of the adjunction
εA : iEτ(A)→ A is a monomorphism. So for any A ∈ A we have a short exact

sequence 0 → iEτ(A)
εA→ A → Coker(εA) → 0. Moreover CokerA(εA) ∈ E⊥

(see C.1 for the notion of orthogonal class) since given any morphism f : E →
CokerA(εA) with E ∈ E its A pull-back A ×CokerA(εA) E belongs to E (by the
second property since it is an extension of E by iEτ(A)); hence the pull-back
morphism f ′ : A ×CokerA(εA) E → A factors (by adjunction) through iEτ(A)
which implies that f = 0.

Corollary 2.4. Let A be a well powered abelian category with arbitrary direct

sums. The full subcategory E
iE
→֒ A is a 1-tilting torsion class if and only if

1. E cogenerates A;

2. E is closed under extensions in A;

3. E is closed under direct sums in A;

4. for any exact sequence 0 → A → X → B → 0 in A with X ∈ E and
A,B ∈ A we have B ∈ E.

We note that the torsion pair (A, 0) in an abelian category A is tilting while
(0,A) is cotilting. So the identity idA : A → A represents A as a 1-tilting
torsion class and also as a 1-cotilting torsion-free class.

We will refer to Appendix C for some generalities on t-structures. In particular
in order to assure that any category introduced in this work has Hom sets we
will suppose in the whole paper the following:

Documenta Mathematica 26 (2021) 149–197



N-Quasi-Abelian Categories 153

2.5. Hypothesis HS. Given E a projectively complete1 category (i.e., addi-
tive category such that any idempotent splits) its derived category D(E) :=
D(E , Exmax) (endowed with its maximal Quillen exact structure see Ap-
pendix A) has Hom sets. In the following we will always suppose that E is
a projectively complete category.

2.6. Happel-Reiten-Smalø tilted t-structure. [24, Prop. I.2.1,
Prop. I.3.2] [13, Prop. 2.5]. Let HD be the heart of a non degenerate t-
structure D = (D≤0,D≥0) on a triangulated category C and let (X ,Y) be a

torsion pair on HD. Then the pair T := (T ≤0
(X ,Y), T

≥0
(X ,Y)) of full subcategories

of C
T ≤0
(X ,Y) = {C ∈ C | H0

D(C) ∈ X , H
i
D(C) = 0 ∀i > 0}

T ≥0
(X ,Y) = {C ∈ C | H−1

D (C) ∈ Y, Hi
D(C) = 0 ∀i < −1}

is a t-structure on C. Following [13] we say that T is obtained by right tilting D
with respect to the torsion pair (X ,Y) while the t-structure T := T [−1] is called
the t-structure obtained by left tilting T with respect to the torsion pair (X ,Y).
The right tilted heart is:

HT = {C ∈ C | H0
D(C) ∈ X , H

−1
D (C) ∈ Y, Hi

D(C) = 0 ∀i /∈ {−1, 0}}.

In this paper we simply call tilting the right one. In [43, Lem. 1.1.2] Polishchuk
proved that given any pair of t-structures (D, T ) on a triangulated category C
such that D≤−1 ⊆ T ≤0 ⊆ D≤0, the t-structure T is obtained by right tilting D
with respect to the torsion pair (X := HT ∩HD,HT [−1] ∩HD =: Y) while D
is obtained by left tilting T with respect to the tilted torsion pair (Y[1] =
HD[1] ∩HT ,HD ∩HT =: X ).

2.7. Notation. In this paper whenever we have a pair of t-structures (D, T )
on a triangulated category C we will denote by δ≤0 the truncation functor with
respect to D and by τ≤0 the one with respect to T .

Theorem 2.8. 1-Tilting Theorem. ([24, Th. I.3.3], [15]). Given a tilting

torsion pair (E ,Y) in A there exists a triangle equivalence D(HT )
≃
→ D(A)

(where HT is the heart of the t-structure obtained by right tilting the natural
t-structure with respect to the torsion pair (E ,Y)) which is compatible with the
natural inclusion HT ⊆ D(A). Moreover (Y[1], E) is a cotilting torsion pair in
HT .

Definition 2.9. A pair of t-structures (D, T ) on a triangulated category C is
called 1-tilting if the following two conditions hold:

1. D≤−1 ⊆ T ≤0 ⊆ D≤0;

2. denoting by E := HD ∩ HT , the following equivalent conditions are sat-
isfied:

1A skeletally small projectively complete category is called a variety of annuli in [4].
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154 L. Fiorot

(i) C ≃ K(E)/N and D(HD)
≃
←֓ K(E)/N

≃
→֒ D(HT ) where N is the null

system of complexes in K(E) acyclic in HD or equivalently in HT ;

(ii) C ≃ D(HD) and E cogenerates HD;

(iii) C ≃ D(HT ) and E generates HT .

Proposition 2.10. The pair (D, T ) is a 1-tilting pair of t-structures if and
only if E := HD ∩ HT is a 1-tilting torsion class (resp. 1-tilting torsion-free
class) in HD (resp. in HT ).

Proof. One implication is a consequence of the 1-Tilting Theorem 2.8: if E :=
HD ∩ HT is a 1-tilting torsion class (resp. 1-tilting torsion-free class) in HD

(resp. in HT ) we obtain that (D, T ) is a 1-tilting pair of t-structures. On
the other side if (D, T ) is a 1-tilting pair of t-structures by [43, Lem. 1.1.2]
E := HD ∩ HT is a torsion class in HD so we have only to prove that E

cogenerates HD. By hypothesis K(E)/N
≃
→֒ D(HD) so any A ∈ HD can be

represented by a complex E• ∈ K(E) , hence A →֒ CokerHD
(d−1
E•) ∈ E (and

CokerHD
(d−1
E•) ∈ E since it is a quotient of a torsion object in HD). Dually if

K(E)/N
≃
→֒ D(HT ) we have that E generates HT and it is a torsion-free class

in HT .

Definition 2.11. ([49]). An additive category E is called 1-quasi-abelian if it
admits kernels and cokernels, and any push-out of a kernel is a kernel, and any
pullback of a cokernel is a cokernel. A zero sequence 0 → E

u
→ F

v
→ G → 0

is called exact if and only if (E, u) is the kernel of v and (G, v) is the cokernel
of u. A complex X• with entries in E is called acyclic if each differential

dn : Xn → Xn+1 decomposes in E as dn = mn ◦ en : Xn en // // Dn //
mn// Xn+1

where mn is the kernel of en+1, and en+1 is the cokernel of mn for any n ∈ Z.

Remark 2.12. The class of kernel-cokernel exact sequences provides the max-
imal Quillen exact structure on E if and only if E is 1-quasi-abelian (see A.1
for the notion of maximal Quillen exact structure).

2.13. Left and Right t-structures on the derived category of a
quasi-abelian category ([49, §1.2]). Let LK≤0

E (resp. RK≥0
E ) denote the

full subcategory of K(E) formed by complexes which are isomorphic in K(E)
to complexes whose entries in each strictly positive (resp. strictly negative)
degree are zero. Let now suppose that E admits kernels and cokernels, hence
the pairs LKE := (LK≤0

E , (LK≤−1
E )⊥) and RKE := (⊥(RK≥1

E ),RK≥0
E ) define

two t-structures on K(E) whose truncation functors are resp.:

τ≤0
L E• := · · · −→ E−2 −→ E−1 −→

•

KerE d0 −→ 0 −→ · · ·

τ≥1
L E• := · · · −→ 0 −→ KerE d0 −→

•

E0 −→ E1 −→ · · ·

τ≤−1
R E• := · · · −→ E−1 −→

•

E0 −→ CokerE d−1 −→ 0 −→ · · ·

τ≥0
R E• := · · · −→ 0 −→

•

CokerE d−1 −→ E1 −→ E2 −→ · · ·
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N-Quasi-Abelian Categories 155

(as in C.2 we use a point to indicate the object placed in degree 0). The left
t-structure LKE is the one considered by Schneiders in [49, Prop. 1.2.4]. We
will denote by LK(E) (resp. RK(E)) the heart associated to the t-structure

LKE (resp. RKE ). We have E ≃ LK≤0
E ∩RK

≥0
E = LK(E)∩RK(E) in K(E) and

moreover RK≤−2
E ⊆ LK≤0

E ⊆ RK≤0
E (since for any E• ∈ K(E) its τ≤−2

R (E•) ∈

LK≤0
E ). In K(E) we have that RK≤−1

E is contained in LK≤0
E if and only if

any cokernel map is a split epimorphism or equivalently any kernel map is
a split monomorphism. If this is not the case in order to reduce the “gap”
([21, Def. 2.1]) between the left and the right t-structures (without changing
the intersection E) we can try to localize by a null system formed by acyclic
complexes with respect to a Quillen exact structure. In this case, if the previous
t-structures satisfy the conditions of Lemma C.4, they will induce a pair of t-
structures (RD(E,Ex),LD(E,Ex)) on the localized category D(E , Ex). In order

to obtain RD≤−1
(E,Ex) ⊆ LD

≤0
(E,Ex) ⊆ RD

≤0
(E,Ex) we need to prove that for any E• ∈

D(E , Ex) the canonical morphism of complexes αE• : τ≤0
L (τ≤−1

R E•)→ τ≤−1
R E•

is an isomorphism in D(E , Ex):

τ≤0
L (τ≤−1

R E•) := · · · //

αE•

��

E−1 //

��

•

ImE(d
−1) //

��

0 //

��

0 //

��

· · ·

τ≤−1
R E• := · · · // E−1 d−1

//
•

E0 // CokerE(d
−1) // 0 // · · ·

which is equivalent to require the acyclicity of the mapping coneM(αE•) (which
is homotopically isomorphic to Ex(d0)):

M(αE•) := · · · //

∼=
��

E−2 ⊕ E−1 //

��

E−1 ⊕ ImE(d
−1) //

��

•

E0 //

��

CokerE(d
−1) //

��

0 //

��

· · ·

Ex(d0) := · · · // 0 // ImE(d
−1) //

•

E0 // CokerE(d
−1) // 0 // · · ·

Hence we would like to use a null system containing the complexes Ex(d0) for
any d0 : E0 → E1 which is possible if and only if these short exact sequences
satisfy the axioms of a Quillen exact structure. Therefore if E is a 1-quasi-
abelian category the previous truncation functors induce, by [49, Lem. 1.2.17;
1.18] (see Lemma C.4 and Lemma 4.11), the t-structure LDE (resp. RDE )
in the derived category D(E) = K(E)/N . Moreover, since 0 → ImE(d

−1) →
E0 → CokerE(d

−1)→ 0 is a kernel-cokernel exact sequence, it is exact for the

maximal Quillen exact structure on E , hence RD≤−1
E ⊆ LD≤0

E ⊆ RD≤0
E and

E = LD≤0
E ∩ RD≥0

E . The t-structure LDE (resp. RDE) is called the left t-

structure (resp. the right t-structure), whose aisle LD≤0
E (resp. co-aisle RD≥0

E )
is the class of complexes isomorphic in D(E) to complexes whose entries in
each strictly positive (resp. negative) degree are zero. The heart of LDE (resp.
RDE) is denoted by LH(E) (resp. RH(E)) and we denote by IL (resp. IR) the
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156 L. Fiorot

canonical embedding into LH(E) (resp. RH(E))

IL : E −→ LH(E)
E 7−→ 0→

•

E

IR : E −→ RH(E)
E 7−→ •

E→ 0

which preserves and reflects exact sequences. Moreover E is stable under ex-
tensions in LH(E) (resp. RH(E)).

Proposition 2.14. Let E be a 1-quasi-abelian category. The t-structures
LDE = RDE coincide if and only if E is an abelian category.

Proof. Let E be a 1-quasi-abelian category, LDE = RDE if and only if for any

complex E• ∈ D(E) the canonical map βE• : τ≤0
L E• → τ≤0

R E• ∼= τ≤1
L τ≤0

R E•

τ≤0
L E• := · · · //

βE•
��

E−1 //

��

•

KerE d0 //

��

0 //

��

0 //

��

· · ·

τ≤1
L τ≤0

R E• = · · · // E−1 d−1
//

•

E0 // ImE(d
0) // 0 // · · ·

is an isomorphism inD(E) which holds true if and only if the short sequence 0→
KerE d

0 → E0 → ImE(d
0)→ 0 is exact on E i.e.; E is an abelian category.

Theorem 2.15. [45], [9, Prop. B.3]. Let E be an additive category. The
following properties are equivalent:

1. E is a 1-cotilting torsion-free class in an abelian category A;

2. E is a 1-tilting torsion class in an abelian category A′;

3. E is a 1-quasi-abelian category;

4. E is the intersection of the hearts HD ∩ HT of a 1-tilting pair of t-
structures.

Moreover A ≃ LH(E), A′ ≃ RH(E) and (D, T ) = (RDE ,LDE).

Proof. The equivalence between (1), (2) and (4) is a consequence of Theo-
rem 2.8 and Proposition 2.10. Given E a 1-quasi-abelian category as recovered
in 2.13 Schneiders proved that (RDE ,LDE) is a 1-tilting pair of t-structures
with LH(E)∩RH(E) ≃ E , so (3) implies (4). On the other direction given any
1-tilting pair of t-structures (D, T ) by Proposition 2.10 the class E := HT ∩HD

is a tilting torsion class in HD, hence a 1-quasi-abelian category and thus (4)
implies (3).

We have seen in 2.1 that, given any torsion pair (X ,Y) in an abelian categoryA,
both X and Y are 1-quasi-abelian categories. In particular X is a 1-tilting
torsion class after a suitable replacement of the abelian category:
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Proposition 2.16. Let (X ,Y) be any torsion pair in an abelian category A.
Let consider AX to be the full subcategory of A whose objects are cogener-
ated by X . Then AX is abelian, the canonical embedding functor AX →֒ A
is exact and the pair (X ,Y ∩ AX ) is a 1-tilting torsion pair in AX therefore
AX ≃ RH(X ).
Dually let consider AY to be the full subcategory of A whose objects are gen-
erated by Y. Then AY is abelian, the functor AY →֒ A is exact and the pair
(X ∩ AY ,Y) is a 1-cotilting torsion pair in AY therefore AY ≃ LH(Y).

Proof. Let us prove that for any X
f
→ Y morphism in AX , its kernel and

cokernel in A belong to AX . By definition ofAX there exist X
αX

→֒ TX and Y
αY

→֒

TY with TX , TY in X . Hence KerA(f) →֒ X
αX

→֒ TX implies KerA(f) ∈ AX

while CokerA(f) →֒ CokerA(αY f) ∈ X , since X is closed under quotients and
TY ∈ X . Let X ∈ AX and let consider its short exact sequence 0 → T (X)→
X → F (X) → 0 where T (X) (resp. F (X)) is its torsion (resp. torsion-free)
part with respect to the torsion pair (X ,Y) in A. Then T (X) ∈ X ⊆ AX , hence
F (X) ∈ AX (since it is a cokernel of a morphism in AX ) which proves that
(X ,Y ∩AX ) is a torsion pair in AX . The second statement follows dually.

3 n-Tilting Theorem

3.1. Let C be a triangulated category endowed with a pair of t-structures (D, T ):
D≤−n ⊆ T ≤0 ⊆ D≤0 and E := HT ∩HD. The following statements hold true:

1. any complex · · · → 0 → E−s → · · · → E−1 →
•

E0→ 0 → · · · with s ≥ 0
belongs to T [−s,0] ∩ D[−s,0] ([20, Lem. 1.1]);

2. for any exact sequence in HD (resp. HT )

0 // M
g
// E−n+1

d−n+1
E // · · ·

d−1
E // E0

f
// N // 0

with E−i ∈ E ∀i = 0, . . . , n−1 and n ≥ 1 we have: N = CokerHD
d−1
E ∈ E

(resp. M = KerHT
d−n+1
E ∈ E). The argument of [20, Lem. 1.2] gives

a distinguished triangle M [n − 1] → [E−n+1 → · · · →
•

E0] → N [0]
+
→

hence M [n − 1] ∈ HD[n − 1] ⊆ T ≤1 and [E−n+1 → · · · →
•

E0] ∈ T ≤0 so
N [0] ∈ HD ∩ T ≤0 = E ;

3. a complex E• ∈ K(E) is acyclic in HD if and only if it is acyclic in HT

and in this case KerHD
diE•
∼= KerHT

diE• ∈ E for any i ([20, Prop. 1.3]);

4. E is projectively complete (any idempotent in E splits in HD and it be-
longs to HT too); E is closed under extensions both in HD andHT , hence
the class of short exact sequences 0 → E1 → E → E2 → 0 (in HD or
equivalently HT ) provides a Quillen exact structure (E , Ex) on E .
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Moreover if E is cogenerating in HD, by [20, Lem. 1.4], E is generating in
HT and, by point (2) of 3.1, any A ∈ HD (resp. any B ∈ HT ) admits a
copresentation (resp. a presentation) of length at most n.
All the previous results combine into the following n version of Theorem 2.8.

Theorem 3.2. n-Tilting Theorem. ([20, Th. 1.5] ) Let A be abelian cat-
egory such that its derived category D(A) has Hom sets, let D be the natural
t-structure in D(A) and T a t-structure such that D≤−n ⊆ T ≤0 ⊆ D≤0. Let us
suppose that E := A ∩HT cogenerates A, hence there exists a triangle equiva-
lence E:

K(E)
NExJ j∼=

xx♣♣
♣♣
♣♣
♣

� s
∼=

&&▲
▲▲

▲▲
▲

D(HT )
∼=

E
// D(A)

(where NEx is the null system of complexes in K(E) acyclic in A or equivalently
in HT ) such that the restriction of E to HT is naturally isomorphic to the
inclusion HT ⊆ D(A). Moreover E is generating in HT .

Definition 3.3. A pair of t-structures (D, T ) on a triangulated category C is
called n-tilting if the following statements hold:

1. D≤−n ⊆ T ≤0 ⊆ D≤0;

2. the following equivalent conditions are satisfied:

(i) given E := HD∩HT we get C ≃ K(E)/N and D(HD)
≃
←֓ K(E)/N

≃
→֒

D(HT ) where N is the null system of complexes in K(E) acyclic in
HD or equivalently in HT ;

(ii) C ≃ D(HD) and E cogenerates HD;

(iii) C ≃ D(HT ) and E generates HT .

If D≤−n ⊆ T ≤0 ⊆ D≤0 by Theorem 3.2 we have that (ii) implies (i) and
(iii), dually (iii) implies (i) and (ii) (by the cotilting version of Theorem 3.2)
so (ii) is equivalent to (iii). If (i) holds C ≃ D(HD) and E cogenerates HD

since any A ∈ HD can be represented by a complex E• ∈ K(E) and so A →֒
CokerHD

(d−1
E•) ∈ E (CokerHD

(d−1
E•) ∈ E by (2) of 3.1) which proves that (i)

implies (ii).
We note that any n-tilting pair of t-structures is also m-tilting for any m ≥ n.

Proposition 3.4. Let (D, T ) be a n-tilting pair of t-structures in a triangulated

category C. Hence the equivalence F : C
≃
→ K(E)/NEx = D(E , Ex) (where the

Quillen exact structure on E is the one of 3.1 (4)) gives:

F (T ≤0) ={X• ∈ K(E) | X• ∼= E•
≤0 in K(E)/NEx with E•

≤0 ∈ LK≤0
E } =: LD≤0

(E,Ex)

F (D≥1) ={X• ∈ K(E) | X• ∼= E•
≥1 in K(E)/NEx with E•

≥1 ∈ RK≥1} =: RD≥1
(E,Ex)

.

Documenta Mathematica 26 (2021) 149–197



N-Quasi-Abelian Categories 159

Proof. By definition D(E , Ex) = K(E)
NEx

([41] see A.2). Since (D, T ) is n-tilting,

we have that under the n-tilting equivalence D≤0(HT ) corresponds to T ≤0,
while D≥1 corresponds to D≥1(HD). Moreover the class E generates HT and
so any object in D≤0(HT ) can be represented in K(E)/NEx by a complex in
K≤0(E). On the other side since E cogenerates HD any object in D≥1(HD)
can be represented in K(E)/NEx by a complex in K≥1(E).

Remark 3.5. The proof of Theorem 3.2 produces the desired equivalence on
the derived categories of the hearts passing trough an equivalence with the

triangulated category K(E)
NEx

= D(E , Ex) where E is the intersection of the hearts.
We remark that the role of the Quillen exact structure is important in order to
define D(E , Ex). The previous proposition proves that the category E encodes
the data of the t-structures since (D, T ) ≃ (RD(E,Ex),LD(E,Ex)).

4 2-tilting torsion classes

As we will see soon the case n = 2 is neatly easier than n > 2 and so we will
first analyze this case in detail.

Lemma 4.1. Let (D, T ) be a 2-tilting pair of t-structures in C ≃ D(HD) ≃
D(HT ). Hence E := HD ∩ HT is closed under extensions (both in HD and
HT ); it admits kernels and cokernels and given d : E → F in E we have
KerE(d) = KerHT

(d) ∈ E while CokerE(d) = CokerHD
(d) ∈ E. Moreover the

inclusion functor i : E →֒ HD admits a right adjoint t : HD → E while the
inclusion functor j : E →֒ HT admits a left adjoint f : HT → E.

Proof. Let d : E → F be a morphism in E , by point (2) of 3.1 we
have: KerHT

d ∈ E while CokerHD
d ∈ E and so they provide the kernel,

resp. the cokernel, of d in E . By hypothesis D≤−2 ⊆ T ≤0 ⊆ D≤0 so,
by orthogonality T ≥1 ⊆ D≥−1. Let A ∈ HD, the distinguished triangle

τ≤0(A) → A → τ≥1(A)
+
→ proves that τ≤0(A) ∈ D≥0 since A ∈ HD and

τ≥1(A) ∈ T ≥1 ⊆ D≥−1 so t(A) := τ≤0(A) ∈ T ≤0 ∩ D≥0 = E (recall nota-
tion 2.7). Hence HD(i(E), A) = C(E,A) ≃ C(E, τ≤0A) = E(E, t(A)) for any
E ∈ E , which proves that t is a right adjoint of i. Dually the functor δ≥0

restricted to HT takes image in E and provides the left adjoint f of j.

Following Lemma 2.3 we define the a 2-tilting torsion class in the following
way.

Definition 4.2. Let A be an abelian category. A full subcategory E →֒ A is
a 2-tilting torsion class if

1. E cogenerates A;

2. E is closed under extensions in A;

3. E has kernels;
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4. for any exact sequence 0 → A → X1 → X2 → B → 0 in A with Xi ∈ E
for i ∈ {1, 2} and A,B ∈ A we have B ∈ E .

Moreover E is endowed with a canonical Quillen exact structure whose short
exact sequences are exact sequences in A with terms in E . Any 1-tilting torsion
class as in Definition 2.2 is also a 2-tilting torsion class.
Dually a 2-cotilting torsion-free class in A is a full generating extension closed
subcategory E of A admitting cokernels and closed under kernels in A.

Proposition 4.3. Given (D, T ) a 2-tilting pair of t-structures the category
E := HD ∩ HT is a 2-tilting torsion class (resp. a 2-tilting torsion-free class)
in HD (resp. in HT ).

Proof. By Definition 3.3 E cogenerates HD and generates HT . By point (4)
of 3.1 E is closed under extensions both in HD and HT . Given a morphism
d : X1 → X2 in E by point (2) of 3.1 we deduce that KerE d ∼= KerHT

d ∈ E
and CokerE d ∼= CokerHD

d ∈ E which concludes the proof.

Theorem 4.4. Let A be an abelian category and let D be the natural t-structure
on the triangulated category D(A). Let i : E →֒ A be a 2-tilting torsion class
on A. Hence T ≤0 := D≤−2 ⋆ E ⋆ E [1] (see C.1) is an aisle in D(A) such that
E = A ∩ HT and the pair (D, T ) is a 2-tilting pair of t-structures. We will
say that the t-structure T is obtained by tilting D with respect to the 2-tilting
torsion class E.

Proof. The class T ≤0 is extension closed by Lemma 4.5; T ≤0[1] ⊆ T ≤0 since
the suspension of any factor is contained in a factor. By definition D≤−2 ⊆ T ≤0

and, since any factor is contained in D≤0, we get T ≤0 ⊆ D≤0.
Let us prove that the functor iT ≤0 : T ≤0 → D(A) has a right adjoint τ≤0 :
D(A) → T ≤0. Let us notice that the functor i : E → A has a right adjoint
t defined as in Lemma 2.3: for any A ∈ A let consider a copresentation 0 →

A → X1
f
→ X2 and let us pose t(A) = KerE(f). For any L ∈ D≤−2 ⋆ E ⋆ E [1]

we have H0
D(L) ∈ E (since it is a cokernel in A between two objects in E).

Let A ∈ A, we have D(A)(M,A) ∼= A(H0
D(M), A) ∼= A(H0

D(M), t(A)) ∼=
D(A)(M, t(A)),∀M ∈ T ≤0. So our truncation functor τ≤0 restricted to A

coincides with t: τ≤0
|A = t (hence the mapping cone [t(A)→

•

A] belongs to T ≥1

by [35, Prop. 1.1]). Even if we have to choose a morphism in order to define
this functor, the functoriality of the construction is guaranteed by the fact
that, for another choice, there exists a unique isomorphism compatible with
this construction ([7, Prop. 1.3.3]).

Let us now compute the restriction of τ≤0 to D[−1,0]. Any object D ∈ D[−1,0]

can be represented as [A
f
→

•

B] (see C.2). Since E is cogenerating in A there
exists an immersion h : A →֒ E with E ∈ E and so D is isomorphic in D(A)

to [E
f
→

•

E ⊕A B]. Let define τ≤0(D) to be [E
t(f)
→

•

t(E ⊕A B)]. Let consider
the following commutative diagram whose rows and columns are distinguished
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triangles (obtained by applying the octahedron axiom to the composition E →
t(E ⊕A B)→ E ⊕A B [7, Prop. 1.1.11])

E
t(f)

//

��

t(E ⊕A B) //

��

τ≤0(D)
+

//

��

E
f

//

��

E ⊕A B //

��

D
+

//

��

0 //

+
��

τ≥1(E ⊕A B) //

+
��

τ≥1(E ⊕A B)
+

//

+
��

By the previous case τ≥1(E ⊕A B) ∈ T ≥1. Since τ≥1(E ⊕A B) and τ≥1(E ⊕A
B)[−1] belong to T ≥1; D(A)(M, τ≤0(D)) ∼= D(A)(M,D) for any M ∈ T ≤0.
For any X ∈ D(A), τ≤0(X) ∼= τ≤0(δ≤0(X)) since T ≤0 ⊆ D≤0 (one can
see by the octahedron axiom that the mapping cone of the composition
τ≤0(δ≤0(X)) → δ≤0(X) → X lyes in T ≥1). Given C ∈ D≤0; the following
commutative diagram (whose rows and columns are distinguished triangles)

δ≤−2(C) //

��

τ≤0(C) //

��

τ≤0(δ[−1,0](C))
+

//

��

δ≤−2(C) //

��

C //

��

δ[−1,0](C)
+

//

��

0 //

+
��

τ≥1(δ[−1,0](C)) //

+
��

τ≥1(δ[−1,0](C))
+

//

+
��

permits us to compute τ≤0(C) for any C ∈ D≤0. We recall that, whenever
two rows and any column of such a digram are distinguished, the third row is
distinguished too [7]. The functoriality of this construction is guaranteed by
the orthogonality of the classes T ≤0, T ≥1.
Let us prove that E = A ∩ HT ; we recall that A ≃ HD. Let consider A• ∈
A ∩HT , hence A

• ∈ T ≤0 = D≤−2 ⋆ E ⋆ E [1] and so it fits into a distinguished

triangle B• → A• → E[−1,0] +→ for suitable B• ∈ D≤−2 and E[−1,0] ∈ E ⋆ E [1];
but, since A• ∈ D≥0, we deduce that B• ∈ D≤−2 ∩ D≥0 = 0 so A• ∈ E ⋆ E [1].

Therefore A• = [E−1 d
→

•

E0] and A• ∼= H0
D(A

•) since A• ∈ A ≃ HD, so, by point
(4) of Definition 4.2, we obtain A• ∈ E which proves that T ≤0 ∩D≥0 = E . We
can apply the Tilting Theorem 3.2 (E cogeneratesA) thus obtaining that (D, T )
is a 2-tilting pair of t-structures.

Lemma 4.5. Let E be a 2-tilting torsion class in an abelian category A. The
full subcategory T ≤0 := D≤−2 ⋆ E ⋆ E [1] of D(A) is closed under extensions.

Proof. Let us denote by D the natural t-structure on D(A).
Step 1. Let us prove that E [1]⋆E ⊆ E⋆E [1]. AnyX• ∈ E [1]⋆E can be represented
by a complex E• ∈ K≥−1(E) (since E cogenerates A). The distinguished trian-

gle H−1
D (E•)[1]→ E• → H0

D(E
•)

+
→ is the unique realizing E• as an object in
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A[1] ⋆A, hence H−1
D (E•) = KerA(d

−1
E•) ∈ E and H0

D(E
•) =

KerA(d0
E•)

ImA(d−1
E•)
∈ E . The

short exact sequence 0 → KerA(d
−1
E•) → E−1 → ImA(d

−1
E•) → 0 implies that

ImA(d
−1
E•) ∈ E (by property (4) of Definition 4.2) and so KerA(d

0
E•) ∈ E (since

it is an extension of objects in E). This proves that X• ∼= [E−1 →
•

KerA(d
0
E•)

] ∈ E ⋆ E [1].
Step 2. It remains to prove that (E ⋆ E [1]) ⋆ D≤−2 ⊆ T ≤0 which is equivalent
to require δ≥−1Z• ∈ E ⋆ E [1] for any Z• ∈ (E ⋆ E [1]) ⋆ D≤−2. The complex

Z• can be represented as [· · ·Y −3 d−3

→ Y −2 d−2

→ E−1 d−1

→
•

E0] ∈ K≤0(A). We

can choose an inclusion Coker d−2
Z•

i
→֒ F−1 ∈ E (since E cogenerates A), hence

δ≥−1Z• = [Coker d−2
Z• →

•

E0] ∼= [F−1 →
•

F−1 ⊕E−1 E0] ∈ E ⋆ E [1].

Remark 4.6. Theorem 4.4 admits a dual version: given T a t-structure on
D(HT ) and j : E → HT a 2-cotilting torsion-free class on HT , the class D≥0 :=
E [−1] ⋆ E ⋆ T ≥2 is a co-aisle in D(HT ) such that HT ∩HD = E . Moreover the
pair (D, T ) is a 2-tilting pair of t-structures.

Definition 4.7. A 2-quasi-abelian category is the data (E , Ex) of an additive
category E admitting kernels and cokernels plus an exact structure Ex.

Remark 4.8. Clearly any 1-quasi-abelian category is also 2-quasi-abelian. Any
2-tilting torsion class E is a 2-quasi-abelian category since by Definition 4.2 (3)
it admits kernels and by (4) it admits cokernels.

Let us start by studying the case of a 2-quasi-abelian category (E , Exsplit) whose
Quillen exact structure is the minimal one (i.e., any conflation splits).

Proposition 4.9. Let E be an additive category admitting kernels and cok-
ernels. The category K(E) admits a canonical 2-tilting pair of t-structures
(RKE ,LKE) such that E = RK(E) ∩ LK(E) and so E →֒ RK(E) is a 2-tilting
torsion class while E →֒ LK(E) is a 2-cotilting torsion-free class.

Proof. We can endow E with its minimal exact structure Exsplit (split short
exact sequences A.1). So (E , Exsplit) is a 2-quasi-abelian category whose derived
category D(E , Exsplit) = K(E). In 2.13 we provided the construction of the
left and right t-structures on K(E) for E a 1-quasi-abelian category. This
construction is based on the existence of kernels and cokernels, so it works
unchanged in this case and it provides the t-structures LKE and RKE on K(E)
whose associated truncated functors are those described in 2.13. Moreover
RK≤−2

E ⊆ LK≤0
E ⊆ RK≤0

E . The heart of LKE (resp. RKE) is denoted by

LK(E) (resp. RK(E)). Any short exact sequence 0 → K
α
→ L

π
→ E → 0 in

LK(E) with E ∈ E is a distinguished triangle in K(E). It induces the exact
sequence K(E)(E,L) → K(E)(E,E) → K(E)(E,K[1]) = 0 (since K[1] is a

complex in LK≤−1
E with 0 entries in degrees greater or equal to 0), hence π is

a split epimorphism. Thus E coincides with the class of projective objects in
LK(E). Any object L ∈ LK(E) can be represented as a complex L ∼= C(d) :=
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[KerE(d)
α
→ X

d
→

•

Y ] ∈ K(E) (since L ∼= τ≥0
L τ≤0

L L see 2.13) which permits to
prove that L has a projective resolution of at most length 2: the distinguished

triangles (where C(α) := [KerE(d)
α
→

•

X])

KerE(d)[0] −→ X [0] −→ C(α)
+

−→; C(α) −→ Y [0] −→ C(d)
+

−→ in K(E) (1)

give the short exact sequences

0→ KerE(d)→ X → C(α)→ 0; 0→ C(α)→ Y → C(d)→ 0 in LK(E)

from which we obtain the projective resolution 0 → KerE(d) → X → Y →
C(d) → 0 of C(d) in LK(E). We have K(E) ≃ D(LK(E)) which proves that
(RKE ,LKE) is a 2-tilting pair of t-structures, hence, by Proposition 4.3, E is a
2-tilting torsion (resp. 2-cotilting torsion-free) class in RK(E) (resp. LK(E)).
In particular E coincides with the class of injective objects in RK(E) (resp.
projective objects in LK(E)).

Corollary 4.10. Given (E , Exsplit) a 2-quasi-abelian category, LK(E) ≃ coh-E
and RK(E) ≃ (E-coh)◦.

Proof. The category E has kernels and cokernels, hence it is a coherent category
(see Definition B.7 and Proposition B.10). Both coh-E and LK(E) are abelian
categories whose projective objects coincide with E , and such that any object
has a projective resolution of at most length 2. The functor IL : E → LK(E)
extends uniquely to a functor IcL : coh-E → LK(E) cokernel preserving (see B.6)
which is an equivalence of categories (any object in L ∈ LK(E) has a projective
resolution therefore IcL is essentially surjective and fully faithful since any object
in E is projective in LK(E)). Thus the left heart is equivalent to the category
of right coherent functors. The right statement follows dually.

Let us now turn to the case of a general 2-quasi-abelian category (E , Ex):

Lemma 4.11. Given any 2-quasi-abelian category (E , Ex) the left and right t-
structures on K(E) induce a 2-tilting pair of t-structures (RD(E,Ex),LD(E,Ex))
on the derived category D(E , Ex) such that E = RH(E , Ex) ∩ LH(E , Ex).

Proof. Let us denote by NEx the null system of acyclic complexes with respect
to (E , Ex) (see A.2). Let us prove that the t-structure LKE on K(E) satisfies
the hypothesis of Lemma C.4 thus inducing (passing trough the quotient) the
t-structure LD(E,Ex) on D(E , Ex) := K(E)/NEx. We have to prove that, given

any distinguished triangle Y • → X• → N • +
→ in K(E) such that Y • ∈ LK≥1

E ,

X• ∈ LK≤0
E and N • ∈ NEx we have Y •, X• ∈ NEx. We can suppose Y • =

τ≥1
L Y • and X• ∈ K≤0(E). Let consider the following commutative diagram:

// 0 //

��

Ker(d0
Y

) //

��

Y
0

d
0
Y //

��

Y
1

��
// X−2

d
−2
X //

��

X
−1

d
−1
X //

��

X
0 //

��

0

��
// Ker(d0

Y
) ⊕ X

−2 //

** **❱❱❱
❱

Y
0 ⊕ X

−1 //

(( ((❘❘
❘❘

Y
1 ⊕ X

0 //

&& &&▼
▼▼

Y
2

Im(d
−3
X

)

66
66❧❧❧

Ker(d0
Y

) ⊕ Coker(d
−3
X

)

44
44✐✐✐✐✐

Ker(d1
Y

) ⊕ X
0

66
66♠♠♠♠

Ker(d2
Y

)

;;
;;①①①
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one has to start looking to the last row, for i ≤ −3 we have N i = X i, while for
j ≥ 1 we have N j = Y j+1; so we can write Im(d−3

X ) on the left and Ker(d2Y )
on the right. We complete taking resp. the cokernel and the kernel and we are
able to decompose Y • and X• via conflations. The following pullback diagram

Ker(d0Y )⊕ Coker(d−3
X ) // // Y 0 ⊕X−1 // // Ker(d1Y )⊕X0

Ker(d0Y )⊕ Coker(d−3
X )

OO

// // Ker(d0Y )⊕X−1

OO

// // X0

OO

proves that Coker(d−3
X ) // // X−1 // // X0 is a conflation, thus X•, Y • ∈ NEx.

Therefore we obtain a pair of t-structures (RD(E,Ex),LD(E,Ex)) on D(E , Ex)

such that RD≤−2
(E,Ex) ⊆ LD

≤0
(E,Ex) ⊆ RD

≤0
(E,Ex). Clearly E is contained in

RH(E , Ex) ∩ LH(E , Ex). If E• ∈ RH(E , Ex) ∩ LH(E , Ex), we can suppose

E• ∈ K≤0(E) and E• ≃ τ≥0
R E• = CokerE d

−1
E• ∈ E so E• ∈ E .

It remains to prove that the derived category of the heart is equivalent to
D(LH(E , Ex)) ≃ D(E , Ex) =: K(E)/NEx. Now E is a full subcategory of
LH(E , Ex) and a sequence S : 0 → E1 → E → E2 → 0 belongs to Ex if and

only if the triangle E1[0]→ E[0]→ E2[0]
+
→ is distinguished in D(E , Ex), hence

(since any term is in LH(E , Ex)) if and only if S is exact in LH(E , Ex). Given

any morphism f : E → F in E , we have KerLH(E,Ex)(f) = H0
LH(E,Ex)([

•

E→

F ]) ∈ E (due to the inclusion RD≤−2
(E,Ex) ⊆ LD

≤0
(E,Ex)) and so KerLH(E,Ex)(f) =

KerE(f). Hence any complex in K(E), which is acyclic in D(LH(E , Ex)), can
be decomposed into short exact sequences in LH(E , Ex) whose terms belong
to E and so we deduce that NEx = NLH(E,Ex) ∩ K(E). Moreover any object
X• ∈ LH(E , Ex) can be represented as a complex X• ∈ K≤0(E) such that

τ≥0
L X• ∼= X• and so (as in the proof of Proposition 4.9) it can be represented

by a complex C(d) := [KerE(d)
α
→ X

d
→

•

Y ] ∈ LH(E , Ex) whose terms belong
to E . This suggests that LH(E , Ex) is a Gabriel quotient of the heart LK(E)
as we will see in Theorem 7.11. The same argument of Proposition 4.9 (1)
proves that the exact sequence 0 → KerE(d) → X → Y → C(d) → 0 is exact
in LH(E , Ex), thus any object in the left heart admits a E-resolution of length
at most 2. Therefore the subcategory E in LH(E , Ex) satisfies the hypotheses

of [32, Prop. 13.2.6] (see Proposition C.3), hence K(E)
NEx

≃ D(LH(E , Ex)).

Now we have a definition for any property appearing in Theorem 2.15 whose
generalization is the following theorem:

Theorem 4.12. Let (E , Ex) be an additive category endowed with a Quillen
exact structure Ex. The following properties are equivalent:

1. E is a 2-cotilting torsion-free class in an abelian category C (and sequences
in Ex are short exact sequences in C whose terms belong to E);

2. E is a 2-tilting torsion class in an abelian category C′ (and sequences in
Ex are short exact sequences in C′ whose terms belong to E);
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3. (E , Ex) is a 2-quasi-abelian category;

4. E is the intersection of the hearts HD ∩ HT of a 2-tilting pair of t-
structures on D(E , Ex).

Moreover C ≃ LH(E), C′ ≃ RH(E) and (D, T ) = (RDE ,LDE).

Proof. By Proposition 4.3 given any 2-tilting pair of t-structures (D, T ) we
obtain that E is a 2-tilting torsion (resp. 2-cotilting torsion-free) class in HD

(resp. HT ) and by Remark 4.8 E is 2-quasi-abelian. So (4) implies (1), (2) and
(3). By Theorem 4.4 given E a 2-tilting torsion class in HD, the pair (D, T ) (on
D(HD)) is a 2-tilting pair of t-structures (where T is the t-structure obtained by
tilting D with respect to E). By Proposition 3.4 the pair (D, T ) coincides with
(RD(E,Ex),LD(E,Ex)). So (2) implies (4) and by the dual of Theorem 4.4 (1) im-
plies (4). Given (E , Ex) a 2-quasi-abelian category endowed with a Quillen ex-
act structure by Lemma 4.11 one can associate the 2-tilting pair of t-structures
(RD(E,Ex),LD(E,Ex)) on D(E , Ex) such that E = RH(E , Ex) ∩ LH(E , Ex). So
(3) implies (4).

Remark 4.13. We have proved that for any n-quasi-abelian category (E , Ex)
with n ∈ {1, 2} we have a derived equivalence D(LD(E , Ex)) ≃ D(RD(E , Ex))
even if the category E does not contain a tilting object.

5 Effaceable functors

We prove that the left LH(E , Ex) is a Gabriel quotient of the heart LK(E) ≃
coh-E (as suggested in Lemma 4.11). This section is devoted to the tool of
effaceable functors which we will use in Section 7 to define a Serre subcategory
of coh-E .

Proposition 5.1. Let E be a projectively complete category and let fp-E be
the Freyd category of (contravariant) finitely presented functors. The maximal
Quillen exact structure on fp-E is the one whose conflations are 0 → F1 

F ։ F2 → 0 such that for any E ∈ E the sequence of abelian groups 0 →
F1(E)→ F (E)→ F2(E)→ 0 is exact.

Proof. Let us recall that fp-E admits cokernels which are calculated pointwise
and if a morphism admits a kernel it is also computed pointwise; moreover
any functor which is (pointwise or in Mod-E) extension of finitely presented
functors is finitely presented too. Hence the push-out of any inflation is an
inflation, resp. the pull-back of any deflation is a deflation and they are stable
by compositions so these conflations define a Quillen exact structure on fp-E .
For any other Quillen exact structure on fp-E a conflation 0 → G1  G ։

G2 → 0 is a kernel-cokernel sequence and so for any E ∈ E we get a short exact
sequence 0→ G1(E)→ G(E)→ G2(E)→ 0 of abelian groups.
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Let us recall the definition of right filtering subcategory of an exact category
and some related results due to Schlichting ([48]). Let us recall that for any
inflation A B the object A is called an admissible subobject of B.

Definition 5.2. [48, Def. 1.3.] Let U be an exact category (i.e., an additive
category with a Quillen exact structure) and A ⊂ U . Then the inclusion A ⊂ U
is called right filtering and A is called right filtering in U if:

1. A is an extension closed full subcategory of U ;

2. A is closed under taking admissible subobjects and admissible quotients;

3. every map f : U → A with U ∈ U and A ∈ A admits a factorisation

f = gπ U
π // // B

g
// A with B ∈ A and π a deflation.

Definition 5.3. [48, Def. 1.12.] Let U be an exact category and A ⊂ U be an
extension closed full subcategory. A U-morphism is called a weak isomorphism
if it is a finite composition of inflations with cokernel in A and deflations with
kernel in A. We write ΣA⊂U for the class of weak isomorphisms.

Lemma 5.4. [48, Lem. 1.13.] If A is right filtering in U then ΣA⊂U admits a
calculus of right fractions.

By passing to the opposite category one obtains the dual results in the left
filtering case.
In the following, we will define a right filtering subcategory eff-ExE of fp-E whose
objects are the quotients in fp-E of deflations in Ex, they are called effaceable
functors ([54, p.14], [58, p.28] and [37, p.4]). WhenA is an abelian category, the
right orthogonal class of eff-A coincides with the full subcategory of coherent
functors which respects monomorphisms, hence the quotient category coh-A

eff-A is
the category of coherent left exact functors. Following Krause’s denomination
the equivalence A ≃ coh-A

eff-A is called Auslander’s formula ([37, Th. 2.2]).
This procedure is analog to the procedure one needs to do in order to define
the category of sheaves in abelian groups associated to a topological space.
One first defines the localizing Serre subcategory of pre-sheaves which have
stalk 0 at any point, hence its right orthogonal class is formed by separated
pre-sheaves, while the quotient category provides the category of sheaves in
abelian groups.
It turns out that the approach via Quillen exact structures is equivalent to the
one via Grothendieck topologies as recently explained by Kaledin and Lowen
in their paper [30, 2.2, 2.5]. The deflations (resp. the inflations) of a Quillen
exact structure provide a Grothendieck pre-topology in E (resp. in E◦). In this
equivalence the notion of pre-sheaf with stalk 0 at any point would give rise
to the notion of weak effaceable functor which is equivalent to the notion of
effaceable functor in the finitely presented case (see Proposition 5.5).
Following the analogy with abelian sheaves on a topological space X , a pre-
sheaf F has stalk 0 in any point x ∈ X if and only if for any U open subset
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of X and η ∈ F(U) there exists an open covering p :
⊔
i∈I Ui ։ U such that

the restriction F(p)(η) =
∏
i∈I η|Ui

= 0. In the additive context we have the
following counterpart: let E be a projectively complete category endowed with
a Quillen exact structure (E , Ex) and fp-E its Freyd category. We denote by

eff-ExE := {Cokerfp-E(q) | q is a deflation in Ex}

the full subcategory of fp-E whose objects are cokernels of morphisms induced
by deflations of Ex. We call the elements of eff-ExE effaceable functors.

Proposition 5.5. Let F ∈ fp-E; the following are equivalent:

1. F is effaceable;

2. for any U ∈ E and η ∈ F (U), there exists a deflation p : Y ։ U such
that F (p)(η) = 0 (weak effaceable).

Proof. Let us prove that (1)⇒ (2). We have to prove that for any η ∈ F (U) ∼=
Homfp-E(EU , F ) there exists a deflation p : Y ։ U such that F (p)(η) = 0. Let

consider EE1

q
→ EE2

γ
→ F → 0 with q : E1 ։ E2 a deflation in E , then there

exists EU
h
→ EE2 (since EU is projective in fp-E) such that γh = η. Let consider

the following commutative diagram where Y := E1 ×E2 U and p is a deflation
since it is the pull-back of a deflation (the axiomatic of Quillen exact structure
guarantees the existence of the fiber product Y ):

EY

p
//

��

EU
η

$$❍
❍❍

❍❍
❍❍

h
��

EE1

q
//

0

77EE2

γ
// F // 0.

hence F (p)(η) = ηp = 0.
Let us prove that (2) ⇒ (1). Since F ∈ fp-E is finitely presented there exists

f ∈ E(E1, E2) such that EE1

f
→ EE2

η
→ F → 0 and by hypothesis (2) there

exists a deflation p : Y ։ E2 such that ηp = 0 hence (since EE1 ։ Kerfg-E(η)
and EY is projective in fg-E) there exists g : Y → E1 such that p = fg which
proves that f is a deflation.

Remark 5.6. Following (2) implies (1) in the previous Proposition 5.5 we have

also proved that, given any presentation EE1

f
→ EE2

η
→ F → 0 of an effaceable

functor, the map f is a deflation.

Proposition 5.7. Let consider fp-E endowed with its maximal Quillen exact
structure. The full subcategory eff-ExE ⊂ fp-E is right filtering; if E is right
coherent, hence eff-ExE is a Serre subcategory of the abelian category fp-E =
coh-E. Dually E-effEx ⊂ E-fp is left filtering in E-fp and if E is left coherent,
hence E-effEx is a Serre subcategory of the abelian category E-fp = E-coh.
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Proof. Let us prove that eff-ExE ⊂ fp-E is right filtering; by Definition 5.2 we
have to verify:

1. eff-ExE is an extension closed full subcategory of fp-E ;

2. eff-ExE is closed under taking admissible subobjects and admissible quo-
tients in fp-E ;

3. every map f : U → A with U ∈ fp-E and A ∈ eff-ExE admits a factorisa-

tion f = gπ with U
π
։ B

g
→ A, π a deflation and B ∈ eff-ExE .

Let us verify that eff-ExE is closed under extension in fp-E . Let consider a
conflation 0→ T1  T ։ T2 → 0 such that both T1, T2 are effaceable functors
and let us prove that T satisfies condition (2) of Proposition 5.5. Given η ∈
T (U) ∼= fp-E(EU , T ) with U ∈ E , let us consider the following commutative
diagram (explained below):

EW
q

//

0

��
❂❂

❂❂
❂❂

❂❂
❂ EY

ξ

��

p

&&◆
◆◆

◆◆◆
0

��

EU
η
��

βη

&&▼
▼▼

▼▼
▼

0 // T1
α // T

β
// T2

// 0

Because T2 is effaceable, there exists a deflation p : Y ։ U such that βηp = 0,
and so ηp = T (p)(η) factors through α via ξ ∈ fp-E(EY , T1). Now, since T1
is effaceable, there exists q : W ։ Y such that ξq = T1(q)(ξ) = 0, hence
0 = αξq = ηpq = T (pq)(η). We remark that pq is a deflation since it is a
composition of two deflations, therefore T is effaceable.
Let us prove that eff-ExE is closed under admissible subobjects and admissible
quotients. Let 0→ T1  T ։ T2 → 0 be a conflation in fp-E with T ∈ eff-ExE .
Given U ∈ E and η ∈ T1(U), there exists a deflation p : Y ։ U such that
α(Y )(T1(p)(η)) = T (p)(α(U)(η)) = 0, which proves that T1(p)(η) = 0 (since
α(Y ) is a monomorphism of abelian groups by Proposition 5.1). Given an
object V of E and ξ ∈ T2(V ) ∼= fp-E(EV , T2), there exists σ : EV → T such that
ξ = βσ (because β is a deflation). Since T is effaceable, there exists q :W ։ V
such that σq = 0, which implies ξq = T2(q)(ξ) = 0 and so T2 is effaceable.

Let consider: f : U → A, EU2

h
→ EU1 → U → 0 a presentation of U ∈ fp-E and

EA2

p
→ EA1 → A → 0 a presentation of A ∈ eff-ExE with p a deflation. Since

representable functors are projective in fp-E there exist fi : EUi
→ EAi

with
i ∈ {1, 2} such that pf2 = f1h. Hence the following diagram commutes:

EU2

f2

44
r //

h
��

EU1×A1
A2

q
��

// EA2

p
��

EU1

��

EU1

��

f1 // EA1

����

U

f

55
π // Cokerfp-E(q)

g
// A
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Thus kerπ belongs to fp-E , because EU2

r
→ EU1×A1A2 → kerπ → 0 is exact,

and the sequence 0 → kerπ → U
π
→ Cokerfp-E(q) → 0 is a conflation since

it is pointwise exact. This proves that Cokerfp-E(q) belongs to eff-ExE (q is
a deflation since it is the pullback of p). When A is an abelian category
conditions (1) and (2) prove that eff-ExA is a Serre subcategory of coh-A. The
left statement follows by duality.

6 n-coherent categories

We have seen that the main difference between 1-quasi-abelian categories and
2-quasi-abelian ones is the need of Quillen exact structures. The passage from
n = 2 to n ≥ 3 requires a new technicality due to the possible absence of
kernels and cokernels. Let (E , Ex) be a projectively complete category endowed
with a Quillen exact structure. We are looking for a definition of n-quasi-
abelian category which permits us to associate to (E , Ex) a n-tilting pair of
t-structures on D(E , Ex) := K(E)/NEx. By Proposition 3.4 we know that ,if
these t-structures exist, they are the left and right t-structures:

LD≤0
(E,Ex) := {X

• ∈ K(E) | X• ∼= E•

≤0 in D(E , Ex) with E•

≤0 ∈ K
≤0(E)}

RD≥1
(E,Ex) := {X

• ∈ K(E) | X• ∼= E•

≥1 in D(E , Ex) with E•

≥1 ∈ K
≥1(E)}.

In the following we will use the notions of coherent functor, coherent category
(Definition B.7) weak kernels and cokernels; we refer to Appendix B for more
details. First of all we study the case of (E , Exsplit) which gives D(E , Exsplit) =
K(E).

Proposition 6.1. The followings hold:

1. the class LK≤0
E is an aisle in K(E) if and only if E is right coherent;

2. the class RK≥1
E is a co-aisle in K(E) if and only if E is left coherent.

If E is a right coherent category we have LK(E) ≃ coh-E; dually if E is left-

coherent RK(E) ≃ (E-coh)◦. Moreover given E a coherent category RK≤−n
E ⊆

LK≤0
E ⊆ RK≤0

E (with n minimal) if and only if coh-E (or equivalently E-coh)
has projective dimension n.

Proof. Statement (2) is dual to (1). Let us recall that by Proposition B.10 E
is right coherent if and only if it admits weak kernels.
Let LK≤0

E be an aisle (we denote by τ≤0
L its truncation functor) and let us prove

that E is right coherent. Let d : E0 → E1 be a morphism in E and let us regard

it as a complex E• := [
•

E0
d
→ E1]. The universal property of the truncation

[· · · → K−1 →
•

K0] = τ≤0
L (E•)

α•

→ E• implies that (K0, α0) is a weak kernel
for d.
On the other side let us suppose that E is right coherent and let us prove
that LK≤0

E is an aisle in K(E). Notice that LK≤0
E is extension closed in K(E)
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and LK≤0
E [1] ⊆ LK≤0

E . Since E is right coherent, the Freyd category of (con-
travariant) finitely presented functor is abelian fp-E = coh-E (Proposition B.10)
and E coincides with the class of projective objects in coh-E ; thus D−(coh-E) ≃

K−(E), D≤0(coh-E) ≃ LK≤0
E and their hearts are equivalent: LK(E) ≃ coh-E .

The category coh-E has finite projective dimension n if and only if given any
E• ∈ RK≥0

E the kernel Kercoh-E(d
0
E) admits a resolution of length at most n−2

(since 0 → Kercoh-E(d
0
E) → E0 → E1 → Cokercoh-E(d

0
E) → 0 is exact and any

projective resolution of Cokercoh-E(d
0
E) has at most length n). This is equiv-

alent to require that τ≥1
L X• ∼= τ≥1

L X≥0 ⊆ RK≤−n+2
E for any X• ∈ K(E) (see

2.13) which is equivalent to RK≤−n
E ⊆ LK≤0

E ⊆ RK≤0
E . In this case n is called

the global dimension of E .

Definition 6.2. A coherent category of global dimension at most n will be
said n-coherent. For example the category proj-R of projective (right) modules
of finite type on a coherent ring R with global dimension n is n-coherent.

7 n-tilting torsion classes for n > 2

Definition 7.1. Let (E , Ex) be a projectively complete category endowed with
a Quillen exact structure and let f : A→ B be a morphism in E . A (E , Ex)-pre-
kernel of f is a map i : K → A in E such that f ◦ i = 0 and for any j : X → A
such that f ◦ j = 0 there exist (possibly many) a deflation π : N ։ X and a
map k : N → K such that jπ = ik:

N
π // //

k
��

X

j
��

0

##●
●●

●●
●●

K
i //

0

77A
f

// B.

The category (E , Ex) has (E , Ex)-pre-pull-back squares if, given any pair fi :
Xi → Y with i = 1, 2, there exist an object Z and gi : Z → Xi such that
f1g1 = f2g2 and, for any pair of arrows αi :W → Xi with i ∈ {1, 2} such that
α1f1 = α2f2, there exist (not necessary unique) a deflation π : N ։ W and a
map k : N → Z such that the diagram below commutes:

W

α1

''

α2
))❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙ N
πoooo k // Z

g1 //❴❴❴

g2
��
✤

✤ X1

f1
��

X2
f2 // Y.

(2)

Passing throughout the opposite category one obtains the dual notion of
(E , Ex)-pre-cokernel and (E , Ex)-pre-push-out square.
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Remark 7.2. The notion of (E , Ex)-pre-kernel (resp. (E , Ex)-pre-cokernel) is
not functorial due to the lack of unicity of the arrows involved in in its defini-
tion. Nevertheless its existence is equivalent to require the existence of kernels
in the quotient category fp-E

eff-ExE
(see Remark 7.2) which is a necessary and suffi-

cient condition to prove that this quotient category is an abelian category (see
Theorem 7.11). When the Quillen exact structure coincides with the minimal
one, we have D(E , Exsplit) = K(E) and the previous definitions reduce to the
notions weak kernel and weak pull-back square (see Definition B.9).
If E admits weak kernels it admits (E , Ex)-pre-kernels for any Quillen exact
structure on E , since any weak kernel is also a (E , Ex)-pre-kernel. More gener-
ally if E admits (E , Ex)-pre-kernels, given any other Quillen exact structure Ex
containing the conflations of Ex, we have that E admits (E , Ex)-pre-kernels.

Lemma 7.3. Let (E , Ex) be a projectively complete category endowed with a
Quillen exact structure and D(E , Ex) := K(E)/NEx its derived category. The
classes

LD≤0
(E,Ex) := {X

• ∈ K(E) | X• ∼= E•

≤0 in D(E , Ex) with E•

≤0 ∈ C
≤0(E)}

RD≥1
(E,Ex) := {X

• ∈ K(E) | X• ∼= E•

≥1 in D(E , Ex) with E•

≥1 ∈ C
≥1(E)}

are extension closed in D(E , Ex).

Proof. We have to prove that for any morphism Y •[−1]
δ
→ X• in D(E , Ex) with

X•, Y • ∈ C≤0(E) the mapping cone M(δ) ∈ LD≤0
(E,Ex). We can represent δ as

Y •[−1]
δ′ // F • X•

∼=

αoo with δ′ and α maps in K(E). Since any N • ∈ NEx fits

in the distinguished triangle in K(E): N •

0 → N • → N •

1
+
→ , with N •

0 = [· · · →

N−1 →
•

Ker d0N• ] ∈ C≤0(E) ∩NEx and N •

1 = [
•

Ker d1N• → N1 → · · · ] ∈ NEx, we
get the following commutative diagram:

X•
α0 //

��

F •
0

//

ϕ��

N•
0

+
//

��

X• α //

��

F • //

ψ��

N• +
//

��

0 //

+��

N•
1

//

+��

N•
1

+
//

+��

Notice that α0 and ϕ are isomorphisms in D(E , Ex) with F •

0 ∈ C
≤0(E) and,

since the composition ψ◦δ′ = 0 (as a morphism inK(E)), we obtain δ′ = ϕ◦δ (in
K(E)). Thus M(δ′) ∈ C≤0(E) and M(δ) ∼=M(δ′) in D(E , Ex) which concludes
the proof.
The analog result for RD≥1

(E,Ex) follows dually.
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Lemma 7.4. Under the previous hypotheses:

1. The subcategory LD≤0
(E,Ex) is an aisle in D(E , Ex) if and only if E has

(E , Ex)-pre-kernels.

2. The subcategory RD≥1
(E,Ex) is a co-aisle in D(E , Ex) if and only if E has

(E , Ex)-pre-cokernels.

If the previous equivalent conditions hold E = LD≤0
(E,Ex) ∩RD

≥0
(E,Ex); any object

in the heart LH(E , Ex) can be represented as a complex K• ∈ C≤0(E) such that
Ki = (E , Ex)-pre-kernel of di+1

K for any i ≤ −2. Dually objects in RH(E , Ex)
are complexes C• ∈ C≥0(E) such that Ci = (E , Ex)-pre-cokernel of di−2

C for
any i ≥ 2.

Proof. (1). Let LD≤0
(E,Ex) be an aisle in D(E , Ex). Any morphism f : A → B

in E can be regarded as a complex M • := [
•

A
f
→ B] ∈ C≥0(E). Let us denote

by α : K• → M • with K• = [· · · → K−1 → K0] ∈ C≤0(E) its truncation

with respect to LD≤0
(E,Ex) (notice that α ∈ K(E) by A.2). Thus K0 α0

→ A is

a (E , Ex)-pre-kernel for f : any morphism j in E , such that fj = 0, induces a

morphism [
•

X ]
j
→M • which factorizes troughtK• in D(E , Ex), i.e.; αβ = j with

[
•

X] N •

∼=

ϕ
oo

β
// K• , providing a deflation N0

ϕ0

։ X and a morphism N0 β0

→ K0

such that jϕ0 = α0β0.

On the other side let us suppose that E has (E , Ex)-pre-kernels. The full sub-

category LD≤0
(E,Ex) of D(E , Ex) is closed by [1] and extensions (Lemma 7.3). Let

us construct the truncation functor τ≤0
L : D(E , Ex)→ LD≤0

(E,Ex) in two steps.

Step 1. Given L• := [
•

L0d
0
L→ L1 → · · · ] ∈ C≥0(E), let K0 i

→ L0 be a (E , Ex)-pre-

kernel of d0L, K
−1

d−1
K→ K0 a (E , Ex)-pre-kernel of i and, recursively, K−i

d−i

K→
K−i+1 be a (E , Ex)-pre-kernel of d−i+1

K with i ≥ 2. Hence i induces a morphism

of complexes K• i
→ L• with K• := [· · ·

d−2
K→ K−1 d

−1
K→ K0] ∈ C≤0(E). It remains

to prove that the mapping cone of i, M • := M(i), belongs to LD≥1
(E,Ex) :=

(LD≤0
(E,Ex))

⊥.

Notice that d−iM• is the (E , Ex)-pre-kernel of d−i+1
M• for any i ≥ 1 and, whenever

ψ : M • → Y • is a qis in D(E , Ex), the same property holds true for Y • (since

the mapping cone of ψ is in NEx). Let X
• ∈ C≤0(E) and X•

γ
// Y • M •

∼=

ψ
oo be a

morphism in D(E , Ex) (γ and ψ are morphisms of complexes). Hence d0Y γ0 = 0

and, since d−1
Y is the (E , Ex)-pre-kernel of d0Y , there exists p0 : W 0

։ X0 and
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s0 : W 0 → Y −1 such that γ0p0 = d−1
Y s0. Let consider the cartesian square

X̃−1 d̃−1
//

p−1

����

W 0

p0

����

X−1
d
−1
X // X0

and let us denote by φ−1 := γ−1p−1 − s0d̃−1. We have d−1
Y φ−1 = 0 and,

since d−2
Y is the (E , Ex)-pre-kernel of d−1

Y , there exists q−1 : W−1
։ X̃−1 and

s−1 : W−1 → Y −2 such that φ−1q
−1 = d−2

Y s−1 which gives γ−1p−1q−1 =

d−2
Y s−1+ s0d̃−1q−1. Let define p−1 := p̃0q−1 and d−1

W := d̃−1q−1. Iterating the

argument we construct a qis W •
p•

→ X• such that γp• is null up to homotopy
(via the si) which proves that γ = 0 in D(E , Ex).

Step 2. Given E• ∈ C(E), its truncation τ≤0
L (E•) is the mapping cone of the

morphism τ≤0
L (d−1

E•), described in the following commutative diagram, since by

the previous step τ≥1
L (E•) ∈ LD≥1

(E,Ex):

E≤−1[−1]
id //

τ≤0(d−1
E• )��

E≤−1[−1] //

d
−1
E•��

0
+

//

��

τ≤0
L (E≥0) //

��

E≥0 //

��

τ≥1
L (E≥0)

+
//

∼=��

τ≤0
L (E•) //

+
��

E• //

+
��

τ≥1
L (E•)

+
//

+
��

(3)

An object in the heart LH(E , Ex) can be represented as a complex K• ∈

K≤0(E) such that τ≤−1
L (K•) ∈ NEx and so Ki = D(E , Ex)-kernel of di+1

K

for any i ≤ −2. Statement (2) is dual to (1).

If E admits (E , Ex)-pre-kernels and (E , Ex)-pre-cokernels, let us denote by τ≤0
L

(resp. δ≥1
R ) the truncation functor with respect to LD≤0

(E,Ex) (resp. RD
≥1
(E,Ex)).

Hence E• ∈ LD≤0
(E,Ex) ∩RD

≥0
(E,Ex) if and only if the composition

γ : K• := τ≤0
L E• → E• → δ≥0

R (E•) =: C•

is an isomorphism inD(E , Ex) i.e., if and only if the mapping coneM(γ) ∈ NEx:

K• :
γ��

· · · //

��

K−1
d
−1
K //

��

K0

γ0��

// 0 //

��

· · · //

��
C• :

��

· · · //

��

0 //

��

C0
d0
C //

��

C1
d1
C //

��

· · · //

��
M(γ) : K−1

%% %%❏
❏❏❏

d
−1
K // K0

$$ $$❍
❍❍

❍
γ0

// C0

## ##❋
❋❋

d0
C // C1

d1
C //

"" ""❋
❋❋

· · · //

W−1
99

99tttt
W 0

;;

;;①①①
W 1

<<

<<①①①
W 2 · · ·

this proves that K• ∼=W 0[0] ∈ E .
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Lemma 7.5. Let us suppose that (E , Ex) admits (E , Ex)-pre-kernels and (E , Ex)-

pre-cokernels. Then RD≤−n
(E,Ex) ⊆ LD

≤0
(E,Ex) ⊆ RD

≤0
(E,Ex) (with n ≥ 2) if and only

if one of the following equivalent conditions hold:

1. given any complex K [−n+1,0] := K−n+1
d−n+1
K // K−n+2 // · · ·

d−1
K // K0

with Ki = (E , Ex)-kernel of di+1
K for any i ≤ −2, the morphism d−n+1

K

has a kernel in E;

2. given any complex C [−n+1,0] := C−n+1
d−n+1
C // C−n+2 // · · ·

d−1
C // C0 with

Ci = (E , Ex)-cokernel of di−2
C for any i ≥ −n− 1, the morphism d−1

C has
a cokernel in E.

In this case the sequence in (1) is exact in LH(E , Ex) while the one in (2)
is exact in RH(E , Ex) and the pair (RD(E,Ex),LD(E,Ex)) is a n-tilting pair of
t-structures on D(E , Ex) .

Proof. Let us suppose that n ≥ 2 and RD≤−n
(E,Ex) ⊆ LD

≤0
(E,Ex) ⊆ RD

≤0
(E,Ex).

Given a complex K [−n+1,0] with Ki = (E , Ex)-kernel of di+1
K for any i ≤

−2, by the proof of Lemma 7.4 the complex τ≤−n+1
L (K [−n+1,0]) is con-

structed taking in degree −n + 1 the (E , Ex)-kernel of d−n+1
K and taking

in degrees i < −n + 1 the (E , Ex)-kernel of the differential i + 1. Thus

τ≥−n+2
L (K [−n+1,0]) ∼= τ≥0

L (K [−n+1,0]) ∈ LH(E , Ex) since any term of this
complex is a (E , Ex)-kernel of its successive differential and the complex

K−n+1
d−n+1
K // K−n+2 // · · ·

d−1
K // K0 is exact in LH(E , Ex).

By hypothesis LH(E , Ex) ⊆ RD≥−n
(E,Ex) and since K [−n+1,0] ∈ RD

[−n+1,0]
(E,Ex) we get

τ≤−n+1
L (K [−n+1,0]) ∈ RD≥−n+1

(E,Ex) ∩ LD
≤−n+1
(E,Ex) = E [n− 1].

The dual argument proves that (2) holds true and the sequence in (2) is exact
in RH(E , Ex).

On the other side if (1) holds true, given X• ∈ D(E , Ex), we have τ≥1
L X• ∼=

τ≥1
L X≥0 ⊆ RD≥−n+1

(E,Ex) (since τ≤0
L X≥0 ∈ RD≥−n

(E,Ex)), hence RD≤−n
(E,Ex) ⊆

LD≤0
(E,Ex) ⊆ RD

≤0
(E,Ex). Therefore any object K• ∈ LH(E , Ex) can be repre-

sented as a complex K• ∈ K≤0(E) such that τ≤−1
L (K•) ∈ NEx and so it can be

represented by a complex

C(d−nK , . . . , d−1
K ) := [ Ker(d−n+1

K )
d−n

K // K−n+1
d−n+1
K // K−n+2 // · · ·

d−1
K //

•

K0 ]

such that Ki is a (E , Ex)-pre-kernel of di+1
K for any i ≤ −2. The following

distinguished triangle in D(E , Ex) provides a short exact sequence in LH(E , Ex)

0 // C(0, d−nK , . . . , d−2
K ) // K0[0] // C(d−nK , . . . , d−1

K ) // 0

which proves that E generates LH(E , Ex). Hence K(E)/NEx ≃ D(LH(E , Ex))
since the full subcategory E in LH(E , Ex) satisfies the hypotheses of Proposi-
tion C.3. Dually K(E)/NEx ≃ D(RH(E , Ex)).
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Definition 7.6. A projectively complete category (E , Ex) endowed with a
Quillen exact structure is called n-quasi-abelian (for n ≥ 2) if it admits (E , Ex)-
pre-kernels and (E , Ex)-pre-cokernels and one of the following equivalent con-
ditions holds:

1. For any complex K [−n+1,0] := K−n+1
d−n+1
K // K−n+2 // · · ·

d−1
K // K0 such

that Ki is (E , Ex)-pre-kernel of di+1
K for any i ≤ −2 the morphism d−n+1

K

has a kernel in E .

2. For any complex C [−n+1,0] := C−n+1
d−n+1
C // C−n+2 // · · ·

d−1
C // C0 such

that Ci is (E , Ex)-pre-cokernel of di−2
C for any i ≥ −n− 1 the morphism

d−1
C has a cokernel in E .

Whenever the exact structure is not specified, we will consider E endowed with
its maximal Quillen exact structure Exmax.

Theorem (see 3.1) and Definition 4.2 suggest the following n-level generalization
of the notion of 1-tilting torsion class in an abelian category:

Definition 7.7. Let A be an abelian category. A full subcategory E →֒ A is
a n-tilting torsion class if

1. E cogenerates A;

2. E is extension closed in A, hence it is endowed with the Quillen exact
structure Ex whose conflations are sequences in E which are exact in A;

3. E has (E , Ex)-pre-kernels;

4. for any exact sequence in A: 0→ A→ X1
d1
X→ · · ·

dn−1
X→ Xn → B → 0 with

Xi ∈ E for any 1 ≤ i ≤ n and A,B ∈ A, we have B ∈ E .

Dually a n-cotilting torsion-free class in A is a full generating extension closed
subcategory E of A admitting (E , Ex)-cokernels and such that for any exact

sequence in A: 0 → A → Y1
d1
Y→ · · ·

dn−1
Y→ Yn → B → 0 with Yi ∈ E we have

A ∈ E .

Remark 7.8. Given (E , Ex) a n-quasi-abelian category by Lemma 7.5 E is a
n-tilting torsion class in RH(E , Ex) and (RD(E,Ex),LD(E,Ex)) is a n-tilting pair
of t-structures on D(E , Ex).
On the other hand, given a n-tilting pair of t-structures (D, T ) on C by Propo-
sition 3.4 and Lemma 7.4, the category E = T ≤0 ∩ D≥0 (with the Quillen
exact structure induced by D(E , Ex)) admits (E , Ex)-pre-kernels and (E , Ex)-
pre-cokernels, hence it is n-quasi-abelian.

Theorem 7.9. Any n-tilting torsion class E in A, endowed with the Quillen

exact structure induced by A, is n-quasi-abelian; A ≃ RH(E , Ex) and K(E)
NEx

≃
D(A).
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Proof. Conditions (1) and (4) of Definition 7.7 imply that E satisfies the hy-
potheses of Proposition C.3 and so K(E)/NEx ≃ D(A). Since D≥0(A) ≃

RD≥0
(E,Ex) we obtain that RH(E , Ex) ≃ A.

By Lemma 7.4 E has (E , Ex)-pre-cokernels and by point (3) of Definition 7.7 E
admits (E , Ex)-pre-kernels. Moreover by Lemma 7.5 the complex C [−n+1,0] :=

C−n+1
d−n+1
C // C−n+2 // · · ·

d−1
C // C0 is exact in A if and only if Ci is a (E , Ex)-

pre-kernel of di−2
C for any i ≥ −n − 1, hence by Definition 7.7, the morphism

d−1
C has a cokernel in E .

Corollary 7.10. Let D be the natural t-structure on the triangulated category
D(HD) and let i : E → HD be an n-tilting torsion class on HD. Hence T ≤0 :=
D≤−n⋆E⋆E [1]⋆· · ·⋆E [n−1] is an aisle in D(HD) such that E = HD∩HT and the
pair (D, T ) is a n-tilting pair of t-structures. We will say that the t-structure T
is obtained by tilting D with respect to the n-tilting torsion class E.

Proof. By Theorem 7.9, the n-tilting torsion class E is a n-quasi-abelian cate-
gory and (RD(E,Ex),LD(E,Ex)) is a n-tilting pair of t-structures on D(E , Ex) ≃
D(HD). The right t-structure coincides with the natural one on D(HD) (i.e.,

RD(E,Ex) = D) while the left t-structure satisfies LD≤0
(E,Ex) ⊆ T

≤0. On the

other hand, since D≤−n ≃ RD≤−n
(E,Ex) ⊆ LD

≤0
(E,Ex) and E [i] ⊆ LD≤0

(E,Ex), for

any 1 ≤ i ≤ n − 1, we deduce that T ≤0 ⊆ LD≤0
(E,Ex). This proves that

T ≤0 ≃ LD≤0
(E,Ex) is an aisle, E = HD ∩HT and (D, T ) = (RD(E,Ex),LD(E,Ex))

is a n-tilting pair of t-structures on D(HD).

Theorem 7.11. Let (E , Ex) be a n-quasi-abelian category. One has the follow-
ing equivalences of categories

LH(E , Ex) ≃
fp-E

eff-ExE
; RH(E , Ex) ≃

(
E-fp

E-effEx

)◦

.

In the special case of an abelian category endowed with its maximal Quillen
exact structure (A,Axmax), these equivalences give the Auslander’s formulas:

A ≃
coh-A

eff-A
; A ≃

(
A-coh

A-eff

)◦

.

Proof. The second statement is dual to the first one. By the universal property
of the Freyd category fp-E , there exists a unique functor L cokernel preserving
such that the diagram below commutes:

E

}}④④
④④
④

%%❑
❑❑

❑❑
❑❑

fp-E
QL // LH(E ,Ex).

If F = Cokerfp-E(f), we have QL(F ) = CokerLH(E,Ex)(f). The functor QL is
essentially surjective since any object L ∈ LH(E , Ex) admits a resolution
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0 → K−n d−n

K→ · · ·
d−1
K→ K0 → L → 0 (due to the fact that E is a n-

cotilting torsion-free class in LH(E , Ex)), thus L = CokerLH(E,Ex)(d
−1
k ) and

L ∼= [K−n d−n

K→ · · ·
d−1
K→

•

K0] =: C(d−nK , . . . , d−1
K ) in D(E , Ex).

We notice that K = Cokerfp-E(g) satisfies QL(K) = 0 if and only if g is a
deflation in E , hence K ∈ eff-ExE . This proves that the functor QL induces
a canonical faith and essentially surjective functor QL such that the following
diagram commutes:

E

ww♥♥♥
♥♥♥

♥♥♥
♥

))❙❙
❙❙❙

❙❙❙
❙❙❙

fp-E
π //

QL

44

fp-E
eff-ExE

QL // LH(E , Ex).

It remains to prove that QL is full. Given K and L in fp-E with presentations

K−1 d−1
K→ K0 → K → 0 and L−1 d−1

L→ L0 → L → 0, their images under QL

are C(d−nK , . . . , d−1
K ) and C(d−nL , . . . , d−1

L ). A morphism QL(K)
h
→ QL(L) is

a morphism in D(E , Ex); hence there exists a complex C• ∈ K≤0(E) (up to

truncation) and morphisms QL(K) C•
ϕ

≃
oo h̃ // QL(L) such that the mapping

cone M(ϕ) ∈ NEx. The zigzag

π(K) Cokerfp-E(d
−1
C•)

Cokerfp-E(ϕ
0)

oo
Cokerfp-E (h̃)

// π(L) (4)

viewed as a a morphism in fp-E
eff-ExE

, is sent to h by QL.

Since M(ϕ) ∈ NEx ∩ K
≤0(E), its −1 differential K−1 ⊕ C0 (d−1

K
,ϕ0)
−→ K0 has

to be a deflation and the sequence K−2 ⊕ C−1 → K−1 ⊕ C0 → K0 is exact.
Therefore the sequence

0→ Cokerfp-E(d
−1
C•)  Cokerfp-E(d

−1
K ) ։ Cokerfp-E(d

−1
K , ϕ0)→ 0

is a conflation and Cokerfp-E(d
−1
K , ϕ0) ∈ eff-ExE which proves that (4) is a

morphism in fp-E
eff-ExE

and by construction it maps to h by QL.

Corollary 7.12. Let (E , Ex) be a n-quasi-abelian category and Ex a Quillen
exact structure on E finer than Ex. Hence the class

eff-ExE := {CokerLH(E,Ex)(g) | g is a deflation in Ex}

is a Serre subcategory of LH(E , Ex) and LH(E , Ex) ≃ LH(E,Ex)

eff-ExE
.

Corollary 7.13. Let E be a 1-quasi-abelian category. Hence

LH(E) ≃
coh-E

eff-E
RH(E) ≃

(
E-coh

E-eff

)◦

.
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In this case the Serre subcategories of effaceable functors are:

eff-E := {Cokercoh-E(q) | q is a cokernel map in E}

E-eff := {CokerE-coh(i) | i is a kernel map in E}

since any cokernel map is a deflation (resp. any kernel map is an inflation) if
and only if E is a 1-quasi-abelian category.

Remark 7.14. Let consider (E , Ex) a n-quasi-abelian category, with n ≥ 3,

which is not a n−1-quasi-abelian category (i.e., such that RD≤−n
(E,Ex) ⊆ LD

≤0
(E,Ex)

butRD≤−n+1
(E,Ex) 6⊆ LD

≤0
(E,Ex)). Hence for any Quillen exact structure Ex on E finer

than Ex (i.e., which contains the conflations of Ex) we have that (E , Ex) is a
n-quasi-abelian category which is not a n−1-quasi-abelian category. Otherwise
if RD≤−n+1

(E,Ex)
⊆ LD≤0

(E,Ex)
, any object L ∈ LH(E , Ex) which has a presentation

0→ K−n d−n

K→ · · ·
d−1
K→ K0 → L→ 0 would short in LH(E , Ex) i.e., d−n+2

K would
have a kernel (computed in LH(E , Ex)) which belongs to E but (since E is fully
faithful in LH(E , Ex) this would be a kernel for d−n+2

K also in LH(E , Ex) which
contradicts the hypothesis.
So for n ≥ 3 the index n of quasi-abelianity for E is independent from the
Quillen exact structure on E , hence it can be computed using the maximal
Quillen exact structure.

We are now able to prove the n version of Theorem 2.15.

Theorem 7.15. Let (E , Ex) be an additive category endowed with a Quillen
exact structure. The following properties are equivalent:

1. E is a n-cotilting torsion-free class in an abelian category A;

2. E is a n-tilting torsion class in an abelian category A′;

3. (E , Ex) is a n-quasi-abelian category;

4. E is the intersection of the hearts HD ∩ HT of a n-tilting pair of t-
structures in D(E , Ex).

Moreover A ≃ LH(E , Ex), A′ ≃ RH(E , Ex) and (D, T ) = (RDE ,LDE).

Proof. We can visualize the links between properties (1) to (4) by the following
diagram:

{n-tilting torsion classes}
OO

��

oo // {n-cotilting torsion-free classes}

E in RH(E ,Ex) oo // E in LH(E ,Ex)

OO

��

{n-quasi-abelian categories}

OO

��

oo // {n-tilting pairs of t-structures}
��

OO

E = RH(E , Ex)∩ LH(E ,Ex) oo // (RD(E,Ex),LD(E,Ex)) on C = D(E , Ex).
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If (D, T ) is a n-tilting pair of t-structures in C, by Remark 7.8 E = HD∩HT is a
n-quasi-abelian category and by Proposition 3.4 (D, T ) = (RD(E,Ex),LD(E,Ex)).
Let (E , Ex) be a n-quasi-abelian category. By Lemma 7.5 and Remark 7.8 the
pair of t-structures (RD(E,Ex),LD(E,Ex)) is n-tilting and E is a n-tilting torsion
class in RH(E , Ex) (resp. E is a n-cotilting torsion-free class in LH(E , Ex)).
By Theorem 7.9, if E is a n-tilting torsion class in A′ (resp. n-cotilting torsion-
free class in A), A′ ≃ RH(E , Ex) (resp. A ≃ LH(E , Ex)) and E ≃ RH(E , Ex)∩
LH(E , Ex) which concludes the proof.

7.1 Examples

Example 7.16. Given R a commutative ring, the following categories are 1-
quasi-abelian:

• The category of filtered modules over any ring ([1, Exam. 1.2.13]).

• The category of torsion-free coherent sheaves over a reduced irreducible
analytic space or algebraic variety X . For X a normal curve, the previous
category is that of vector bundles (of finite rank) ([1, Exam. 1.2.13]).

• In the contest of D-modules the category of strict relative coherent
DX×S/S-modules with X × S a complex manifold and dimS = 1 ([19]
and [17]).

• Let R be a (left and right) coherent ring with global dimension
gl.dim(R) = 1 and E := add(R) (see Appendix B.3). The maximal
Quillen exact structure on E coincides with the minimal one and E is a 1-
quasi-abelian category; its left heart is LK(E) ≃ coh-R (and so E = proj-E
is 1-cotilting torsion-free class with its minimal Quillen exact structure)
while RK(E) ≃ (E-coh)◦.

The following list contains more examples of 1 and 2-quasi-abelian categories:

• Let R be a (left and right) coherent ring with global dimension
gl.dim(R) = 2 and E := add(R). Hence E admits kernels and cokernels:
given a morphism f : P1 → P2 in E , its kernel KerE(f) = Kercoh-R(f) ∈ E
while CokerE(f) = (KerR-coh(f

∗))∗ where ( )∗ := HomR( , R). Therefore
for any Quillen exact structure E is 2-quasi-abelian. In [46] Rump con-
structed a tilted algebra A, of type E6, such that its category of projective
modules of finite type has kernels and cokernels (since A has global di-
mension 2), but it is not 1-quasi-abelian.

• Let us consider the affine plane A2
k = Spec(R) with R = k[x, y] and k a

field; hence R has projective dimension 2 and it is Noetherian therefore
coherent; this assures that E := add(R) has kernels and cokernels. In
this case E coincides with the category of free R-modules of finite type
(this result was proved by Seshadri in [50], while the general statement,
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known as Serre problem, was proved by Quillen and Suslin [44], [53]). Its
left heart as a 2-quasi-abelian category endowed with its minimal Quillen
exact structure, is the category Coh(OA2

k

) of coherent sheaves on the

affine plane A2
k. A sequence 0 → E1

α
→ E2

β
→ E3 → 0 is exact in E for

its maximal Quillen exact structure if and only if E3 ∼= (KerR(β
∗))∗ and

so the cokernel of β in Coh(OA2
k
) is a torsion sheaf whose support has

dimension 0 (finite union of closed points). On the other side any coherent
sheaf supported on a finite union of closed points can be represented as
a cokernel of such a β. Let us denote by T0 the class of torsion sheaves
supported on points; this is a Serre subcategory of Coh(OA2

k
) and the

functor IL : E → Coh(OA2
k

)/T0 is fully faithful and E is a 1-cotilting

torsion-free class in Coh(OA2
k
)/T0 and so E is 1-quasi-abelian category

(an hence the left heart of E as a 1-quasi-abelian category is the quotient
abelian category Coh(OA2

k
)/T0).

The following list contains examples of n-quasi-abelian categories for n > 2:

• Let R be a (left and right) coherent ring with global dimension
gl.dim(R) = n, the full subcategory E := add(R) of Mod-R (with the
induced Quillen exact structure) is n-quasi-abelian.

• Let X be a smooth algebraic variety of dimX = n. The full subcat-
egory E in Coh(OX) formed by locally-free sheaves of finite rank is n-
quasi-abelian (it is n-cotilting in Coh(OX)). The full-subcategory F of
Qcoh(OX) (quasi-coherent sheaves) formed by flat quasi-coherent mod-
ules is n-quasi-abelian (it is n-cotilting in Qcoh(OX)) and the dual t-
structure can be described in terms of support conditions (see [31]).

Example 7.17. Let E be the category of free abelian groups of finite type. It
is a 1-quasi-abelian category and its maximal Quillen exact structure coincides
with the minimal one (split short exact sequences). Its left heart LK(E) is the
whole category of finitely generated abelian groups while RK(E) = (E-coh)◦ is
equivalent to the opposite category of the category of abelian groups of finite
type. The derived equivalence D(Ab) ≃ D(Ab◦) is given by RHomZ( ,Z)
and the intersection of the hearts is given by the finitely generated abelian
groups F such that RHomZ(F,Z) = HomZ(F,Z) which are the free abelian
groups of finite type. One can also interpret the right heart as the tilt of
the abelian category of finitely generated abelian groups with respect to the
cotilting torsion-free class of free abelian groups of finite type: i.e., objects
are complexes d : F0 → F1 (in degree 0 e 1) of free abelian groups such that
Coker(d) is a torsion group.

Example 7.18. [6, Exam. 3.6.(5), Exer. 3.7.(12)]. Let X be a smooth pro-
jective curve, µ ∈ R a real number and let A≥µ be the full subcategory of
Coh(OX) generated by torsion sheaves and vector bundles whose HN-filtration
quotients have slope ≥ µ. Hence A≥µ is a tilting torsion class in Coh(OX).
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In particular let X = P1
k the projective line over a field k. Let us recall

that any coherent sheaf F ∈ Coh(OP1
k
) decomposes as F ∼= Ftor ⊕ Ffree

and, by the Birkhoff-Grothendieck theorem, the torsion-free part is a direct
sum of line bundles OP1

k
(di). So E := A≥0 is a a 1-tilting torsion class in

Coh(OP1
k
) (hence it is a 1-quasi-abelian category). In this case the maxi-

mal Quillen exact structure on E does not coincide with the minimal one
since the sequence 0 → OP1

k
→ OP1

k
(1)2 → OP1

k
(2) → 0 does not split (i.e.,

Ext1O
P1
k

(OP1
k

(2),OP1
k

) 6= 0). So we have a right heart (as a 2-quasi-abelian cat-

egory with E endowed with the split exact structure) in K(E) which is the
category (E-coh)◦ while its right heart in D(E) as 1-quasi-abelian category is
the category of coherent sheaves Coh(OP1

k

) (since E is a 1-tilting torsion class in

it). Concerning the left heart LD(E) its objects are complexes X = [E−1 d
→ E0]

with E i ∈ E and d a monomorphism in E . Since any object in E admits a finite
resolution whose terms are direct factors of finite direct sums of OP1

k
⊕OP1

k
(1)

(and so in add(OP1
k
⊕ OP1

k
(1)) see Appendix B.3) we can represent X as a

bounded complex X = [X−m → · · · → X0] ∈ K≤0(add(OP1
k
⊕OP1

k
(1))). Thus

for any X ∈ LD(E) and for any i > 0 we have Exti(OP1
k

⊕ OP1
k

(1), X) ∼=
D(E)(OP1

k

⊕OP1
k

(1), X [i]) = 0 and (via the associated distinguished triangle) we

get a short exact sequence in the left heart 0→ X [−m,−1][−1]→ X0 → X → 0
which proves that T = OP1

k
⊕OP1

k
(1) is a projective generator of the left heart

LD(E). Hence LD(E) is equivalent to the category of left modules of finite type
on the ring R := End(OP1

k
⊕OP1

k
(1)) which is the path algebra of the Kronecker

quiver Q

•
//
// •

The derived equivalence Db(Coh((OP1
k

)) ≃ Db(Repk(Q)) (which holds true also

in the unbounded derived categories by Theorem 2.8) is due to A. Beilinson
and T = OP1

k
⊕OP1

k
(1) is an example of tilting sheaf.

Example 7.19. Given A a Grothendieck category and T a classical n-tilting
object in A one can associate to T the t-structure:

T ≤0 := {X• ∈ D(A) | HomD(A)(T,X
•) = 0 for all i > 0}

T ≤0 := {X• ∈ D(A) | HomD(A)(T,X
•) = 0 for all i > 0}.

The pair (D, T ) is a n-tilting pair of t-structures. The intersection E of their
hearts is the full subcategory of A whose objects are n-presented by T . It is a
n-tilting torsion class in A (see [21, Prop. 6.2] for more details).

8 Perverse coherent sheaves

This section provides a generalisation of Bridgeland categories of perverse co-
herent sheaves by the use of n-tilting torsion classes.
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This problem has been studied in [56] where the authors proposed a category
of perverse coherent sheaves via the used of iterated 1-tilting classes (see also
[21] for a general treatment of this iterated Happel Reiten Smalø procedure).
The construction in [56] requires the use of a tilting complex, which is proved
to exist in the case of relative dimension 2 under a technical assumption. In
our approach we will follow Bridgeland paper and we will define (for n = 2) a
category of perverse coherent sheaves without the use of a tilting complex.

Let X be a Noetherian scheme over C, we denote by Qcoh(X) (resp.
coh(X)) the category of quasi-coherent (resp. coherent) sheaves on X and
by D(Qcoh(X)) its derived category. We denote by D(X) the derived cate-
gory of coh(X) and we recall that it is equivalent to the derived category of
quasi-coherent sheaves with coherent cohomologies Dcoh(Qcoh(X)).

8.1. Assumptions. For the rest of this section we will assume that f : Y → X
is a projective birational morphism of Noetherian locally Q-factorial semisep-
arated schemes over C such that Rf∗(OY ) = OX with relative dimension n.
The condition of being Noetherian locally Q-factorial semiseparated assures
that the schemes involved have the resolution property i.e.; every coherent
sheaf is a quotient of some vector bundle. Moreover we get:

• for any coherent OY -module G we have Rf∗(G) ∈ D[0,n](X);

• idD(X) ≃ Rf∗Lf
∗, hence the functor Lf∗ is fully faithful;

• Rf∗f
! ≃ idD(X), therefore the functor f ! is fully faithful;

• f !(D≥0(X)) ⊆ D≥−n(Y ) (this is the n-version of [57, Lem. 3.1.4] whose
proof coincides with that one with −1 replaced by −n and −2 replaced
by −n− 1 at the beginning of the proof).

In the case of n = 1 Van den Bergh proved in [57, Lem. 3.1.2, Lem. 3.1.3,
Lem. 3.1.5] (following [12, Prop. 5.1]) that the following classes

T0 = {T ∈ coh(Y ) |R1f∗T = 0} ; F0 = {F ∈ coh(Y ) |F
φF

→֒ H−1f !
R

1f∗F}

T−1 = {T ∈ coh(Y ) | ηT : f∗f∗T ։ T} ; F−1 = {F ∈ coh(Y ) | f∗F = 0}

define torsion pairs in coh(Y ) (which we will prove to be tilting in Lemma 8.4).
We recall that ηT : f∗f∗T → T is the co-unit of the adjunction (f∗, f∗) while
the map φF : F → H−1f !

R
1f∗F is the morphism obtained by taking the zero

cohomology of the composition F → f !
Rf∗F → f !

R
1f∗F [−1] (where the first

map is the unit of the adjunction (Rf∗, f
!)). Notice that T−1 = T0 ∩ X where

X := {F ∈ coh(Y ) | Hom(F , C) = 0 ∀ C ∈ coh(Y ) : Rf∗C = 0}. The heart of
the t-structure obtained by tilting the natural t-structure with respect to the
tilting torsion pair (T−1,F−1) (resp. (T0,F0)) is called −1Perv(Y/X) (resp.
0Perv(Y/X)). Hence D(Y ) ≃ D(−1Perv(Y/X)) ≃ D(0Perv(Y/X)).
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8.2. Higher analog of T−1 and T0. Let G be a coherent OY -module. In
the case of relative dimension n > 1 we propose the following generalization of
the previous tilting torsion classes:

T0 = {T ∈ coh(Y ) |Rf∗T ∼= f∗T } T−1 = {T ∈ T0 | ηT : f∗f∗T ։ T }.

Conjecture 8.3. We conjecture that under the previous assumptions the
classes T0 and T−1 are n-tilting in coh(Y ).

We will prove that for any n these classes satisfy conditions (1), (2) and (4) of
Definition 7.7. For n = 1 they are tilting torsion classes by Lemma 8.4. We
will prove in Theorem 8.7 that for n = 2 they are 2-tilting in coh(Y ).
Let us prove that under the assumptions of 8.1 the class T−1 cogenerates
coh(Y ); this statement is the relative version of McMurray Price’s Lemma [39,
Lem. 5.2] which we prove with the same argument in the following Lemma.

Lemma 8.4. Let f : Y → X be a projective morphism as in 8.1 and let L be
an f -ample vector bundle. For any F ∈ coh(Y ) there exists a monomorphism
α : F →֒ T with T ∈ T−1.

Proof. The relative Serre vanishing Theorem ([25, Ch. III.5]), guarantees that
given F ∈ coh(Y ) for m ≫ 0 we have: R

if∗(F ⊗OY
Lm) = 0 for any i > 0

and the counit f∗f∗(F ⊗OY
Lm) ։ F ⊗OY

Lm of the adjunction (f∗, f∗) is
an epimorphism; which is equivalent to require that F ⊗OY

Lm ∈ T−1. Let
F ∈ coh(Y ) and let consider m big enough such that both Lm and F ⊗OY

Lm

belong to T−1. Let E ։ f∗(Lm) be an epimorphism in coh(X) with E a locally
free OX -module of finite rank (it exists since X has the resolution property).
Hence the composition

η : f∗(E) ։ f∗f∗(L
m) ։ Lm

is a locally splitting epimorphism since Lm is a locally free sheaf, hence its
dual η∨ : L−m → HomOY

(f∗(E),OY ) is a locally splitting monomorphism
and so it is pure (i.e., universally injective) which implies that the morphism
δ := F ⊗OY

Lm ⊗OY
η∨ is injective

δ : F �
�

// F ⊗OY
Lm ⊗OY

HomOY
(f∗(E),OY ) ∼= HomOY

(f∗(E),F ⊗OY
Lm).

Moreover

Rf∗HomOY
(f∗(E),F ⊗OY

Lm) ∼= Rf∗RHomOY
(Lf∗(E),F ⊗OY

Lm) ∼=
∼= RHomOX

(E ,Rf∗(F ⊗OY
Lm)) ∼= HomOX

(E , f∗(F ⊗OY
Lm)) ∼=

∼= f∗HomOY
(f∗(E),F ⊗OY

Lm).

The first isomorphism holds true since both E and f∗(E) are locally free coher-
ent sheaves, hence f∗(E) is HomOY

( ,F ⊗OY
Lm)-acyclic, while E is f∗-acyclic.

The second isomorphism is induced by the adjunction (Lf∗,Rf∗). Since E is
locally free RHomOX

(E , f∗(F ⊗OY
Lm)) ∼= HomOX

(E , f∗(F ⊗OY
Lm)), hence
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the third isomorphism is deduced by the fact that we choose m such that
Rf∗(F ⊗OY

Lm) ∼= f∗(F ⊗OY
Lm). The last isomorphism is induced by the

adjunction (f∗, f∗). It remains to prove that the counit of the adjunction
f∗f∗HomOY

(f∗(E),F ⊗OY
Lm) → HomOY

(f∗(E),F ⊗OY
Lm) is an epimor-

phism. By the last isomorphism of the previous list we have

f∗f∗HomOY
(f∗(E),F ⊗OY

Lm) ∼= f∗HomOX
(E , f∗(Lm ⊗OY

F)) ∼=
HomOY

(f∗(E), f∗f∗(Lm ⊗OY
F))

and by hypothesis the counit f∗f∗(F⊗OY
Lm) ։ F⊗OY

Lm is an epimorphism
which implies that HomOY

(f∗(E), f∗f∗(L
m⊗OY

F)) ։ HomOY
(f∗(E),Lm⊗OY

F) (because f∗(E) is locally free).

Lemma 8.5. The full subcategories Ti, with i ∈ {0,−1}, are closed under ex-
tensions in coh(Y ).

Proof. Let us prove that T0 is closed under extensions in coh(Y ). Given any
short exact sequence

0→ T1 → F → T2 → 0 with T1, T2 ∈ T0; and F ∈ coh(Y ) (5)

we get a distinguished triangle Rf∗T1 → Rf∗F → Rf∗T2
+
→ with

Rf∗T1,Rf∗T2 coherent OX -modules (thus complexes concentrated in degree
0) which proves that Rf∗F ∼= f∗F is a complex concentrated in degree 0.
Let us prove that T−1 is closed under extensions in coh(Y ). Let us start with
the short exact sequence (5) by supposing that T1, T2 ∈ T−1. Since T−1 ⊆ T0,
we deduce by the previous argument that F ∈ T0. Thus the sequence 0 →
f∗T1 → f∗F → f∗T2 → 0 is exact. Hence the following diagram commutes

f∗f∗(T1) //

����

f∗f∗(F) //

��

f∗f∗(T2) //

����

0

0 // T1 // F // T2 // 0

(6)

therefore the canonical map f∗f∗F ։ F is an epimorphism.

Lemma 8.6. (Under the assumptions 8.1), the full subcategories Ti, i ∈ {0,−1},
satisfy condition (4) of Definition 7.7, namely:
for any exact sequence in coh(Y )

0 // A // X1

d1
X // · · ·

dn−1
X // Xn

// B // 0 (7)

with Xj ∈ Ti for any 1 ≤ j ≤ n and A,B ∈ coh(Y ) we have B ∈ Ti.

Proof. Consider X• := [· · · → 0 → X1 → · · · →
•

Xn→ 0 → · · · ] where Xn is
placed in degree 0. The sequence (7) produces the distinguished triangle
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A[n−1]→ X• → B[0]
+
→ which induces the distinguished triangle Rf∗(A)[n−

1] → Rf∗(X
•) → Rf∗(B)

+
→ . Since f has relative dimension n, Rf∗(A)[n −

1] ∈ D≤1(X). Hence Rf∗(B) ∈ D≤0(X) (since Rf∗(X
•) ∈ D≤0(X)), therefore

B belongs to T0.
If Xj ∈ T−1 for any 1 ≤ j ≤ n, by the previous argument we deduce that B
belongs to T0 and, since it is a quotient of Xn, f

∗f∗(B) ։ B.

Theorem 8.7. For n = 2 the classes

T0 = {T ∈ coh(Y ) | f∗T = Rf∗T } T−1 = {T ∈ T0 | f
∗f∗T ։ T }

are 2-tilting torsion classes in coh(Y ).

Proof. Points (1), (2) and (4) of Definition 4.2 have been proved in Lemma 8.4,
Lemma 8.5 and Lemma 8.6 respectively. We have to prove that T−1 and T0
have kernels.
The full subcategory X0 = {T ∈ Qcoh(Y ) |R2f∗T = 0} is a 1-tilting torsion
class in Qcoh(Y ) i.e.; it is closed under direct sums, extension, quotients and
it cogenerates Qcoh(Y ) (since it contains any injective sheaf)
Given F ∈ Qcoh(Y ) we will denote by tX0(F) its torsion part (i.e.; the biggest
subsheaf of F lying in X0). Notice that if F ∈ coh(Y ) even tX0(F) ∈ coh(Y ).
Step 1. Let us prove that T−1 admits kernels.
Give any locally free sheaf E ∈ coh(X), the sheaf f∗E ∈ T−1 since, by 8.1,
we have E = Rf∗Lf

∗E ∼= Rf∗f
∗E ∼= f∗f

∗E . Hence, given any coherent sheaf
M ∈ coh(X), the sheaf f∗M belongs to T−1 (since it is the cokernel of a map
in T−1).

Let E1
α
→ E2 be a morphism in T−1 whose kernel in coh(Y ) is K := Kerα. Let

us denote by ηK : f∗f∗K → K the counit of the adjunction (f∗, f∗). The short

exact sequence 0 → tX0(Ker ηK)
j
→ f∗f∗K → K → 0, (K := Coker j), induces

the distinguished triangle Rf∗(tX0(Ker ηK)) → f∗f
∗f∗K → Rf∗(K)

+
→ which

proves that Rf∗(K) ∈ D≤0(X), therefore K ∈ T−1. Let us verify that K =

kerT−1(α). Let L
φ
→ E1 be a morphism in T−1 such that αφ = 0 and consider the

following functorial commutative diagram obtained by the universal property
of the kernel and by the adjunction (f∗, f∗):

Ker ηL
� � //

γ

{{✈✈
✈✈
✈✈
✈✈
✈

rr❞❞❞❞❞❞
❞❞❞❞❞❞

❞❞❞ f∗f∗L
ηL

// //

f∗f∗β

{{✇✇
✇✇
✇✇
✇✇
✇

L

φ

��
✿✿

✿✿
✿✿

✿

0

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲

∃!β

��

β

✟✟
✟✟
✟✟
✟✟

��✟✟

tX0(Ker ηK)
**❯❯❯

❯❯ ❩❩❩❩❩❩
❩❩

,,❩❩❩❩❩
❩

Ker ηK
� � // f∗f∗K

ηK
//

π

)) ))❙❙
❙❙❙❙

❙ K // E1
α // E2

K

66♥♥♥♥♥♥♥

we note that ker ηL ∈ X0 since L ∈ T−1, hence γ factors through tX0(Ker ηK).
Therefore there exists a unique β : L → K such that the diagram commutes.
Step 2. Let us prove that T0 admits kernels.
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Let F1
α
→ F2 be a morphism in T0 whose kernel in coh(Y ) is K := Kerα. Let

M[1] be the mapping cone of χ : K → f !
Rf∗K → f !δ≥1

Rf∗K. By 8.1 we have
f !δ≥1

Rf∗K ∈ D≥−1(Y ), henceM ∈ D≥0(Y ).
Let us prove that K := tX0(H

0(M)) belongs to T0 and K = kerT0(α). Let con-
sider the following commutative diagram with distinguished rows and columns:

H0(M) //

��

M //

��

δ≥1(M)
+

//

��

K //

��

K //

χ��

0
+

//

��

N //

+
��

f !δ≥1
Rf∗K //

+
��

δ≥1(M)[1]
+

//

+
��

By applying to it the functor Rf∗ (using Rf∗f
! = idD(X)) we deduce the

following facts: Rf∗N ∈ D≥1(X), f∗H
0(M) ∼= f∗K, the map R

1f∗K →
R

1f∗N → R
1f∗K (induced by the sud-ovest square) is the identity, hence

R
1f∗(H

0(M)) = 0. Thus K ∈ T0 (since f∗

(
H0(M)

K

)
= 0). Any L

φ
→ F1 in T0

such that αφ = 0 factors uniquely through L
φ′

→ K. In the exact sequence

Hom−1(L, f !δ≥1
Rf∗K) // Hom(L,M) // Hom(L,K) // Hom(L, f !δ≥1

Rf∗K)

(where Hom( , ) = HomDb(Y )( , )) the first and the last terms are zero since

Homi
Db(Y )(L, f

!δ≥1
Rf∗K) ∼= Homi

Db(X)(f∗L, δ
≥1

Rf∗K) = 0 ∀i ∈ {−1, 0}.

This proves that HomY (L, H0(M)) ∼= HomDb(Y )(L,M) ∼= HomY (L,K) (re-

member thatM ∈ D≥0(Y )). Thus we obtain that φ′ factors uniquely through

L
φ′′

→ H0(M). Therefore the morphism φ′′ factors uniquely through L
φ′′

→ K
(since L ∈ X0).

Definition 8.8. By Theorem 4.4 (for n = 2 or supposing that Conjecture 8.3
holds true n > 2), we define (iD≤0, iD≥0) (with i ∈ {0,−1}) to be the t-
structures obtained by tilting D with respect to the n-tilting torsion classes
Ti. Their hearts are denoted by iPer(Y/X) for i ∈ {−1, 0} and objects in
iPer(Y/X) are called perverse coherent sheaves .

Theorem 8.9. (Theorem 7.15). For n = 2 or assuming Conjecture 8.3

D(Y ) ≃ D( 0Per(Y/X)) ≃ D( −1Per(Y/X)).

Remark 8.10. In higher dimension, Toda remarked in [55] that Bridgeland
proof, of the derived equivalence between Db(Y ) and Db(Y +) via the inter-
section theorem, produces also the smoothness of the flop. Nevertheless there
are examples of 4 dimensional flops which do not preserve the smoothness.
We think that the use of the previous n-tilted torsion classes (which produce
equivalences D(Y ) ≃ D( iPer(Y/X))) could permit to attack the problem of
the equivalence D( −1Per(Y/X)) ≃ D( 0Per(Y +/X)) as in [57].
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9 Comparison between n-abelian and n + 1-quasi-abelian cate-
gories

Recently Jasso in [28] introduced the notion of n-abelian category whose basic
example is an n-cluster-tilting subcategory of an abelian category. Let us briefly
recall this definition and the principal results of [28].
Given C an additive category and d0 : X0 → X1 a morphism in C an n-cokernel
of d0 ([28, Def. 2.2]) is a sequence

(d1, . . . , dn) : X1 d1 // X2 d2 // · · ·
dn // Xn+1

such that for all Y ∈ C the sequence of abelian groups

0 // C(Xn+1, Y )
dn◦ // C(Xn, Y )

dn−1◦ // · · · // C(X1, Y )
d0◦ // C(X0, Y ) (8)

is exact. In terms of coherent functors in E-coh the previous sequence (8)
proves that (following the notation of Appendix B.2) the kernel of the morphism

X1C
d0◦
−→ X0C is a coherent functor which admits a projective presentation

0 //
Xn+1C

dn◦ //
XnC

dn−1◦ // · · · // Ker( X1C
d0◦ //

X0C) // 0

of length n in E-coh. The dual concept of n-kernel implies that the kernel

of the morphism CX0
◦d0
−→ CX1 is a coherent functor admitting a projective

presentation of length n in coh-E .

An n-exact sequence in C ([28, Def. 2.4]) is a complex X0 d0
−→ X1 d1

−→ · · ·
dn−1

−→

Xn dn
−→ Xn+1 such that (d0, . . . , dn−1) is a n-kernel of dn and (d1, . . . , dn) is

an n-cokernel of d0.

Definition 9.1. ([28, Def. 3.1]). Let n be a positive integer. An n-abelian
category is an additive categoryM satisfying the following axioms:

(A0) the categoryM is projectively complete;

(A1) every morphism inM has an n-kernel and an n-cokernel;

(A2) for every monomorphism f0 : X0 → X1 in M and for every n-cokernel
(f1, . . . , fn) of f0 the following sequence is n-exact:

X0 f0

// X1 f1

// · · ·
fn−1

// Xn fn

// Xn+1

(A2op) for every epimorphism gn : Xn → Xn+1 in M and for every n-kernel
(g0, . . . , gn−1) of gn the following sequence is n-exact:

X0 g0
// X1 g1

// · · ·
gn−1

// Xn gn
// Xn+1
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Proposition 9.2. Any n-abelian category M is an n + 1-coherent category,
hence it is an n+ 1-quasi-abelian category for any Quillen exact structure.

Proof. Axioms (A0) and (A1) prove that the category M is coherent (see
Definition D1.3) since any kernel of a morphism between representable
functors is finitely presented. Thus coh-E and E-coh are abelian cate-
gories. Moreover any coherent functor F ∈ coh-E admits a presentation
CXn

// CXn+1 // // F // 0 , hence by axiom (A1) it admits a projec-
tive resolution of length ad most n+ 1 which proves thatM is n+ 1-coherent
(Definition 6.2). Therefore, by Definition 7.6, M endowed with its minimal
Quillen exact structure is an n+ 1-quasi-abelian category.

There are n + 1-coherent categories which are not n-abelian. For example
1-abelian categories are precisely abelian categories while 2-quasi-abelian cate-
gories are projective complete categories admitting kernels and cokernels. For
example 1-quasi-abelian categories which are not abelian categories are never
n-abelian ones.

A Maximal Quillen exact structure

A.1. Minimal and maximal Quillen exact structures. See [33], [14]
for the notion of Quillen exact structure. We denote by Ex an exact structure
on E (i.e., elements in Ex are conflations). We recall that an additive category
E can admit different exact structures, since any split short exact sequence
is a conflation for any exact structure, they form the minimal exact structure
Exsplit on E .

Any additive category admits a maximal exact structure ([47]). By [16, Th. 3.5]
(which generalizes [51]), for any weakly idempotent complete additive category
E2 the class of all kernel-cokernel pairs stable by push-outs and pull-backs is
the maximal exact structure on E . Whenever the exact structure on E is not
specified, we will endow E with its maximal Quillen exact structure Exmax.

A.2. Let (E , Ex) be an exact category. A complex X• ∈ C(E) is called acyclic
if each differential dn = mn ◦ en where mn is an inflation, en is a deflation
and the sequence en+1 ◦mn belongs to Ex for any n ∈ Z. Following Neeman
[41], the “derived” category of a projectively complete exact category (E , Ex)
is the quotient of K(E) by NEx (the full subcategory of K(E) whose objects
are acyclic complexes). Moreover D(E , Ex)(X•, Y •) = K(E)(X•, Y •), ∀X• ∈
C≤0(E);Y • ∈ C≥0(E).

2i.e., additive category in which every section has a cokernel, or equivalently, every re-
traction has a kernel
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B Freyd categories and coherent functors

We will consider C a category in the classical terminology (for which any ho-
momorphism class C(X,Y ), with X,Y objects in C, is a set)3

Definition B.1. Let us recall that a category is called:

1. C is pre-additive if hom-sets are groups with bilinear composition;

2. B is additive if it is pre-additive with zero object and biproducts;

3. idempotent complete 4 if any idempotent splits;

4. P is projectively complete 5 when it is additive and idempotent complete.

B.2. We denote by Mod-C the enriched category of additive contravariant func-
tors (i.e., F : C◦ → Ab) from C to the category Ab of abelian groups, and by
C-Mod the one of covariant functors (see [37] [2], [52], [40]). The following func-
tors are the enriched version of the Yoneda ones and they admit an additive
analogue of the Yoneda Lemma:

YC : C −→ Mod-C
X 7−→ CX := C( , X)

CY : C −→ (C-Mod)◦

X 7−→ XC := C(X, ).

Remark B.3. Let C be a pre-additive category, one can perform the projective
completion add(C) of C formally adding the zero object and finitely direct sums
of objects in C, hence taking its idempotent completion ([5]). Let proj-C (resp.
C-proj) be the full subcategory of Mod-C (resp. of C-Mod) whose objects are
direct summands of finite direct sums of representable functors. Hence add(C),
proj-C and C-proj are equivalent (and if C is projectively complete they are
equivalent to C). Any additive functor F : C◦ → Ab can uniquely be extended
to an additive functor F : (proj-C)◦ → Ab and so Mod-C is equivalent to
Mod-proj-C.

B.4. Coherent Functors. In [3] Auslander introduced the study of coherent
functors in the category Mod-A with A an abelian category (a “genetic” intro-
duction to this theme can be found in [26]). In the same collection Freyd [22]
introduced the study of the Freyd category of finitely presented functors6 asso-
ciated to a projectively complete category P . These theories, and the related
vocabulary, are widely inspired by the theory of finitely presented and coherent
modules over a ring R which is also the easiest case (pre-additive category with
a single object see B.2).

3Some authors define this a locally small category in order to underline that its homo-
morphism form a set. The wider notion of category, which permits to consider also ho-
momorphisms which do not form a set, is very convenient once working with localization
procedures.

4It also called Karoubian by some authors.
5It is also called Cauchy complete in [52], or amenable by [22].
6Freyd’s work [22] has been further investigated and developed by Beligiannis in his very

inspiring paper [8] to which we refer (see also [3]).
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The basic idea is that whatever one knows on finitely presented (resp. coherent)
modules over a ring has its counterpart for finitely presented (resp. coherent)
functors in Mod-C replacing the role of projective finitely generated modules by
representable functors in Mod-C (since they are the projective compact objects
of this category). It is well known ([11, Ch.I], [10, §1.5]) that, given a ring R,
right coherent modules coh-R form a full abelian subcategory of all right R
modules Mod-R, while finitely presented modules fp-R form a full projectively
complete subcategory of Mod-R admitting cokernels. The category fp-R is an
abelian subcategory of Mod-R if and only if the ring R is right coherent. In that
case coherent and finitely presented modules coincide: coh-R = fp-R (these
theorems go back to Henri Cartan). In general finitely generated modules form
a full projectively complete subcategory fg-R of Mod-R which is an abelian
subcategory if and only if the ring R is right Noetherian, in this case coh-R =
fp-R = fg-R.
Since Mod-C and Mod-proj(C) are equivalent, from now on, given any pre-
additive category we will pass to its projective completion P := proj(C).

Definition B.5. An object F ∈ Mod-P is called finitely generated if there
exists an epimorphism PX ։ F with X ∈ P . An object F ∈ Mod-P
is called finitely presented if it fits into an exact sequence in Mod-P :
PX1

// PX2
// F // 0 with Xi ∈ P for i = 1, 2. A finitely generated F is

called coherent if any subobject G →֒ F finitely generated is finitely presented.
Hence any finitely generated subfunctor of a coherent functor is coherent. We
will denote by fg-P , resp. fp-P , resp. coh-P the full subcategory of Mod-P
whose objects are the finitely generated, resp. finitely presented, resp. coherent
functors. Following Beligiannis [8, Def. 3.1] the categories fp-P and (P-fp)◦ are
called the Freyd categories of P .

We obtain the following commutative diagram of fully faithful functors:

P� _
PP

��

YP

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱

coh-P �
�

// fp-P �
�

// fg-P �
�

// Mod-P

(9)

where by definition PP is the Yoneda functor whose codomain is restricted
to finitely presented functors. (The class of natural transformations between
finitely generated functors is a set since, if PX ։ F and PY ։ G, any mor-
phism α : F → G can be lifted to a morphism PX → PY ∈ P(X,Y )).

B.6. Given P a projectively complete category, Freyd proved in [22] that fp-P is
projectively complete, it has cokernels and an object F is projective in fp-P (i.e.,
for any epimorphism p : G1 ։ G2 in fp-P the map fp-P(F,G1)→ fp-P(F,G2)
is surjective) if and only if F ∼= PX .
Given C be a pre-additive category. A family of objects G is called a generating
family if, for any non zero morphism f : C → D in C, there exists a morphism
h : G → C with G in G, such that f ◦ h 6= 0. A co-generating family of C is a
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generating family of C◦. Hence if C is projectively complete, it is a generating
(resp. co-generating) family of projective (resp. injective) objects for fp-C
(resp. (C-fp)◦). Moreover (fp-P , PP) is “universal” between the projectively
complete categories with cokernels “containing an image” of P ([8]).

Definition B.7. ([22, p. 103], [8, §4]). A projectively complete category P
is called right (resp. left) coherent if for any X ∈ P the functor PX (resp.

XP) is coherent. P is called coherent 7 if it is both left and right coherent. A
pre-additive category C is called (resp. right, resp. left) coherent if and only if
the category proj(C) is (resp. right, resp. left) coherent.

This statement, which is probably originally due to H. Cartan, is proposed in its
version for a ring R, as an exercise in Bourbaki [11, §2 Exer. 11] and explained
in great detail in [10, §1.5]. We propose its translation in the language of
pre-additive categories.

Proposition B.8. The category coh-C is closed under extension in Mod-C.
Moreover coh-C is an abelian category and the canonical functor coh-C →
Mod-C is exact.

Definition B.9. Let A
f
→ B be a morphism in an additive category B. A

weak kernel8 of f is a map K
i
→ A such that fi = 0 and, for any X

j
→ A with

fj = 0, there exists, possibly many, X
α
→ K such that iα = j. The category B

has weak pull-back squares if, given any pair fi : Xi → Y with i = 1, 2, there
exists an object Z with the dashed arrows such that any commutative diagram
of this type can be completed with (a not necessarily unique) dotted arrow:

W //

%%❑
❑❑

❑❑
❑

((
Z

g1
//❴❴❴

g2
��
✤
✤ X1

f1
��

X2
f2

// Y.

(10)

One can define dually the notions of weak cokernel and weak push-out.

Proposition B.10. ([8, Prop. 4.5]). Let P be a projectively complete category.
The following are equivalent:

1. P is right coherent;

2. P admits weak kernels;

3. fp-P = coh-P is an abelian exact full subcategory of Mod-P whose pro-
jective objects are exactly the representable functors in P.

7We remark that the notion of coherent additive category has nothing to do with the one
proposed by Peter Johnstone for a general category.

8Freyd introduced in [22, p. 99] the notion of weak kernel which permits to define the
notion of weak pull-back square. In [42, Ch. 6, 6.1.1] Neeman independently introduced the
notion of homotopy pull-back square which coincides with Freyd weak pull-back square.
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Moreover:

• P has kernels iff fp-P = coh-P is abelian with gl.dim(coh-P) ≤ 2;

• fp-P = coh-P is abelian with gl.dim(fp-P) = 0 iff P ≃ coh-P is semisim-
ple;

• gl.dim(coh-P) = 1 iff P is not abelian semisimple but for any morphism
f in P we have that Ker(f) is split monic.

C t-structures

C.1. Horthogonal classes and t-structures. Let C be a pre-additive
category and U ⊆ C; we set U⊥ = {C ∈ C | C(U,C) = 0 ∀U ∈ U} and
⊥U = {C ∈ C | C(C,U) = 0 ∀U ∈ U}.
Given C a triangulated category, we will denote by [1] its suspension functor, by

[n] its nth-iterated by X → Y → Z
+
→ a distinguished triangle. We will denote

by Homn
C(X,Y ) := HomC(X,Y [n]). When we say that U is a subcategory of C,

we always mean that U is a full subcategory closed under isomorphisms, finite
direct sums and direct summands. Given U ,V full subcategories of C, U ⋆ V is
the full subcategory of C consisting of objects X which may be included in a

distinguished triangle U → X → V
+
→ in C, with U ∈ U and V ∈ V ; U is called

extension closed if U ⋆U = U . By the octahedral axiom (U ⋆V)⋆W = U ⋆(V⋆W)
([27]). In general U⋆V is not idempotently complete but it is if the subcategories
are orthogonal i.e.; C(U ,V) = 0 ([27, Prop. 2.1]).

C.2. Notation. Given P be a projectively complete category. We denote by:

[· · · → L →
•

M→ N · · · ] the complex in C(P) whose element M is placed in
degree zero; [X i → X i+1 → · · · → X i+n] the complex in degrees i to i + n
(n ∈ N) whose remains terms are 0 and by X≥n (resp. X≤n) the complex
which coincides with X• in degrees greater than (resp. less than) or equal to
n and is zero otherwise.
We refer to [7] for the notion of t-structure. We denote by D := (D≤0,D≥0)
a t-structure in a triangulated category C, by δ≤n (resp. δ≥n) the truncation
functor and by HD := D≤0 ∩ D≥0 the heart of the t-structure which is an
abelian category. The truncation functors induce the t-cohomological functors
HiD : C → HD, i ∈ Z, with H0

D(X) := δ≥0δ≤0(X) and HiD(X) := H0
D(X [i]). We

will denote by D[a,b] = D≥a ∩ D≤b ⊆ C with a ≤ b in Z (D[a,a] = HD[−a]).
One can attach to any thick subcategory9 N of C (see [36, 4.5 and 4.6]) its
multiplicative system (compatible with the triangulation) Σ(N ) containing all

the morphisms X
f
→ Y in C fitting in a distinguished triangle X

f
→ Y → Z

+
→

with Z ∈ N . The quotient category C/N := C[Σ(N )−1] (which could be not
locally small) is endowed with the quotient functor Q : C → C/N such that by
[36, Prop. 4.6.2]:

9It is also called a saturated null system.
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1. C/N carries a unique triangulated structure such that Q is exact;

2. a morphism in C is annihilated by Q if and only if it factors through an
object in N and moreover N = KerQ (since it is thick);

3. every exact functor C → U annihilating N factors uniquely through Q
via an exact functor C/N → U .

Proposition C.3. ([32, Prop. 13.2.6]) Let E a full additive cogenerating (resp.
generating) subcategory of an abelian category A such that there exists d > 0
such that, for any exact sequence Yd → · · · → Y1 → Y → 0 (resp. 0 → Y1 →

· · · → Yd) with Yj ∈ E, we have Y ∈ E. Hence K(E)
K(E)∩N

≃
−→ D(A).

Lemma C.4. [49, Lem. 1.2.17] Let N be a thick subcategory on a triangulated
category C endowed with a t-structure D. The pair (Q(D≤0), Q(D≥0)) is a t-

structure on C/N if and only if for any distinguished triangle X1 → X0 → N
+1
→

with X1 ∈ D≥1, X0 ∈ D≤0 and N ∈ N we have X1, X0 ∈ N .
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Università degli Studi di Padova
I-35121 Padova
Italy
luisa.fiorot@unipd.it

Documenta Mathematica 26 (2021) 149–197



198

Documenta Mathematica 26 (2021)


