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Abstract. We give a general framework for studying G-CW complexes via the orbit category.
As an application we show that the symmetric group G D S5 admits a finite G-CW complex
X homotopy equivalent to a sphere, with cyclic isotropy subgroups.
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1. Introduction

A good algebraic setting for studying actions of a group G with isotropy in a given
family of subgroups F is provided by the category of R-modules over the orbit
category �G D OrF G, where R is a commutative ring with unit. This theory was
established by Bredon [6], tom Dieck [10] and Lück [20], and further developed by
many authors (see, for example, Jackowski–McClure–Oliver [17], §5, Brady–Leary–
Nucinkis [5], Symonds [34], [35], Grodal [14], Grodal–Smith [15]). In particular,
the category of R�G-modules is an abelian category with Hom and tensor product,
and has enough projectives for standard homological algebra.

In this paper, we will study finite group actions on spheres with non-trivial isotropy,
generalizing the approach of Swan [32] to the spherical space form problem through
periodic projective resolutions. A finite group is said to have rank k if k is the largest
integer such that G has an elementary abelian subgroup Cp � � � � � Cp of rank k for
some prime p. A rank 1 group G has periodic cohomology, and Swan showed that
this was a necessary and sufficient condition for the existence of a finite free G-CW
complex X , homotopy equivalent to a sphere.

The work of Adem–Smith [1] concerning free actions on products of spheres led
to the following open problem:

Question. If G is a rank 2 finite group, does there exist a finite G-CW complex
X ' Sn with rank 1 isotropy ?
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TÜBİTAK-BDP and TÜBA-GEBİP/2005-16.
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IfG is a finitep-group of rank 2, then there exist orthogonal linear representations
V so that S.V / has rank 1 isotropy (see [12]). If G is not of prime power order,
representation spheres with rank 1 isotropy do not exist in general: a necessary
condition is that G has a p-effective character for each prime p dividing jGj (see
Theorem 47 in [18]). In Proposition 48 of [18] it is claimed that this condition is also
sufficient for an affirmative answer to the G-CW question above, but the discussion
on p. 831 of [18] does not provide a construction for X .

Our main result concerns the first non-trivial case: the permutation groupG D S5

of order 120, which has rank 2 but no linear action with rank 1 isotropy on any sphere,
although it does admit p-effective characters for p D 2; 3; 5.

TheoremA. The permutation groupG D S5 admits a finiteG-CWcomplexX ' Sn,
such that XH ¤ ; implies thatH is a rank 1 subgroup of 2-power order.

Remark 1.1. It is an interesting problem for future work to decide if the group
G D S5 can act smoothly on Sn with rank 1 isotropy.

In order to prove this result we develop further techniques over the orbit category,
which may have some independent interest. A well-known theorem of Rim [29] shows
that a module M over the group ring ZG is projective if and only if its restriction
ResG

P M to any p-Sylow subgroup is projective. Over the orbit category we have a
similar statement localized at p (see Theorem 3.9).

Theorem B. Let G be a finite group and let R D Z.p/. Then an R�G-module M
has a finite projective resolution with respect to a family of p-subgroups if and only if
its restriction ResG

P M has a finite projective resolution over any p-Sylow subgroup
P � G.

Remark 1.2. For modules over the group ring RG, those having finite projective
resolutions are already projective. Over the orbit category, these two properties are
distinct.

Another useful feature of homological algebra over group rings is the detection
of group cohomology by restriction to the p-Sylow subgroups. Here is an important
concept in group cohomology (see for example [33]).

Definition 1.3. For a given primep, we say that a subgroupH � G controlsp-fusion
provided that

(i) p − jG=H j, and

(ii) whenever Q � H is a p-subgroup, and there exists g 2 G such that Qg WD
g�1Qg � H , then g D ch where c 2 CG.Q/ and h 2 H .
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One reason for the importance of this definition is the fact that the restriction map

H�.GIFp/! H�.H IFp/

is an isomorphism if and only if H controls p-fusion in G (see [25], [33]). We have
the following generalization (see Theorem 5.1) for functors of cohomological type
over the orbit category (with respect to any family F ).

Theorem C. Let G be a finite group, R D Z.p/, and H � G a subgroup which
controls p-fusion in G. If M is an R�G-module and N is a cohomological Mackey
functor, then the restriction map

ResG
H W Extn

R�G
.M;N /! Extn

R�H
.ResG

H M;ResG
H N/

is an isomorphism for n > 0, provided that the centralizerCG.Q/ of any p-subgroup
Q � H , withQ 2 F , acts trivially onM.Q/ and N.Q/.

The construction of theG-CW complexX forG D S5 and the proof of TheoremA
is carried out in Section 9. We first construct finite projective chain complexes C.p/

over the orbit categories R�G , with R D Z.p/, separately for the prime p D 2; 3; 5
dividing jGj. In each case, the isotropy family F consists of the rank 1 subgroups of
2-power order in G.

The chain complexes C.p/ all have the same dimension function (see Defini-
tion 8.2). We prescribe a non-negative function n W F ! Z, with the property that
n.K/ � n.H/ whenever H is conjugate to a subgroup of K. Then, by construc-
tion, each complex C.p/ has the R-homology of an n-sphere: for each K 2 F , the
complexes C.p/.K/ have homology Hi D R only in two dimensions i D 0 and
i D n.K/. In other words, the complexes C.p/ are algebraic versions of tom Dieck’s
homotopy representations ([10], II.10).

In the case p D 2, we start with the group H D S4 acting by orthogonal rota-
tions on the 2-sphere. A regular H -equivariant triangulation of an inscribed cube or
octahedron gives a finite projective chain complex over R�H . Then we use Proposi-
tion 6.4, a chain complex version of Theorem C, to lift it to a finite projective complex
over R�G . For p D 3 and p D 5, the p-rank of S5 is 1, and there exists a periodic
complex over the group ring RG (see Swan [32], Theorem B). We start with a peri-
odic complex overRG and add chain complexes to this complex, for every nontrivial
subgroup K 2 F , to obtain the required complex C.p/ over R�G .

We use the theory of algebraic Postnikov sections by Dold [11] to glue the com-
plexes together to form a finite projective Z�G chain complex (see Section 6). We
complete the chain complex construction by varying the finiteness obstruction to ob-
tain a complex of free Z�G-modules, and then we prove a realization theorem (see
Section 8) to construct the required G-CW complex X ' Sn.

Throughout the paper, a family of subgroups will always mean a collection of
subgroups which is closed under conjugation and taking subgroups. Also, unless
otherwise stated, all modules are finitely generated.
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2. Modules over small categories

Our main source for the material in this section is Lück [20], §9, §17 (see also §I.10,
§I.11 in [10]). We include it here for the convenience of the reader.

Let R be a commutative ring. We denote the category of R-modules by R-Mod.
For a small category � (i.e., the objects Ob.� / of � form a set), the category of
rightR� -modules is defined as the category of contravariant functors � ! R-Mod,
where the objects are functors M.�/ W � ! R-Mod and morphisms are natural
transformations. Similarly, we define the category of leftR� -modules as the category
of covariant functors N.�/ W � ! R-Mod. We denote the category of right R� -
modules by Mod-R� and the category of left R� -modules by R� -Mod.

The category of covariant or contravariant functors from a small category to an
abelian category has the structure of abelian category which is object-wise induced
from the abelian category structure on abelian groups (see [23], Chapter 9, Proposi-
tion 3.1). Hence the category ofR� -modules is an abelian category where the notions
submodule, quotient module, kernel, image, and cokernel are defined object-wise.
The direct sum of R� -modules is given by taking the usual direct sum object-wise.

Example 2.1. The most important example for our applications is the orbit category
of a finite group. Let G be a finite group and let F be a family of subgroups of G
which is closed under conjugation and taking subgroups. The orbit category Or.G/
is the category whose objects are subgroups H of G or coset spaces G=H of G, and
the morphisms Mor.G=H;G=K/ are given by the set of G-maps f W G=H ! G=K.

The category �G D OrF G is defined as the full subcategory of Or.G/ where
the objects satisfy H 2 F . The category of right R�G-modules is the category of
contravariant functors from OrF G to R-modules. A right R�G-module M is often
called a coefficient system [35]. We will sometimes denoteM.G=H/ byM.H/ if the
group G is clear from the context. When F D feg, R�G-Mod is just the category of
left RG-modules and Mod-R�G is just the category of right RG-modules. �

Now, we will introduce the tensor product and Hom functors for modules over
small categories. Let � be a small category and let M 2 Mod-R� and N 2 R� -
Mod. The tensor product over R� is given by

M ˝R� N D
M

x2Ob.� /

M.x/˝N.x/= �
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where � is the equivalence relation defined by '�.m/˝ n � m˝ '�.n/ for every
morphism ' W x ! y. For R� -modulesM and N , we mean by HomR� .M;N / the
R-module of R� - homomorphisms from M to N . In other words,

HomR� .M;N / �
M

x2Ob.� /

HomR.M.x/;N.x//

is the submodule satisfying the relations f .x/B'� D '� Bf .y/, for every morphism
' W x ! y. We sometimes consider a second tensor product, namely the tensor
product over R, which is defined for R� -modules M and N which are both left
modules or both right modules. The tensor product M ˝R N is defined by the
formula

ŒM ˝R N�.x/ DM.x/˝R N.x/

on objects x 2 Ob.� / and on morphisms, one has ŒM˝RN�.f / DM.f /˝RN.f /.
The tensor product over R� and HomR� are adjoint to each other. This can be

described in the following way:

Proposition 2.2. Given two small categories � and �, the category of R� -R�-
bimodules is defined as the category of functors � � �op ! R-Mod. For a right
R� -module M , an R� -R�-bimodule B , and a right R�-module N , one has a
natural transformation

HomR�.M ˝R� B;N/ Š HomR� .M;HomR�.B;N //:

Proof. See 9.21 in [20]. �

We will be using this isomorphism later when we are discussing induction and
restriction.

2A. Free and finitely generated modules. For a small category � , a sequence

M 0 !M !M 00

of R� -modules is exact if and only if

M 0.x/!M.x/!M 00.x/

is exact for all x 2 Ob.� /. Recall that a module P in Mod-R� is projective if the
functor

HomR� .P;�/ W Mod-R� ! R-Mod

is exact. For an object x 2 � , we define a right R� -module R� .?; x/ by setting

R� .?; x/.y/ D RMor.y; x/
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for all y 2 Ob.� /. Here, RMor.y; x/ denotes the free abelian group on the set of
morphisms Mor.y; x/ from y to x. As a consequence of the Yoneda lemma, we have

HomR� .R� .?; x/;M/ ŠM.x/:
So, for each x 2 Ob.� /, the moduleR� .?; x/ is a projective module. When working
with modules over small categories one uses the following notion of free modules.

Definition 2.3. Let � be a small category. A Ob.� /-set is defined as a set S together
with a map ˇ W S ! Ob.� /. We say a R� -module M is free if it is isomorphic to a
module of the form

R� .S/ D
M
b2S

R� .?; ˇ.b//

for some Ob.� /-set S . A free module R� .S/ is called finitely generated if the set
S is finite.

Note that for every R� -module M , there is a free R� -module R� .S/ and a
map f W R� .S/!M such that f is surjective. We can take such a free module by
choosing a set of generators Sx for the R-module M.x/ for each x 2 Ob.� /, and
then taking S as the Ob.� /-set which has the property ˇ�1.x/ D Sx . A free module
R� .S/ which maps surjectively onM is called a free cover ofM . A R� -module is
called finitely generated if it has a finitely generated free cover.

It is clear from our description of free modules that anR� -moduleM is projective
if and only if it is a direct summand of a free module. This shows that the module
category of a small category has enough projectives. We will later give a more detailed
description of projective R� -modules.

Example 2.4. For the orbit category � D Or.G/, the free modules described
above have a more specific meaning. For any subgroup K � G, the R� -module
R� .?; G=K/ is given by

R� .?; G=K/.G=H/ D RMor.G=H;G=K/ D RŒ.G=K/H �
whereRŒ.G=K/H � is the free abelian group on the set of fixed points of theH action
on G=K. Because of this, we denote the free module R� .?; G=K/ by RŒG=K ? �.

If F is a family of subgroups, and �G D OrF G, we obtain free R�G-modules
RŒG=K ? � by restriction whenever K 2 F . The constant R�G-module R defined
by R.H/ D R, for all H 2 F , is just the restriction to R�G of the module R D
RŒG=G ? �. This shows that the constant module R is projective if G 2 F . More
generally, if K 2 F , a non-empty fixed set

.G=K/H D fgK jg�1Hg � Kg ¤ ;
implies H 2 F , since F is closed under conjugation and taking subgroups. There-
fore, RŒG=K ? �.H/ D 0 for H … F , whenever K 2 F .
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2B. Induction and restriction. We now recall the definitions and terminology for
these terms presented in Lück [20], 9.15. Let� and� be two small categories. Given
a covariant functor F W �! � , we define an R�-R� -bimodule

R.‹‹; F.‹// W � � � op ! R-Mod

on objects by .x; y/! RHom.y; F.x//. We define the restriction map

ResF W Mod-R� ! Mod-R�

as the composition with F . The induction map

IndF W Mod-R�! Mod-R�

is defined by
IndF .M/.‹‹/ DM ˝R� R.‹‹; F.‹//

for every R�-module M . For every right R� -module N , the R�-module

HomR� .R.‹‹; F.‹//; N /

is the same as the composition �
F�! �

N�! R-Mod. So, by Proposition 2.2, we can
conclude the following:

Proposition 2.5. Induction and restriction are adjoint functors: for anyR� -module
M and R�-module N , there is a natural isomorphism

HomR� .IndF M;N/ D HomR�.M;ResF N/:

The induction functor respects direct sum, finitely generated, free, and projective but
it is not exact in general. The restriction functor is exact but does not respect finitely
generated, free, or projective in general.

Now we will define functors which are special cases of the restriction and induction
functors. Let � be a small category. For x 2 Ob.� /, we defineRŒx� D RAut.x/ to
be the group ring of the automorphism group Aut.x/ and denote the category of right
RŒx�-modules by Mod-RŒx�. Let �x denote the full subcategory of � with single
object x and let F W �x ! � be the inclusion natural transformation. The restriction
functor associated to F gives a functor

Resx W Mod-R� ! Mod-RŒx�

which is called the restriction functor. This functor behaves like an evaluation map
Resx.M/ D M.x/. In the other direction, the induction functor associated to F
gives a functor

Ex W Mod-RŒx�! Mod-R�
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which is called the extension functor. For aRŒx�-moduleM , we defineEx.M/.y/ D
M ˝RŒx� RMor.y; x/ for every y 2 Ob.� /. They form an adjoint pair: for every
RŒx�-module M and an R� -module N , we have

HomR� .ExM;N/ Š HomRŒx�.M;Resx N/:

By general properties of restriction and induction, the functor Resx is exact and
Ex takes projectives to projectives. In general,Ex is not exact and Resx does not take
projectives to projectives. But in some special cases, we can say more. For example,
when � is free, i.e. RMor.y; x/ is a free RŒx�-module for all y 2 � , then it is easy
to see that Ex is exact [20], 16.9.

Example 2.6. In the case of an orbit category �G D OrF G, we denote the extension
function for H 2 F simply by EH and the restriction functor by ResH . In this
case, the automorphism group Aut.G=H/ for H 2 F is isomorphic to the quotient
group NG.H/=H . The isomorphism NG.H/=H Š Aut.G=H/ is given by the
isomorphism nH ! fn where fn.gH/ D gn�1H for n 2 NG.H/ (see [10],
Example 11.2). This isomorphism takes right RŒx�-modules to right RŒNG.H/=H�-
modules, so given a right R� -module M , the evaluation at H 2 F gives a right
RŒNG.H/=H�-module.

It is easy to see that the morphism set Mor.G=K;G=H/ is a free ŒNG.H/=H�-set,
so OrF G is free in the above sense ([20], Example 16.2). Therefore, the functorEH

is exact and preserves projectives, whereas ResH is exact but does not necessarily
preserve projectives. For example, the module ZŒG=G ? � is free over Z Or.G/ by
definition, but ResH ZŒG=G ? � D Z is not projective whenever NG.H/=H ¤ 1.

2C. Inclusion and splitting functors. We will introduce two more functors. These
are also special cases of induction and restriction, but they are defined through a
bimodule rather than just a natural transformation F . We first describe these functors
and then give their interpretations as restriction and induction functors.

Let � be an EI-category. By this, we mean that � is a small category where every
endomorphism x ! x is an isomorphism for all x 2 Ob.� /. This allows us to define
a partial ordering on the set Iso.� / of isomorphism classes Nx of objects x in � . For
x; y 2 Ob.� /, we say Nx � Ny if and only if Mor.x; y/ ¤ ;. The EI-property ensures
that Nx � Ny � Nx implies Nx D Ny.

For each object x 2 � , and M 2 Mod-RŒx�, the inclusion functor,

Ix W Mod-RŒx�! Mod-R�

is defined by

IxM.y/ D
´
M ˝RŒx� RMor.y; x/ if Ny D Nx;
¹0º if Ny ¤ Nx:
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In the other direction, we define the splitting functor

Sx W Mod-R� ! Mod-RŒx�

by Sx.M/ D M.x/=M.x/s where M.x/s is the R-submodule of M.x/ which is
generated by the images of M.f / W M.y/ ! M.x/ for all f W x ! y with Nx � Ny
and Nx ¤ Ny.

There is a R� -RŒx�-bimodule B defined in such a way that the inclusion functor
Ix can be described as M ! HomRŒx�.B;M/ and the splitting functor Sx is the
same as the functor M ! M ˝R� B (see [20], p. 171, for details). So .Sx; Ix/ is
an adjoint pair, meaning that

HomRŒx�.SxM;N/ Š HomR� .M; IxN/

for every R� -module M and RŒx�-module N .
From general properties of induction and restriction, we can conclude that Ix is

exact and Sx preserves projectives. Some of the other properties of these functors are
listed in Lemma 9.31 of [20]. It is interesting to note that the composition Sx B Ex

is naturally equivalent to the identity functor. Also, the composition Sy B Ex is zero
when Nx ¤ Ny. These are used to give a splitting for projective R� -modules.

Theorem 2.7. Let P be a finitely generated projective R� -module. Then

P Š
M

x2Iso.� /

ExSx.P /:

Proof. For the proof see [20], Corollary 9.40. �

In the statement, the notation
L

x2Iso.� / means that the sum is over a set of
representatives x 2 Ob.� / for Nx 2 Iso.� /.

2D. Resolutions for R� -modules. Let � be an EI-category. For a non-negative
integer l we define an l-chain c from x 2 Ob.� / to y 2 Ob.� / to be a sequence

c W Nx D Nx0 < Nx1 < � � � < Nxl D Ny:
Define the length l.y/ of y 2 Ob.� / to be the largest integer l such that there exists an
l-chain from some x 2 Ob.x/ to y. The length l.� / of � is maxfl.x/ j x 2 Ob.� /g.
Given an R� -module M , its length l.M/ is defined by maxfl.x/ jM.x/ ¤ 0g if M
is not the zero module and l.f0g/ D �1.

We call a category� finite if Iso.� / and Mor.x; y/ are finite for all x; y 2 Ob.� /.
Denote by m.� / the least common multiple of all the integers jAut.x/j.

Given an R� -module M , consider the map

� W
M

x2Iso.� /

Ex Resx M !M
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where for each x 2 Ob.� /, the map �x W Ex Resx M !M is the map adjoint to the
identity homomorphism. It is easy to see that � is surjective. Let

EM WD
M

x2Iso.� /

Ex Resx M

and let KM denote the kernel of � W EM ! M . Note that if x is an object with
l.x/ D l.M/, then Resx D Sx which also gives that

Resx � W Resx Ex Resx M ! Resx M

is an isomorphism. Note that this implies l.KM/ < l.M/ which allows one to
proceed by induction and obtain the following:

Proposition 2.8. If � is a finite EI-category, then every nonzero M has a finite
resolution of the form

0! EKtM ! � � � ! EKM ! EM !M ! 0

where t D l.M/.

Proof. See [20], 17.13. Here K0M DM and KsM D K.Ks�1M/. �

From the description above it is easy to see that

EKsM WD
M

x2Iso.� /

Ex Resx K
sM

where Resx K
sM is isomorphic to a direct sum of RŒx�-modules

M.c/ WDM.x0/˝RŒx0� RMor.x1; x0/˝RŒx1� � � � ˝RŒxs�1� RMor.x; xs�1/

over representatives in Ob.� / for all the chains of the form c W Nx < Nxs�1 < � � � < Nx0

(see [20], 17.24). Note that if � is a finite, free EI-category, then the resolution given
in Proposition 2.8 will be a finite projective resolution if M.c/ is projective as an
RŒx�-module for every chain c. This gives the following:

Proposition 2.9. LetM be R�G module where �G D OrF G for some finite group
G and R is a commutative ring such that jGj is invertible in R. Suppose also that
M.H/ is projective as an R-module for all H 2 F . Then, M has a projective
resolution with length less than or equal to l.� /.

Proof. See [20], 17.31. �

In particular, if R D Z.p/ with p − jGj and if M is a R� -module such that
M.H/ is R-torsion free for all H 2 F , then M has a finite projective resolution of
length less than or equal to l.M/.
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3. The proof of Theorem B

The main result of this section is Theorem 3.9, which is an orbit category version
of a well-known result of Rim [29]. We first collect some further information about
induction and restriction for subgroups.

LetG be a finite group and letH be a subgroup ofG. Given a family of subgroups
F of G, we consider the orbit categories �G D OrF G and �H D OrF H , where
the objects of �H are orbits of H with isotropy in FH D fK � H jK 2 F g.
Let F W �H ! �G be the functor which takes H=K to G=K and sends an H -map
f W H=K ! H=L to the induced G-map

IndG
H .f / W G=K D G �H H=K ! G �H H=L D G=L

for every K;L 2 FH . Note that if f is the map which takes eK to hL, then
IndG

H .f /.gK/ D ghL. The restriction and induction functors (see Proposition 2.5)
associated to this functor gives us two adjoint functors

ResG
H W Mod-�G ! Mod-�H

and
IndG

H W Mod-�H ! Mod-�G :

The restriction functor is defined as the composition with F . So, for a R�G-module
M , we have .ResG

H M/.K/ D M.K/, for all K 2 FH . For the induced module we
have the following formula:

Lemma 3.1. Let N be a R�H -module and K � G. Then,

.IndG
H N/.K/ Š

M
gH2G=H; Kg�H

N.Kg/

where Kg D g�1Kg.

Proof. For a (right) R�H -module N , the induced module IndG
H N is defined as the

direct sum M
L�H

N.L/˝R RMor.G=K;G=L/

modulo the relations n˝'f � '�.n/˝f where n 2 N.L/, f 2 Mor.G=K;G=L0/
and ' D IndG

H .�/ for some � W H=L0 ! H=L. Every morphism G=K ! G=L

which satisfies the condition L � H can be written as a composition 'fg where
' W G=Kg ! G=L is induced from an H -map and fg W G=K ! G=Kg is given by
xK ! xgKg , for some g 2 G.

This shows that every element in the above sum is equivalent to an element of the
form n˝ fg where n 2 N.Kg/ and fg W G=K ! G=Kg is as above withKg � H .
There is one summand for each gH satisfying Kg � H . �
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Note that we can also express the above formula by

.IndG
H N/.K/ Š

M
gH2.G=H/K

N.Kg/:

If J � K, then the argument above can be extended to show that restriction map

.IndG
H N/.K/! .IndG

H N/.J /

is given by the coordinate-wise restriction maps N.Kg/ ! N.J g/. Note that if
gH 2 .G=H/K , then gH 2 .G=H/J . Similarly, the conjugation map

.IndG
H N/.K/! .IndG

H N/.xK/

can be described by coordinate-wise conjugation maps. From these, it is easy to see
that IndG

H R Š RŒG=H ? �. A generalization of this argument gives the following:

Lemma 3.2 ([35], Corollary 2.12). Let G be a finite group and letH be a subgroup
of G. For every R�G-moduleM , we have IndG

H ResG
H M ŠM ˝R RŒG=H

? �.

We also have the following formulas:

Lemma 3.3. Let G be a finite group and letH be a subgroup of G.

(i) For every K � H , we have IndG
H RŒH=K ? � Š RŒG=K ? �.

(ii) For every K � G, we have ResG
H RŒG=K ? � ŠL

KnG=H RŒH=.H \ gK/ ? �.

Proof. Part (i) follows from the fact that IndG
H IndH

K D IndG
K which is a consequence

of a more general formula IndF IndF 0 D IndF BF 0 . We can prove this more general
formula by using adjointness and the formula ResF 0 ResF D ResF BF 0 . For (ii),
observe that the definition of RŒG=H ? � can be extended to define a R�G-module
RŒS ? � for every G-set S , by taking

RŒS ? �.G=K/ D RMapG.G=K; S/ (3.4)

for every K 2 F , where MapG.G=K; S/ denotes the set of G-maps from G=K to
S . ForG-sets S and T , we have an isomorphism RŒ.S

F
T / ? � Š RŒS ? �˚RŒT ? �.

By the definition of restriction map, we get�
ResG

H RŒS ? �
�
.H=K/ D RMapG.G=K; S/ D RMapH .H=K;ResG

H S/:

It is easy to see that this induces an R�H -module isomorphism

ResG
H RŒS ? � Š RŒ.ResG

H S/ ? �:

Since
ResG

H .G=K/ Š
a

HnG=K

H=.H \ gK/

as G-sets, we obtain the formula given in (ii). �
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Example 3.5. Let G D S5 be the symmetric group on f1; 2; 3; 4; 5g and H D S4

be the subgroup of symmetries that fix 5. Let C2 D h.12/i and C3 D h.345/i. The
formula in Lemma 3.3 (ii) gives

ResG
H RŒG=.C2 � C3/

? � D RŒH=C2
? �˚RŒH=gC3

? �

where gC3 D h.123/i. From this expression we obtain

RŒG=.C2 � C3/
? �.G=C2/ Š RŒH=C2

? �.H=C2/ Š RŒNH .C2/=C2�;

as an NH .C2/=C2-module, where NH .C2/ D C2 � C2. Note that NG.C2/ D
C2 � S3 and as an NG.C2/=C2-module RŒG=.C2 � C3/

? �.G=C2/ is isomorphic to
RŒC2 � S3=C2 � C3�. �

We can give a more general formula for RŒG=H ? �.G=K/ as follows:

Lemma 3.6. Let G be a finite group, and H and K be two subgroups of G. Then,
as an RŒNG.H/=H�-module

RŒG=K ? �.G=H/ Š
M

v.H;K/

R
�
NG.H/=NgK.H/

�

where the sum is over the set v.H;K/ of representatives of K-conjugacy classes of
subgroupsHg such thatHg � K.

Proof. This formula can easily be proved by first determining the orbits of NG.H/

action on .G=K/H D fgK jHg � Kg, and then by calculating the isotropy sub-
groups for each of these orbits. A similar computation can be found in the proof of
Theorem 4.1 in [8]. �

Proposition 3.7. Both ResG
H and IndG

H are exact and take projectives to projectives.

Proof. The fact that ResG
H is exact and IndG

H preserves projectives follows from
the general properties of restriction and induction functor associated to a natural
transformationF . The fact that IndG

H is exact follows from the formula given in Lem-
ma 3.1. Finally, to show that ResG

H takes projective to projectives, it is enough to show
it takes free modules to projective modules. An indecomposable free R�G-module
M is of the form RŒG=K ? � for some K 2 F . By Lemma 3.3, ResG

H .RŒG=K
? �/

will be projective ifH \ gK is in F for allHgK 2 HnG=K. But this is always true
since the family F is closed under conjugation and taking subgroups. �

A result of Rim [29] relates projectivity over the group ring ZG to projectivity
over the p-Sylow subgroups.
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Proposition 3.8 (Rim’s theorem). Let G be a finite group, and M be a finitely
generated ZG-module. Then M is projective over ZG if and only if ResG

P M is
projective over ZP for any p-Sylow subgroup P � G.

Proof. A module M is ZG-projective if and only if Ext1
ZG.M;N / D 0 for every

ZG-module N . Therefore M is projective if and only if Z.p/ ˝Z M is projective
over Z.p/G for all primes p dividing the order of G.

For any p-Sylow subgroup P � G, the permutation module RŒG=P � Š R˚N
splits when R D Z.p/. Therefore, if M is any RG-module, M ˝R RŒG=P � Š
M ˚ .M ˝R N/. Since M ˝R RŒG=P � Š IndG

P ResG
P M , the projectivity of M is

equivalent to the projectivity of ResG
P M . �

Here is an orbit category version of this result.

Theorem 3.9 (Rim’s theorem for the orbit category). Let G be a finite group and let
M be a R�G-module where R D Z.p/. Suppose that F is a family of p-subgroups
in G. Then M has a finite projective resolution if and only if ResG

P M has a finite
projective resolution for any p-Sylow subgroup P of G.

Proof. One direction is clear since ResG
P is exact and takes projectives to projectives.

For the other direction, we will give the proof by induction on the length l.M/ of
M . Without loss of generality, we can assume that M.H/ is R-torsion free for all
H 2 F . Suppose M is a R�G-module with l.M/ D 0. Then, we can regard M as
an RG-module. If ResG

P M has a finite projective resolution, then ResG
P M must be

projective (see [20], p. 348). Then, by Rim’s theorem,M is a projectiveRG-module,
hence has finite projective length.

Now, assume M is an R�G-module with l.M/ D s > 0. Let

0! Pn ! � � � ! P0 ! ResG
P M ! 0

be a projective resolution for ResG
P M . We can assume that l.Pi / 6 s for all i . Then,

for Q 2 F with l.Q/ D s, we have

SQPi D ResQ Pi D Pi .Q/:

Since SQ takes projectives to projectives, the resolution

0! Pn.Q/! � � � ! P0.Q/! .ResG
P M/.Q/! 0

is a finite projective resolution of .ResG
P M/.Q/ D M.Q/ as an RŒNP .Q/=Q�-

module. This gives that M.Q/ is projective as an RŒNP .Q/=Q�-module.

Lemma 3.10. For every p-group Q, there is a p-Sylow subgroup P of G such that
NP .Q/ is a p-Sylow subgroup of NG.Q/.
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Proof. Let S be a p-Sylow subgroup of NG.Q/, and pick a p-Sylow subgroup P
of G containing S . Since NP .Q/ D NG.Q/ \ P is a p-subgroup of NG.Q/, we
have jNP .Q/j � jS j. But S � P and S � NG.Q/ implies S � NP .Q/. Therefore
S D NP .Q/. �

We can assume P is a p-Sylow subgroup which has this property. Then, by the
p-local version of Rim’s theorem, we can conclude that M.Q/ is projective as an
RŒNG.Q/=Q�-module. Now, consider the map

 D . Q/ W
M

Q2Iso.�G/; l.Q/Ds

EQ B ResQ M !M

where Q W EQBResQ M !M is the map adjoint to the identity map id W ResQ M !
ResQ M . For every K 2 F with l.K/ D s, the induced map  .K/ is an isomor-
phism. This is because

.EQ B ResQ M/.K/ D ResK EQ ResQ M D SKEQ ResQ M ŠM.K/
if K is conjugate to Q and zero otherwise. So, we have l.coker / < s. Therefore,
there is a finitely generated projective R�G-module P with l.P / < s, and a map
˛ W P ! M such that  ˚ ˛ is surjective. If K is the kernel of  ˚ ˛, we get an
exact sequence of R�G-modules

0! K ! P ˚
M

Q2Iso.�G/; l.Q/Ds

EQ B ResQ M !M ! 0

where the middle term is projective as an R�G-module, and l.K/ < s. Note that
ResG

P K must have a finite projective resolution by Lemma 11.6 of [20]. So, by
induction, K has a finite projective resolution, and hence M has a finite projective
resolution as well. �

Remark 3.11. The inductive argument we use in the above proof is similar to the
argument used by Lück to prove Proposition 17.31 in [20]. By this result, any module
M over a finite EI-category � which has a finite projective resolution, admits a
resolution of length 6 l.M/ provided that M.x/ is R-projective for all x 2 Ob.� /.

�

It is not clear to us how to generalize Theorem 3.9 to integer coefficients. For
R D Z.p/, the following example shows that the result does not hold for an arbitrary
family F .

Example 3.12. Let G D S5 and R D Z.2/ , and take F as the family of all 2-sub-
groups and 3-subgroups in G. Consider the R�G-module M D RŒG=.C2 � C3/

? �
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where C2 and C3 are as in Example 3.5. It is clear that the restriction of M to a 2-
Sylow subgroup is projective (since its restriction to H D S4 is already projective),
but M does not have a finite projective resolution as an R�G-module.

To see this, suppose that M has a finite projective resolution P � M . Then,
P.C3/ will be a finite projective resolution for M.C3/ over RŒNG.C3/=C3�. This is
because C3 D h.123/i is a maximal subgroup in F . This implies

M.C3/ Š RŒS3 � C2=C3 � C2� Š RŒC2�

is projective as an RŒNG.C3/=C3�-module. But,

RŒNG.C3/=C3� D RŒS3 � C2=C3� Š RŒC2 � C2�;

and it is clear that RŒC2� is not projective as an RŒC2 �C2�-module. So,M does not
have a finite projective resolution. �

On the other hand, the following holds for modules over orbit categories:

Proposition 3.13. Let G be a finite group, and F be a family of subgroups of G.
Then, a Z�G-moduleM has a finite projective resolution if and only if Z.p/ ˝Z M

has a finite projective resolution over Z.p/�G , for all primes p dividing the order
of G.

The proof of this statement follows from Propositions 4.4 and 4.5 in the next
section. We end this section with some corollaries of Theorem 3.9.

Corollary 3.14. Let G be a finite group and R D Z.p/. Suppose that F is a family
of p-subgroups. Then, RŒG=H ? � has a finite projective resolution over R�G if a
p-Sylow subgroup ofH is included in F .

Proof. If ap-Sylow subgroup ofH is in F , then ResG
P RŒG=H

? � is a freeR�P -mod-
ule for any P 2 Sylp.G/. So, by Theorem 3.9, it has a finite projective resolution.

�

As a special case of this corollary, we obtain the following known result (see (6.8)
in [4], [35] (2.5 and p. 296), [17], [14]).

Corollary 3.15. LetG be a finite group andR D Z.p/. Then,R has a finite projective
resolution over R�G relative to the family of all p-subgroups of G.

Proof. This follows from R D RŒG=G ? �. �
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4. Mackey structures on Ext�
R�G

.M; N/

The notation and results of the previous sections will now be used to establish some
structural and computational facts about the Ext-groups over the orbit category. Our
main sources are Cartan–Eilenberg [7] and tom Dieck [10], §II.9 (see also [17], [14]).

We have seen that the category of right R� -modules has enough projectives to
define the bifunctor

Ext�
R� .M;N / D H�.HomR� .P; N //

via any projective resolution P � M (see [20], Chapter III, §17, [23], Chapter III.6).
The following property is also useful (see Lück [20], 17.21).

Lemma 4.1. If � is a free EI-category, then

Ext�
R� .ExM;N/ Š Ext�

RŒx�.M;Resx N/:

Proof. Take a projective resolution P of M . Since � is free, the extension functor
Ex is exact [20], 16.9. In addition, Ex preserves projectives and is adjoint to the
restriction functor Resx by Proposition 2.5. Therefore

� � � ! ExPn ! � � � ! ExP1 ! ExP0 ! ExM ! 0

is a projective resolution of ExM , and applying Hom over the orbit category gives

Extn
R� .ExM;N/ D Hn.HomR� .ExP; N //

Š Hn.HomRŒx�.P;Resx N// D Extn
RŒx�.M;Resx N/: �

In the rest of this section, we assume that �G D OrF G for a finite group G,
where F is a family of subgroups in G. Note that �G is both finite and free as an
EI-category. If there are two groups H � G, we use the notations �G D OrF G

for the orbit category with respect to the family F , and �H D OrF H for the orbit
category with respect to the family FH D fH \K jK 2 F g.

Proposition 4.2. Let M and N be two Z�G-modules, where M.H/ is Z-torsion
free for all H 2 F . Then for every n > l.M/, the groups Extn

Z�G
.M;N / are finite

abelian, with exponent dividing some power of jGj.

Proof. This follows from the Lemma 4.1, Proposition 2.8, and the corresponding
result for modules over finite groups. �

Note that the Ext-groups in lower dimensions are not finite in general. But, it is
still true in all dimensions that the Ext-groups over Z�G vanish if and only if they
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vanish over Z.p/�G , for all primes p. To see this, we note that tensoring over Z with
Z.p/ preserves exactness, and hence

Extn
Z�G

.M;N /˝Z Z.p/ Š Extn
Z.p/�G

.M ˝Z Z.p/; N ˝Z Z.p//: (4.3)

We also have the following:

Proposition 4.4. LetM andN be two Z�G-modules, whereM.H/ is Z-torsion free
for allH 2 F . Then, for every n > l.M/, there is an isomorphism

Extn
Z�G

.M;N / Š
M
pjjGj

Extn
Z.p/�G

.Mp; Np/

whereMp D Z.p/ ˝Z M and Np D Z.p/ ˝Z N .

Proof. From Proposition 4.2 we know that Extn
Z�G

.M;N / is a finite abelian group
with exponent dividing some power of jGj, when n > l.M/. Now the flatness of Z.p/

over Z implies as above that Extn
Z�G

.M;N / is the direct sum of its p-localizations,
for all p j jGj. We then apply the isomorphism (4.3). �

To complete the proof of Proposition 3.13, we also need the following standard
result in homological algebra (see [7], Chapter VI, 2.1, for the case of modules over
rings):

Proposition 4.5. A right R�G-moduleM admits a finite projective resolution if and
only if there exists an integer `0 > 0 such that Extn

R�G
.M;N / D 0, for all n > `0

and all right R�G-modules N .

Proof. IfM admits a finite projective resolution of lengthk, then Extn
R�G

.M;N / D 0
for n > k and any R�G-module N . Conversely, if Extn

R�G
.M;N / D 0 for n > `0

and any N , then consider the kernel Zm of the boundary map @m W Pm ! Pm�1 in
the projective resolution P of M . It follows that

Ext1
R�G

.Zm; N / Š ExtmC2
R�G

.M;N / D 0
for any R�G-module N , provided mC 2 > `0, and so Zm is projective if we take
m D `0 � 1. This gives a finite projective resolution of length `0 over R�G . �

We now recall the definition of a Mackey functor (following Dress [13]). Let G
be a finite group and D.G/ denote the Dress category of finite G-sets and G-maps.
A bivariant functor

M D .M �;M�/ W D.G/! R-Mod

consists of a contravariant functor

M � W D.G/! R-Mod
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and a covariant functor
M� W D.G/! R-Mod:

The functors are assumed to coincide on objects. Therefore, we write M.S/ D
M�.S/ D M �.S/ for a finite G-set S . If f W S ! T is a morphism, we often use
the notation f� D M�.f / and f � D M �.f /. If S D G=H and T D G=K with
H � K and f W G=H ! G=K is given by f .eH/ D eK, then we use the notation
f� D IndK

H and f � D ResK
H .

Definition 4.6 (Dress [13]). A bivariant functor is called a Mackey functor if it has
the following properties:

(M1) For each pullback diagram

X
h ��

g

��

Y

k

��
S

f
�� T

of finite G-sets, we have h� B g� D k� B f�.

(M2) The two embeddings S ! S
F
T  � T into the disjoint union define an

isomorphism M �.S
F
T / ŠM �.S/˚M �.T /.

Remark 4.7. There is a functor Or.G/! D.G/ defined on objects by H 7! G=H

for every subgroup H � G, and as the identity on morphism sets. By composition,
any contravariant functor D.G/! R-Mod gives a right R�G-module, with respect
to any given family of subgroups F of G.

In the statement of Theorem 4.11 we will use the examples RŒS ? � W D.G/ !
R-Mod, defined in (3.4) for any finite G-set S .

The following example and lemma will be used in the proof of Theorem 5.9.

Example 4.8. LetQ 2 F and let V be a rightRŒWG.Q/�-module, whereWG.Q/ D
NG.Q/=Q. Then we define a bivariant functorDQ.V / W D.G/! R-Mod on objects
by setting

DQ.V /.S/ D HomRŒWG.Q/�.RŒS
Q�; V /

for any finiteG-setS . For anyG-mapf W S ! T we have aWG.Q/-mapf QW SQ !
TQ, which induces a homomorphism

f � W HomRŒWG.Q/�.RŒT
Q�; V /! HomRŒWG.Q/�.RŒS

Q�; V /

by composition. To define the covariant map f�, let 'S W RŒSQ� ! V be an
RŒWG.Q/�-homomorphism, and define f�.'S / D 'T by

f�.'S /.t/ D 'T .t/ D
X

s2SQ;f .s/Dt

'S .s/
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It is not hard to verify that DQ.V / is actually a Mackey functor. The axiom (M1)
follows because the Q-fixed sets in a pull-back diagram of G-sets give again a pull-
back diagram. The axiom (M2) is immediate.

Definition 4.9. For anyR�G-moduleN , we defineDN DP
Q2Iso.�G/DQ.N.Q//

and define j W N ! DN as the direct sum of the adjoints of id W N.Q/! N.Q/, for
each Q 2 Iso.�G/. Let CN denote the cokernel of j . For k � 0, define inductively
C 0N D N and C kN D C.C k�1N/, together with the induced maps C k ! DC k .

Here is a dual construction to the E-resolution given in [20], 17.13.

Lemma 4.10. For any R�G-module N , the finite length sequence

0! N
j�! DN ! DCN ! � � � ! DCmN ! 0

is an exact coresolution of Mackey functors, for some m � 0.

Proof. For any R�G-module N , the map j W N ! DN defined above is injective,
so we have a short exact sequence

0! N
j�! DN ! CN ! 0:

Iterating the above process, we obtain

0! CN ! DCN ! C 2N ! 0

and so on. By splicing, we get an exact sequence, or coresolution:

0! N
j�! DN ! DCN ! � � � ! DC k�1N ! DC kN ! � � � :

When N is a R�G-module of a finite length, which is the case in our situation, this
coresolution has a finite length. To check this, we use the definition of DQ.V / in
Example 4.8 to get

DQ.V /.K/ D HomRŒWG.Q/�.RŒ.G=K/
Q�; V /

for anyRŒWG.Q/�-moduleV . ThereforeDQ.V /.K/ is only nonzero for .Q/ � .K/,
and at .Q/ D .K/ the RŒWG.K/�-module DQ.V /.K/ is isomorphic to V , via the
isomorphismWG.Q/ Š WG.K/ induced by conjugation. This shows that the length
of the moduleC kN is properly smaller than the length ofC k�1N for all k � 1. �

We will prove Theorem 5.1 by showing that H 7! Ext�
R�H

.M;N / has a coho-
mological Mackey functor structure which is conjugation invariant. First we describe
the Mackey functor structure on HomR�‹

.M;N /.
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Theorem 4.11. For a right R�G-moduleM and a Mackey functor N , let

HomR�?.M;N / W D.G/! R-Mod

denote the function defined by S 7! HomR�G
.M ˝RRŒS

? �; N / for any finiteG-set
S . Then HomR�‹

.M;N / inherits a Mackey functor structure.

Proof. We first define the induction and restriction maps to see that HomR�?.M;N /

is a bifunctor. For f W S ! T a G-map, the restriction map

f � W HomR�G
.M ˝R RŒT

? �; N /! HomR�G
.M ˝R RŒS

? �; N /

is the composition with M ˝R RŒS
? �

id˝ Qf���! M ˝R RŒT
? � where Qf denotes is the

linear extension of the map induced by f . Since the functors RŒS ? � satisfy axiom
(M2), so does HomR�?.M;N /.

For f W S ! T a G-map, we define the induction map

f� W HomR�G
.M ˝R RŒS

? �; N /! HomR�G
.M ˝R RŒT

? �; N /

in the following way: let 'S W M ˝R RŒS
? � ! N be given. We will describe the

homomorphism 'T D f�.'S /.

'T .V /.x ˝ ˛/ D F�
�
'S .U /.F

�.x/˝ ˇ/�
for x 2M.V / and ˛ W V ! T , where U , ˇ and F are given by the pull-back

U
ˇ ��

F

��

S

f

��
V ˛

�� T .

It is easy to check that this formula for 'T gives an R�G-homomorphism, using the
assumption that N is a Mackey functor.

We need to check axiom (M1) for HomR�?.M;N /. For a given pull-back square

X
h ��

g

��

Y

k

��
S

f
�� T

we need to show that h� Bg� D k� Bf�. Let � W V ! Y be anyG-map, and consider
the extended pull-back diagram

U
ı ��

F

��

X
g ��

h

��

S

f

��
V �

�� Y
k

�� T .
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The maps ˛ D k B � and ˇ D g B ı may be used to compute f�.'S / as above, and
the left-hand square may be used to compute h�.

For any element 'S W M ˝R RŒS
? �! N , we have

.k� B f�.'S //.V /.x ˝ �/ D .f�.'S / B .id˝ k//.V /.x ˝ �/
D f�.'S /.V /.x ˝ .k B �//
D F�.'S .U /.F

�.x/˝ .g B ı//
for any x 2M.V / and � W V ! Y . On the other hand,

.h� B g�.'S //.V /.x ˝ �/ D F�..g�'S /.U /.F
�.x/˝ ı//

D F�.'S .U /.F
�.x/˝ .g B ı//

for any x 2M.V / and � W V ! Y , so the formula (M1) is verified. �

As an immediate consequence, for any subgroupH � K theG-map f W G=H !
G=K induces a restriction map

ResK
H W HomR�K

.M;N /! HomR�H
.M;N /

defined as the composition of the map

f � W HomR�G
.M ˝R RŒG=K

? �; N /! HomR�G
.M ˝R RŒG=H

? �; N /

with the ‘Shapiro’ isomorphisms:

HomR�G
.M ˝R RŒG=H

? �; N / Š HomR�H
.M;N /

and
HomR�G

.M ˝R RŒG=K
? �; N / Š HomR�K

.M;N /

given by Corollary 2.12 of [35] and the adjointness property (compare [2], Lem-
ma 2.8.4). Similarly, we have the induction map

IndK
H W HomR�H

.M;N /! HomR�K
.M;N /

defined by composing the Shapiro isomorphisms with f�.

Remark 4.12. Since ResG
H preserves projectives, we see that P ˝R RŒG=H

? � is
projective over R�G whenever P is projective over R�G (check the categorical
lifting property directly or apply Lemma 3.2).

Proposition 4.13. Let C be a chain complex of right R�G-modules and N be a
Mackey functor. Then, the cochain complex

C� D HomR�?.C; N /

with the differential ı W HomR�?.Ci ; N /! HomR�?.CiC1; N / given by ı.'/ D 'B@
is a cochain complex of Mackey functors.
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Proof. We have seen that each C i D HomR�?.Ci ; N / is a Mackey functor by Theo-
rem 4.11. We just need to show that the coboundary maps are Mackey functor maps.
Given f W S ! T we need to show the following diagram commutes:

HomR�G
.Ci ˝RŒS ? �; N /

ıS ��

f�

��

HomR�G
.CiC1 ˝RŒS ? �; N /

f�

��
HomR�G

.Ci ˝RŒT ? �; N /

f �

��

ıT �� HomR�G
.CiC1 ˝RŒT ? �; N / .

f �

��

The proof of commutativity for f � is easy. In this case, it follows from the commu-
tativity of the following diagram:

Ci ˝RŒS ? �

id˝f

��

CiC1 ˝RŒS ? �
@˝id��

id˝f

��
Ci ˝RŒT ? � CiC1 ˝RŒT ? � .

@˝id��

For f� we check the commutativity directly: let 'S W Ci ˝ RŒS ? � ! N be an
R�G-map. For x 2 CiC1.V / and ˛ W V ! T , we have

Œ.ıT B f�/'S �.x ˝ ˛/ D .f�'S /.@x ˝ ˛/
D F�Œ'S .F

�.@x/˝ ˇ/�
where

U
ˇ ��

F

��

S

f

��
V ˛

�� T

on the other hand,

Œ.f� B ıS /'S �.x ˝ ˛/ D F�Œ.ıS'S /.F
�.x/˝ ˇ/�

D F�Œ'S B .@˝ id/.F �.x/˝ ˇ/�
D F�Œ'S .@F

�.x/˝ ˇ/�
since @F � D F �@, we are done. �

Corollary 4.14. LetM be an R�G-module and N be a Mackey functor. Then,

Ext�
R�?

.M;N /

has a Mackey functor structure. As a Mackey functor Ext�
R�?

.M;N / is equal to the
homology of the cochain complex of Mackey functors HomR�?.P; N / where P is a
projective resolution ofM as an R�G-module.



392 I. Hambleton, S. Pamuk and E. Yalçın CMH

Proof. To compute the Ext-groups, note that S 7! P ˝R RŒS ? � is a projective
resolution of the module S 7!M ˝R RŒS

? �, for every finite G-set S . �

Remark 4.15. It follows that a version of the Eckmann–Shapiro isomorphism

Ext�
R�G

.M ˝RŒG=H ? �; N / Š Ext�
R�H

.ResG
H M;ResG

H N/

holds for the Ext-groups over the orbit category (compare [2], 2.8.4).

Remark 4.16. IfN is a Green module over a Green ring G , then the Mackey functor
Ext�

R�?
.M;N / also inherits a Green module structure over G . The basic formula is

a pairing

G .S/ � HomR�‹
.M ˝R RŒS

? �; N /! HomR�‹
.M ˝R RŒS

? �; N /

induced by the Green module pairing G �N ! N . For any z 2 G .S/, x 2 M.V /,
and ˛ W V ! S , we define

.z � 'S /.V /.x ˝ ˛/ D ˛�.z/ � 'S .V /.x ˝ ˛/
for any 'S .V / W M.V /˝RRMor.S; V /! N.V /. The check that this pairing gives
a Green module structure is left to the reader. �

5. The proof of Theorem C

The main purpose of this section to prove the following theorem.

Theorem 5.1. Let G be a finite group, R D Z.p/, and F be a family of subgroups
in G. SupposeH � G controls p-fusion in G. Then,

ResG
H W Extn

R�G
.M;N /! Extn

R�H
.ResG

H M;ResG
H N/

is an isomorphism for n > 0, provided that M is an R�G-module and N is a
cohomological Mackey functor satisfying the condition that CG.Q/ acts trivially on
N.Q/ andM.Q/ for all p-subgroupsQ � H , withQ 2 F .

Certain Mackey functors (called cohomological) are computable by restriction to
the p-Sylow subgroups and the conjugation action of G (see [7], Chapter XII, §10,
[19]).

If H � G is a subgroup, and n 2 NG.H/ then the G-map f W G=H ! G=H

defined by f .eH/ D nH has an associated conjugation homomorphism cn.h/ D
n�1hn 2 H , for all h 2 H . For an arbitrary R�G-module M , the induced maps f �
need not be the identity on M.G=H/ even if cn D id (e.g. if n 2 CG.H/).
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Definition 5.2. We say a Mackey functor is cohomological (over F ) if

IndK
H ResK

H .u/ D jK W H j � u
for all u 2M.K/, and allH � K (for allK 2 F ). AnR�G-moduleM with respect
to a family F is called conjugation invariant if CG.Q/ acts trivially on M.Q/ for
all Q 2 F . A Mackey functor is called conjugation invariant if it is conjugation
invariant as a functor over the corresponding orbit category.

The following lemma will be used in the proof of Theorem 5.9.

Lemma 5.3. Let Q 2 F and let V be a right RŒWQ.Q/�-module. If F is a family
of p-subgroups, and R D Fp , then DQ.V / W D.G/ ! R-Mod is a cohomological
Mackey functor over F . If CG.Q/ acts trivially on V , then DQ.V / is conjugation
invariant.

Proof. Since all subgroups in F are p-groups, for the first part we only need to show
that the composite IndK

H ResK
H .u/ D p � u, for K 2 F and H � K a normal of

index p.
Let f W G=H ! G=K be the G-map given by gH 7! gK. Consider the induced

map f Q W .G=H/Q ! .G=K/Q. Take t 2 .G=K/Q. If there is no s 2 .G=H/Q
such that f .s/ D t , then the transfer is trivially zero. Suppose that there is at least one
element s D gH which is fixed by Q and maps to t D gK. Let k1; : : : ; kp be coset
representatives of H in K. Since ki normalizes H , the element gkiH 2 .G=H/Q
for each i . Therefore, there are exactly p different s 2 .G=H/Q that map to t . It
follows that f� B f � is multiplication by p, as required. Since we are working here
over the finite field Fp , all the composites f� B f � D 0.

We now show that DQ.V / is conjugation invariant if CG.Q/ acts trivially on V .
In other words, we claim that for all K 2 F , the centralizer CG.K/ acts trivially on
HomRŒWG.Q/�.RŒG=K�

Q; V /. Consider the way the action is defined: let c 2 CG.K/

and ' W RŒG=K�Q ! V be an RŒWG.Q/�-map. Then .c'/.gK/ D '.gcK/. On the
other hand since gK 2 .G=K/Q, we have Qg � K. So, c centralizes Qg . This
means gcg�1 centralizes Q and hence acts trivially on V . This gives

'.gcK/ D '.gcg�1gK/ D gcg�1'.gK/ D '.gK/:
Therefore .c'/.gK/ D '.gK/ for all gK. This shows that c 2 CG.K/ acts as the
identity on HomRŒWG.Q/�.RŒG=K�

Q; V /. �

The cohomological and conjugation properties are inherited by the Ext-functors.

Proposition 5.4. LetM and N be R�G-modules relative to some family F .

(i) If N is a cohomological Mackey functor over F , then Ext�
R�?

.M;N / is a co-
homological Mackey functor over all subgroupsH � G.
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(ii) If bothM andN are conjugation invariantwith respect toF , thenExt�
R�?

.M;N /

is conjugation invariant with respect to all subgroupsH � G.

Proof. We have seen that for f W S ! T , the induced maps

HomR�G
.M ˝RŒS ? �; N /

f� �� HomR�G
.M ˝RŒT ? �; N /

f �
��

satisfy the property that

Œ.f� B f �/'T �.V /.x ˝ ˛/ D F�Œf �.'T /.U /.F
�.x/˝ ˇ/�

D F�Œ'T .U /.F
�.x/˝ .f B ˇ//�

D F�Œ'T .U /.F
�.x/˝ .˛ B F //�

D .F� B F �/Œ'T .V /.x ˝ ˛/�
for all x 2 M.V / and ˛ W V ! T . In the last equality we used the invariance of 'T

with respect to the G-map F W U ! V (our notation comes from the definition of
f� above). Hence, if f W G=H ! G=K and F� B F � is multiplication by jK W H j
(this follows from a count of double cosets), then f� B f � is also multiplication by
jK W H j.

Let M and N be conjugation invariant right R�G-modules, and let P be a pro-
jective resolution of M over R�G . To show that Ext�

R�?
.M;N / is conjugation in-

variant, it is enough to show that the chain map induced by the conjugation action on
HomR�?.P; N / is homotopy equivalent to the identity. We remark that the action of
an element c 2 CG.H/ gives an automorphism Jc W OrF H ! OrF H , and induces
an R�H -module chain map P.Jc/ W ResG

H .P/! ResG
H .P/.

If f W G=H ! G=H is given by eH 7! cH where c 2 CG.H/, then for each
degree i ,

f �
i W HomR�G

.Pi ˝RŒG=H ? �; N /! HomR�G
.Pi ˝RŒG=H ? �; N /

is given by
f �

i .'S /.U /.x ˝ ˛/ D 'S .U /.x ˝ f B ˛/
where S D G=H , x 2 Pi .U /, and ˛ W U ! G=H is a G-map. In other words,
f �

i D HomR�G
.�i ; id/, where �i .x ˝ ˛/ D x ˝ f B ˛ defines a chain map

� W P˝RŒG=H ? �! P˝RŒG=H ? �:

We may assume thatU D G=K withK 2 F . Let˛.eK/ D gH . The conjugation
action of c 2 CG.H/ on M.U / or N.U / is given by the G-map F W G=K ! G=K,
whereF.eK/ D gcg�1K and f B˛ D ˛BF . We remark that z WD gcg�1 2 CG.K/,
since K � gHg�1, and that P�.F / D P.Jz/.K/. Notice that

f �
i .'S /.U /.x ˝ ˛/ D .'S .U /.x � P �

i .F /
�1 ˝ ˛// �N �.F /;
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showing that the maps f �
i are just given by the natural action maps of c on the domain

and range of the Hom. Now observe that

P.Jz/ W ResG
K.P/! ResG

K.P/

is a chain map lifting M.Jz/ W ResG
K.M/ ! ResG

K.M/. Since M is conjugation
invariant, it follows that P.Jz/ ' id by uniqueness (up to chain homotopy) of lifting
in projective resolutions. Therefore �1 WD � B .P�.F / ˝ id/ ' �, and f � '
Hom.�1; id/. But for all x 2 Pi .U /, we have

Hom.�1; id/.'S /.U /.x˝˛/D 'S .U /.x�P �
i .F /˝f B˛/D .'S .U /.x˝˛//�N �.F /;

and hence f �.'S / ' 'S , by the conjugation invariance of N . �

Definition 5.5. For any subgroup H � G, and any R�G-modules M and N , an
element ˛ 2 Extn

R�H
.M;N / is called stable with respect to G provided that

ResH
H\gH

.˛/ D Res
gH
H\gH

c
g
H .˛/

for any g 2 G. The map cg
H is the induced map f� where f W G=H ! G=gH is the

G-map given by xH ! xg�1.gHg�1/.

Theorem 5.6. Let R D Z.p/ and G be a finite group. For a right R�G-module M
and a cohomological Mackey functor N W D.G/! R-Mod, the restriction map

ResG
P W Extn

R�G
.M;N /! Extn

R�P
.M;N /

is an isomorphism for n > 0 onto the stable elements, for any p-Sylow subgroup
P � G.

Proof. By Proposition 5.4 (i), Extn
R�‹

.M;N / is a cohomological Mackey functor.
Now the result follows (as in [33], 2.2) from the stable element method of Cartan and
Eilenberg [7], Chapter XII, 10.1. �

Remark 5.7. Note that since Ext�
R�?

.M;N / is a cohomological Mackey functor, it
is a Green module over the trivial module R, considered as a Green ring by defining
IndK

H W R.G=H/ ! R.G=K/ to be multiplication by jK W H j (see Example 2.9 in
[19]). It follows that Ext�

R�?
.M;N / is computable in the sense of Dress in terms of

the p-Sylow subgroups (see Example 5.10 in [16]).

The proof of Theorem 5.1. Let R D Z.p/ and G be a finite group. Let H � G be
a subgroup which controls p-fusion in G. For any cohomological Mackey functor
F , the restriction map ResG

P maps surjectively to the stable elements in F.P /, for
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any p-Sylow subgroup P � G. If H controls p-fusion in G, and F is conjugation
invariant, then all elements in F.H/ are stable and

ResG
H W F.G/ ��!� F.H/

is an isomorphism. This follows by a standard argument used to prove one direc-
tion of Mislin’s theorem in group cohomology (see, for example, Symonds [33],
Theorem 3.5, or Benson [2], Proposition 3.8.4). We apply Proposition 5.4 and this
remark to the cohomological Mackey functor F D Extn

R�?
.M;N /, and the proof is

complete. �

In the next section we will need a variation of this result.

Definition 5.8. We say the N is an atomic right R�G-module of type Q 2 F , if
N D IQ.N.Q// where IQ is the inclusion functor introduced in Section 2.

Theorem 5.9. Let G be a finite group, R D Z.p/, and let F be a family of p-
subgroups in G. Suppose H � G controls p-fusion in G. Then, for R�G-modules
M and N ,

ResG
H W Extn

R�G
.M;N /! Extn

R�H
.ResG

H M;ResG
H N/

is an isomorphism for n > 0, provided thatCG.Q/ acts trivially onM.Q/ andN.Q/
for allQ 2 F .

Proof. Without loss of generality, we can assume thatN is an atomicR�G-module of
type Q, with trivial CG.Q/-action on N.Q/. This follows from the 5-lemma (using
the filtration of N in [20], 16.8).

Furthermore, we may also assume that N.Q/ is R-torsion free. To see this,
observe that as an NG.Q/=QCG.Q/-module, N.Q/ fits into a short exact sequence
0 ! L ! F ! N.Q/ ! 0, where F is a free NG.Q/=QCG.Q/-module. By
taking inflations of these modules, we can consider the sequence as a sequence of
NG.Q/=Q -modules and apply the functor IQ. This shows thatN fits into a sequence
0 ! N 00 ! N 0 ! N ! 0, where both N 0 and N 00 are conjugation invariant and
atomic, with an R-torsion free module at Q.

Now let Np D N ˝ Fp D N=pN . By Lemma 4.10 we have a finite length
coresolution

0! Np ! DNp ! DCNp ! � � � ! DCmNp ! 0 (5.10)

for some m � 0. Since F is family of p-groups, Lemma 5.3 shows that the Mackey
functorsDC iNp are cohomological over F and conjugation invariant, for0 � i � m.
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We can apply the functors Ext�
R�‹

.M;�/ to the coresolution (5.10). By Propo-
sition 5.4, the Mackey functors Ext�

R�‹
.M;DC iNp/ are also cohomological and

conjugation invariant. Therefore

ResG
H W Ext�

R�G
.M;Np/! Ext�

R�H
.M;Np/

is an isomorphism by Theorem 5.1 and the 5-lemma (using the coresolution). Fur-
thermore, since N.Q/ is R-torsion free, we have a short exact sequence

0! N=pk�1 ! N=pk ! N=p ! 0;

for every k � 1, and hence by “dévissage” we conclude that

ResG
H W Ext�

R�G
.M;N=pk/ ��!� Ext�

R�H
.M;N=pk/ (5.11)

is an isomorphism, for every k � 1. To finish the proof it is enough to show that

ResG
H W Ext�

R�G
.M;N /˝ yZp ! Ext�

R�H
.M;N /˝ yZp

is an isomorphism. However, for P any projective resolution of M over R�G , the
complex

HomR�G
.P; N=pk/ D HomR�G

.P; N /˝ Z=pk

is a cochain complex of finitely-generated R-modules. By the universal coefficient
theorem in cohomology [30], p. 246, we have an exact sequence

0! Extn
R�G

.M;N /˝ Z=pk ! Extn
R�G

.M;N=pk/

! TorR
1 .ExtnC1

R�G
.M;N /;Z=pk/! 0:

Since yZp D lim �Z=pk and the inverse limit functor is left exact, we obtain an exact
sequence

0! Extn
R�G

.M;N /˝ yZp ! lim �Extn
R�G

.M;N=pk/

! lim �TorR
1 .ExtnC1

R�G
.M;N /;Z=pk/:

Now we compare this sequence via ResG
H to the corresponding sequence for the

subgroup H , and use the dévissage isomorphisms (5.11) on the middle term. This
shows immediately that ResG

H is injective on the first term, for all n � 0. Since the
functor TorR

1 is left exact, we get ResG
H injective on the third term as well. But now

a diagram chase shows that ResG
H is surjective on the first term. �
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6. Chain complexes over orbit categories

In this section, we prove some theorems about chain complexes over orbit categories.
In particular, Proposition 6.8, Proposition 6.4, and Theorem 6.7 will be used in the
proof of Theorem A (see Section 9). Most of the results follow from Dold’s theory
of algebraic Postnikov systems [11].

As before, G denote a finite group and F denote a family of subgroups of G.
Throughout this section �G D OrF G and R is a commutative ring. For chain com-
plexes C and D, the notation C ' D always means C is chain homotopy equivalent
to D. For chain isomorphism the standard notation is C Š D. When we say C is
a projective chain complex, we mean it is a chain complex of projective modules
(which also means that it is projective in the category of chain complexes). A chain
complex C is positive if Ci D 0 for i < 0.

We say that a chain complex C over R�G has finite homological dimension (or
hdim C is finite) if C is positive, and there exists an integer n such that Hi .C/ D 0

for i > n. A chain complex C is finite if C is positive, and there exists an integer
n such that Ci D 0 for i > n. We start with a well known observation about chain
complexes.

Lemma 6.1. Let C be a projective chain complex of R�G-modules which has finite
homological dimension. Then, C is homotopy equivalent to a finite projective chain
complex if and only if there is an integer n such that

Exti
R�G

.C;M/ D 0 for i > n;

for all R�G-modulesM .

Proof. See Cartan–Eilenberg [7], Chapter XVII, 1.4, for chain complexes over rings.
A similar argument as in Proposition 4.5 gives the result over the orbit category. �

Proposition 6.2. Let C be a projective chain complex of Z�G-modules which has a
finite homological dimension. Suppose that Z.p/ ˝Z C is chain homotopy equiva-
lent to a finite projective chain complex for all p jj jGj. Then, C is chain homotopy
equivalent to a finite projective complex.

Proof. LetM be anR�G-module. Consider the hypercohomology spectral sequence
(see [3], 3.4.3):

E
s;t
2 D Exts

Z�G
.Ht .C/;M/

which converges to Ext�
Z�G

.C;M/. Since C has finite homological dimension, for

all i >
�
l.�G/ C hdim C

�
, the group Exti

Z.C;M/ is a finite abelian group with
exponent dividing a power of jGj. Here l.�G/ is the length of the orbit category, as
defined in §2D, and hdim C denotes the largest integer n such that Hn.C/ ¤ 0.
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In particular, there is an integer k, independent from M , such that

Exti
Z�G

.C;M/ Š
M
pjjGj

Exti
Z.p/�G

.Z.p/ ˝Z C;Mp/

for all i > k. HereMp D Z.p/˝ZM . Now, since Z.p/˝ZC is homotopy equivalent
to a finite projective complex for all p j jGj, there is an n such that

Exti
Z�G

.C;M/ D 0
for all i > n and for all M . The result follows from the previous lemma. �

A chain complex version of Rim’s theorem also holds.

Proposition 6.3. LetR D Z.p/ and C be a projective chain complex overR�G with
finite homological dimension. Assume that F is a family of p-subgroups. Then, C is
homotopy equivalent to a finite projective complex if and only if ResG

P C is homotopy
equivalent to a finite projective complex for any p-Sylow subgroup P of G.

Proof. One direction is clear (and holds without assumption on the family F ). Con-
versely, suppose that ResG

P C is homotopy equivalent to a projective complex with
hdim D l . Let n be an integer bigger than both l and hdim C. Consider

� � � �� ResG
P CnC1

�� ResG
P Cn

@n �� ResG
P Cn�1

�� � � � �� ResG
P C0

�� 0 .

We have
Ext1

R�P
.ResG

P im.@n/;M/ Š ExtnC1
R�P

.ResG
P C;M/ D 0;

for every R�P -module M . This gives that ResG
P im.@n/ is projective. By Theo-

rem 3.9, we obtain that im.@n/ has finite projective resolution. Thus, C is chain
homotopy equivalent to a finite projective complex. �

We also prove a chain complex version of Theorem 5.9. Recall the definition of
conjugation invariant R�G-modules given in (5.2).

Proposition 6.4. Let G be a finite group, and F be a family of p-subgroups in G.
Suppose H � G controls p-fusion in G and R D Z.p/. Let CH be a positive
projective chain complex of R�H -modules such that the homology groups Hi .CH /

are conjugation invariant right R�H -modules, for every i > 0. Then, the following
holds:

(i) There exists a positive projective chain complex CG of R�G-modules such that
ResG

H CG is homotopy equivalent to CH .

(ii) If CH is homotopy equivalent to a finite projective complex, then CG is also
homotopy equivalent to a finite complex.
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For the proof we will need the theory of algebraic Postnikov systems due to Dold
[11], §7. According to this theory, given a positive projective chain complex C,
there is a sequence of positive projective chain complexes C.i/ indexed by positive
integers such that f W C ! C.i/ induces a homology isomorphism for dimensions
� i . Moreover, there is a tower of maps

C.i/

��
C.i � 1/

���
�
�

˛i �� †iC1P.Hi /

C

����
��

��
��

��

������������

�������������������
�� C.1/

��

˛2 �� †3P.H2/

C.0/
˛1 �� †2P.H1/

such that C.i/ D †�1C.˛i /, where C.˛i / denotes the algebraic mapping cone of ˛i ,
and P.Hi / denotes a projective resolution of the homology module Hi .

Recall that the algebraic mapping cone of a chain map f W C ! D is defined
as the chain complex C.f / D D ˚ †C with boundary map given by @.x; y/ D
.@x C f .x/; @y/. Note that †n is the shift operator for chain complexes which is
defined by .†nC/i D Ci�n for every integer n.

The algebraic Postnikov system has similar properties to the Postnikov system
in homotopy theory. The maps ˛i W C.i � 1/! †iC1P.Hi / are called k-invariants
and they are well defined up to chain homotopy equivalence. We can consider the
k-invariants as classes in ExtiC1

R�G
.C.i � 1/;Hi /, since there is an isomorphism

ŒC.i � 1/;†iC1P.Hi /� Š ExtiC1
R�G

.C.i � 1/;Hi /

between chain homotopy classes of chain maps and the Ext-groups of chain complexes
(see Dold [11] for details). The k-invariants ˛i 2 ExtiC1

R�G
.C.i � 1/;Hi / are defined

inductively and they uniquely specify C up to chain homotopy equivalence.
We also need a lifting result for R�H -modules.

Lemma 6.5. Let G be a finite group, and F be a family of p-subgroups in G.
Suppose H � G controls p-fusion in G. Then the restriction mapM 7! ResG

H .M/

gives a bijection between the isomorphism classes of conjugation invariant right
R�G-modules and conjugation invariant right R�H -modules.

Proof. A conjugation invariant rightR�G-moduleM is a functor OrF G ! R-Mod
which factors through the quotient category OrF G! SubF G. Here SubF G has ob-
jects K 2 F and morphisms MorSubF G.K;L/ D MorOrF G.G=K;G=L/=CG.K/,
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where an element c 2 CG.K/ acts on a G-map defined by f .eK/ D gL via the
composition eK 7! cgL (see p. 206 in [21]).

Consider the functor F W OrF H ! OrF G given on objects by H=K 7! G=K

(see Section 3), and on morphisms by induced maps. First note that every object
of SubF G is isomorphic to an object of SubF H , since every p-subgroup of G is
conjugate to a subgroup of H . In addition, F induces a bijection of morphism sets

MorSubF H .K;L/! MorSubF G.K;L/

sinceH controlsp-fusion inG. Suppose thatF.f1/ 	 F.f2/, wheref1.eK/ D h1L

and f2.eK/ D h2L, for some h1; h2 2 H . By assumption, there exists c 2 CG.K/

such that ch2L D h1L, or h�1
1 ch2 2 L � H . But this implies c 2 CH .K/ so

f1 	 f2 and F is injective on morphisms. Given f W G=K ! G=L with K � H ,
f .eK/ D gL and g�1Kg � L � H , we have g D ch for some c 2 CG.K/ and
h 2 H , becauseH controls p-fusion inG. Hence f 	 F.f1/, where f1.eK/ D hL
and F is surjective on morphisms.

Therefore the functorF W OrF H ! OrF G induces an equivalence of categories

xF W SubF H 	 SubF G

by [24], IV.4, Theorem 1, p. 91. �

Proof of Proposition 6.4. Part (ii) follows from Proposition 6.3, so it is enough to
prove the existence of CG . By Lemma 6.5, for each i > 0 there exists a conjugation
invariant right R�G-module HG

i such that ResG
H .H

G
i / D Hi .CH /.

Consider the Postnikov tower for CH . Since CH .0/ D P.H0.CH // there is a
complex CG.0/ such that ResG

H CG.0/ ' CH .0/. In this case, the complex CG.0/

can be taken as a projective resolution of HG
0 . Now, we will show that such a lifting

exists for CH .i/ for all i . For this we prove a slightly stronger statement so that we
can carry out an induction. We claim that the following holds for all n > 0.

(i) CH .n/ lifts to a chain complex CG.n/

(ii) The restriction map

ResG
H W Ext�

R�G
.CG.n/;N /! Ext�

R�H
.CH .n/;ResG

H N/

is an isomorphism for all 
 > 0 and for every R�G-module N which is conju-
gation invariant.

We have already shown that CH .0/ lifts to CG.0/. For the second property, first
observe that CG.0/ is chain homotopy equivalent to a chain complex with single
module HG

0 and similarly, CH .0/ ' HH
0 . So, we need to show that

ResG
H W Ext�

R�G
.HG

0 ;H
G
1 /! Ext�

R�H
.HH

0 ;HH
1 /
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is an isomorphism. This follows from Theorem 5.9, because of our assumption on
homology groups.

Now, assume that both (i) and (ii) hold for n D i � 1. Then, take

˛G
i 2 ExtiC1

R�G
.CG.i � 1/;HG

i /

which corresponds to the class ˛H
i 2 ExtiC1

R�H
.CH .i � 1/;HH

i / under the isomor-

phism given in (ii). Let CG.i/ D †�1C.˛G
i /. Then, we have a short exact sequence

of chain complexes

0 �� CG.i/ �� CG.i � 1/ ˛G
i �� †iC1P.HG

i /
�� 0 .

Since ResG
H ˛G

i D ˛H
i , we have ResG

H CG.i/ ' CH .i/. Now, we will show that (ii)
holds for CG.i/. By the 5-lemma, it is enough to show that

ResG
H W Ext�

R�G
.†iC1P.HG

i /; N /! Ext�
R�H

.†iC1P.HH
i /; N /

is an isomorphism for all 
 > 0, and for every R�G-moduleN which is conjugation
invariant. But, this follows from Theorem 5.9. �

Now, we prove one of the main results of this section which allows us to glue
p-local chain complexes. We first give a definition.

Definition 6.6. Let C be a chain complex over R�G . We say that C has homology
gaps of length n, if HiCk.C/ D 0 for 0 < k < n, whenever Hi .C/ ¤ 0.

Theorem 6.7. Let G be a finite group of orderm. For each prime p j m, let C.p/ be
a positive projective chain complex of Z.p/�G-modules. Suppose that

(i) C.p/ has homology gaps of length > l.�G/, for all p j m,

(ii) there exists a graded Z�G-module H such thatHi .C.p// Š Z.p/˝Z Hi for all
i � 0, and for all p j m.

Then, there is a projective chain complex C of Z�G-modules such that Z.p/˝Z C '
C.p/, for each prime p j m, andHi .C/ D Hi for i � 0.
Proof. We will construct C inductively. The case i D 0 is trivial, because in this
case we can take C.0/ D P.H0/. Assume now that C.i � 1/ has been constructed
in such a way that Z.p/ ˝Z C.i � 1/ ' C.p/

i�1 for all p j m. If Hi D 0, then we can

take C.i/ D C.i �1/ and it will satisfy the condition that Z.p/˝Z C.i/ ' C.p/
i . So,

assume Hi is nonzero. If i C 1 > �
l.�G/C hdim C.i � 1/�, then we have

ExtiC1
Z�G

.C.i � 1/;P.Hi // Š
M
pjm

ExtiC1
Z.p/�G

.Z.p/ ˝Z C.i � 1/;H.p/
i /

Š
M
pjm

ExtiC1
Z.p/�G

.C.p/.i � 1/;H.p/
i /
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where H.p/
i D Z.p/ ˝Z Hi . Note that the above condition on .i C 1/ is satisfied

since the distance between nonzero homology groups of C.p/ is bigger than l.�G/.
Choose ˛i 2 ExtiC1

Z�G
.C.i � 1/;P.Hi // so that under the p-localization map, ˛i is

mapped to the i -th k-invariant ˛.p/
i of the p-local complex C.p/, for every p j m.

Let C.i/ D †�1C.˛i /. For each prime p j m, we have a diagram of the form

0 �� C.i/ �� C.i � 1/
'p

��

˛i �� P.Hi /

��

�� 0

0 �� C.p/.i/ �� C.p/.i � 1/ ˛
.p/

i �� P.H.p/
i / �� 0

where the vertical map 'p is given by the composition

'p W C.i � 1/! Z.p/ ˝Z C.i � 1/ Š C.p/.i � 1/:
The first map in the above composition is induced by the usual inclusion of integers
intop-local integers. From this diagram, it is clear that there is a map C.i/! C.p/.i/

which induces an isomorphism on homology when it is localized at p. Thus, it gives
a chain homotopy equivalence Z.p/ ˝Z C.i/ ' C.p/.i/, for p j m. This completes
the proof. �

We conclude this section with a technique (used in the proof of Theorem A) for
modifying the homology of a given (finite, projective) chain complex C over the orbit
category. A projective resolution P ! M has length 6 `, provided that Pi D 0 for
i > `.

Proposition 6.8. Let � be an EI-category. Let ' W Hk ! H0
k

be an R� -module
homomorphism, where Hk D Hk.C/. Suppose that both kernel and cokernel of '
admit finite projective resolutions of length 6 `, and that HkCj D 0 for 1 6 j < `.
Then there is a R� -chain complex C0 such that Hi .C0/ D Hi .C/, for i ¤ k, and
Hk.C0/ D H0

k
.

Proof. First suppose that ' is surjective. Let

0! PkC` ! � � � ! Pk ! ker ' ! 0

be a projective resolution for ker '. Since C is exact in the range Œk C 1; k C `/, we
have a chain map

� � � �� 0 ��

��

PkC`
��

fkC`

��

: : : �� PkC1
��

fkC1

��

Pk
��

fk

��

ker ' ��
� �

��

0

� � � �� CkC`C1
�� CkC`

�� : : : �� CkC1
�� Zk

�� Hk
�� 0 .
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This gives a chain map f W P ! C, where fk W Pk ! Ck is the composition of fk

with the inclusion Zk � Ck . Let C0 D C.f / denote the mapping cone of f . The
induced map

ker ' D Hk.P/! Hk.C/ D Hk

on homology is given by the inclusion, and hence Hk.C0/ D H0
k

, with Hi .C0/ D
Hi .C/ for i ¤ k.

Now suppose that ' is an injective map, so that

0! Hk

'�! H0
k ! coker ' ! 0 (6.9)

is exact. Let � W P ! coker ' be a projective resolution of coker ' of length 6 `,
indexed so that � W Pk ! coker ' ! 0. We form the pull-back

0 �� Hk
�� yHk

��

y'
��

Pk
��

�

��

0

0 �� Hk
�� H0

k
�� coker ' �� 0

of the sequence (6.9) by �, and note that yHk Š Hk ˚ Pk . The chain complex

� � � ! CkC1 ! Ck ˚ Pk ! Ck�1 ! � � � ! C0 ! 0

has homology yHk at i D k, and y' W yHk ! H0
k

is surjective. By the pull-back diagram,

ker y' Š ker.� W Pk ! coker '/:

Since coker ' has a projective resolution of length � `, it follows that ker y' has a
projective resolution of length < `. Hence the assumptions needed for the surjective
case hold for y' W yHk ! H0

k
, and we are done by the argument above.

The general case is done by expressing the map ' W Hk ! H0
k

as the composition
of a surjection and an injection. �

7. The finiteness obstruction

LetG be a finite group and F be a family of subgroups ofG. The main result of this
section is Theorem 7.6: given a finite projective chain complex C of Z�G-modules,
for �G D OrF G, we can obtain a finite free complex by taking join tensor of C with
itself sufficiently many times. This result is an adaptation to the orbit category of the
fundamental work of Swan [32]. We first introduce some definitions, based on the
material in Lück [20], §10–11.

Let� be an EI-category. We denote byK0.Z� / the Grothendieck ring of isomor-
phism classes of projective Z� -modules andK0.Z�; free/ denote the Grothendieck
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ring of isomorphism classes of free Z� -modules (under direct sum M ˚ N and
tensor product M ˝Z N ). We have an exact sequence of abelian groups

0! K0.Z�; free/! K0.Z� /
q�! zK0.Z� /! 0

defining the quotient group zK0.Z� /.
Note that K0.Z�; free/ is a subring, but not an ideal in general. This is because

the tensor product of a free module with a projective module is not free in Z� . For
example, if P is a projective module which is not free, then P ˝Z Š P is not a free
Z�G-module although Z is free when G 2 F .

Given a finite projective chain complex of Z� -modules

C W 0! Cn ! Cn�1 ! � � � ! C1 ! C0 ! 0

we define

	.C/ D
nX

iD0

.�1/i ŒCi � 2 K0.Z� /

and
z	.C/ D q.	.C// 2 zK0.Z� /:

The class z	.C/ is called the finiteness obstruction since it is the only obstruction for
C to be chain homotopy equivalent to a finite free chain complex.

From now on, we assume that all the chain complexes are positive and projective.
As always, we assume all modules are finitely generated.

The following are standard results which show that z	.C/ is an invariant, and that
it is an obstruction for finiteness.

Lemma 7.1. If C and D are chain homotopy equivalent, then 	.C/ D 	.D/.
Proof. See [20], 11.2. �

Lemma 7.2. Let C and D be finite chain complexes of projective Z� - modules. Then,
	.C˝Z D/ D 	.C/ � 	.D/.
Proof. See [20], 11.18, and the sharper result in [20], 11.24. �

Lemma 7.3. Let C be a finite chain complex with z	.C/ D 0. Then C is chain
homotopy equivalent to a finite chain complex of free Z� -modules.

Proof. See Swan [32], Proposition 5.1. �

Given two chain complexes ofR� -modules C and D, consider the corresponding
augmented complexes

zC W � � � ! C2 ! C1 ! C0 ! R! 0
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and
zD W � � � ! D2 ! D1 ! D0 ! R! 0 .

Taking their tensor product, we obtain a complex of the form

zC˝R
zD W � � � ! C1 ˚D1 ˚ C0 ˝D0 ! C0 ˚D0 ! R! 0:

Definition 7.4. We define the join tensor, denoted C¾D, of two positive augmented
chain complexes C and D by the formula

AC ¾ D D †�zC˝R
zD�
;

where † denote the suspension of a chain complex defined by .†C/i D Ci�1 for
all i .

Lemma 7.5. Let C and D be finite chain complexes of projective Z� -modules. Then,
	.C ¾ D/ D 	.C/C 	.D/ � 	.C/ � 	.D/.

Proof. Note that .C ¾ D/k D Ck ˚Dk ˚
L

iCj Dk�1 Ci ˝Z Dj , for each k � 0.
Therefore,

	.C ¾ D/ D
X

k

.�1/kŒCk�C
X

k

.�1/kŒDk� �
X

iCj Dk�1

.�1/kŒCi ˝Dj �

and the result follows. �

We often express the above formula by writing

.1 � 	.C ¾ D// D .1 � 	.C//.1 � 	.D//:
Whenever it is written in this way, one should understand it as a formal expression of
the formula given in Lemma 7.5. The main theorem of this section is the following:

Theorem 7.6. Let �G D OrF G where G is a finite group and F is a family of sub-
groups inG. Given a finite chain complex C of projective Z�G-modules, there exists
an integer n such that n-fold join tensor ¾nC of the complex C is chain equivalent
to a finite complex of free Z�G-modules.

We need to show that the finiteness obstruction z	.¾nC/ vanishes for some n. In
the proof we will use a result by Oliver and Segev [26].

Proposition 7.7. LetG be afinite groupand letP andP 0 be any twofinitely generated
projective ZG-modules. Then, P ˝Z P

0 is stably free as a ZG-module.

Proof. See [26], Proposition C.3. �
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We also need the following splitting theorem for K0.Z� /.

Theorem 7.8. Let � be an EI category. Then, the map

K0.S/ W K0.Z� /!
M

x2Iso.� /

K0.ZŒx�/;

defined by ŒP �! ŒSx.P /� on each x 2 Iso.� /, is an isomorphism. The same holds
when K0 is replaced by zK0.

Proof. See Lück [10], Proposition 11.29. �

As a consequence of this theorem, if � is finite then zK0.Z� / is finite: in this
case � has finitely many isomorphism classes of objects x 2 Ob.� /, and AutŒx� is
a finite group (apply Swan [31]), Proposition 9.1. In particular, if � D OrF G, then
the group zK0.� / is finite.

From now on we assume �G D OrF G for some finite group G, relative to some
family F . The splitting theorem above can also be used to give a filtration of zK0.�G/.
Recall that every projective Z�G-module is of the form

P Š
M
H2T

EHSHP

where T is a set of representatives of conjugacy classes of elements in F . So, another
way to express the above splitting theorem is to write

K0.Z�G/ Š
M
H2T

K0.Z�G/H

where K0.Z�G/H D fŒP � j EHSHP Š P g. Note that this is only a splitting
as abelian groups, but using this we can give a filtration for the ring structure of
K0.Z�G/. Let

; D T0 � T1 � � � � � Tm D T
be a filtration of T such that if H 2 Ti and K 2 Tj and gH � K for some g 2 G,
then i 6 j . This gives a filtration

0 D K0.Z�G/0 � K0.Z�G/1 � � � � � K0.Z�G/m D K0.Z�G/

where
K0.Z�G/i D fŒP � jP DL

H2Ti
EHSHP g:

Lemma 7.9. Let V be a ZŒNG.H/=H�-module andW be a ZŒNG.K/=K�-module.
Then,

EHV ˝Z EKW Š
M

HgK2HnG=K

EH\gK.ResH\gK EHV ˝Z ResH\gK EKW /:
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Proof. Applying the definition, we get

EHV ˝Z EKW D .V ˝W /˝ZŒAut.G=H/�Aut.G=K/� Z MapG.‹; G=H �G=K/
where MapG.X; Y / denotes the setG-sets fromX to Y (see [10], 11.30, for a similar
computation). Since

G=H �G=K D
a

HgK2HnG=K

G=.H \ gK/;

the module EHV ˝R EKW decomposes asM
HgK2HnG=K

EH\gKUH\gK

where UH\gK are NG.H \ gK/=.H \ gK/-modules. Applying SH\gK , we find

UH\gK D SH\gK.EHV ˝Z EKW / D ResH\gK.EHV ˝Z EKW /

D ResH\gK EHV ˝Z ResH\gK EKW:

�

Lemma 7.10. K0.Z�G/i is an ideal of K0.Z�G/ .

Proof. For EHSHP and EKSKQ, we have

EHSHP ˝Z EKSKQ D
M

L

ELVL

where L D H \ gK for some g 2 G. So, if H 2 Ti , K 2 Tj , and L 2 Tk , then
k 6 i; j . �

Now, Theorem 7.6 follows by induction from the following proposition.

Proposition 7.11. Let C be a finite chain complex of projective Z�G-modules. If
z	.SH C/ D 0 for allH 2 T X Ti , then there is an n such that z	.SH .¾nC// D 0 for
allH 2 T X Ti�1.

Proof. An element in 	.C/ can be expressed as a sum uCP
j vj C w where

u D
X

H2Ti�1

	.EHSH C/;
X

j

vj D
X

H2Ti XTi�1

	.EHSH C/;

and

w D
X

H2T XTi

	.EHSH C/:
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By Lemma 7.5, we have

1 � 	.¾nC/ D .1 � 	.C//n D
�
1 �

�
uC

X
j

vj C w
��n 2 K0.Z�G/:

So,

1 � 	.¾nC/ �
�
1 �

� X
j

vj C w
��n

modK0.Z�G/i�1:

By Lemma 7.9, it is easy to see that vj � vk � 0
�
modK0.Z�G/i�1

�
, for j ¤ k.

Note that
vj � vj � stably free .mod K0.Z�G/i�1/

by Proposition 7.7. To complete the proof, observe that modulo K0.Z�G/i�1,

1 � 	.¾nC/ �
�
1 �

� X
j

vj C w
��n

� 1C
nX

kD1

�
n

k

	
.�1/k

� X
j

vj C w
�k

D 1C
nX

kD1

�
n

k

	
.�1/k

X
j

kvjw
k�1 C stably free

D 1C n
nX

kD1

X
j

�
n � 1
k � 1

	
.�1/kvjw

k�1 C stably free:

This shows that 	.¾nC/ is stably free for some n, since zK0.Z�G/ is a finite group.
�

8. Realization of free chain complexes

LetX beG-CW complex, and let F be a family of subgroups ofG. Throughout this
section, R denotes a commutative ring and �G denotes the orbit category OrF G.

Definition 8.1. We say that a G-CW complex X has isotropy in F , provided that
XH ¤ ; implies H 2 F , for all H � G.

The main result of this section is Theorem 8.10, which shows that under certain
conditions a finite free chain complex over the orbit category can be realized by a
finite G-CW complex with isotropy in F . This is a generalization of Swan [32],
Theorem A, which is based on a construction of Milnor, see 3.1 in [32].
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Associated to a G-CW complex X with isotropy in F , there is a chain complex
of R�G-modules defined by

C.X?IR/ W � � � @nC1���! RŒXn
? �

@n�! RŒXn�1
? �! � � � @1�! RŒX0

? �! 0

where Xi denotes the set of i -dimensional cells in X and RŒXi
? � is the coefficient

system with RŒXi
? �.H/ D RŒXH

i �. We denote the homology of this complex by
H�.X?IR/, and in particular

H�.X?IR/.H/ D H�.XH IR/:
Given a chain complex C of R�G-modules, there is a dimension function

Dim C W F ! Z;

constant on conjugacy classes of subgroups, defined by

.Dim C/.H/ D dim C.H/;

for all H 2 F , where the dimension of a chain complex of R-modules is defined in
the usual way as the largest integer d such Cd ¤ 0.

It will be convenient to write .H/ � .K/ whenever Hg � K for some g 2 G.
Here .H/ denotes the set of subgroups conjugate to H in G.

Definition 8.2. We call a function d W F ! Z monotone if it satisfies the property
that d.K/ 6 d.H/ whenever .H/ � .K/. We say that a monotone function d is
strictly monotone if d.K/ < d.H/, whenever .H/ � .K/ and .H/ ¤ .K/. �

Note that d monotone implies that d is constant on conjugacy classes (such
functions are usually called super class functions). We remark that the dimension
function of a projective chain complex is always monotone: if .EHP /.K/ ¤ 0, then
.EHP /.L/ ¤ 0 for every L � K.

A chain complex C ofR�G-modules is connected if C is positive andH0.C/ D R.

Definition 8.3. Let n W F ! Z be a monotone, non-negative function. A complex C
ofR�G-modules is called an n-Moore complex if it is connected, and for allH 2 F ,
the reduced homology zHi .C.H// D 0, for i ¤ n.H/. �

A special case of an n-Moore complex is a homology n-sphere.

Definition 8.4. We say that a complex C of R�G-modules is an R-homology n-
sphere if it is an n-Moore complex, and for all H 2 F , we have zHi .C.H// Š R,
for i D n.H/. A homology n-sphere is called oriented if the NG.H/=H -action is
trivial on the homology of C.H/ for all H 2 F .
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The chain complex associated to the unit sphere X D S.V / of a real or complex
representation V of G is an example of a Z-homology n-sphere, where n.H/ D
dimXH . AG-CW complexX with this property is a homotopy representation in the
sense of tom Dieck (see [10], Chapter II, Definition 10.1), provided that its dimension
function is strictly monotone. We will not use this terminology further.

We now introduce a technique to remove free modules above the homological
dimension from a chain complex, without changing its chain homotopy type. For
this delicate process we first need some algebraic lemmas.

Definition 8.5. Let � be an EI-category. A free R� -module F is called isotypic
of type x 2 Ob.� / if it is isomorphic to a direct sum of copies of the free module
ExRŒx�.

For extensions involving isotypic modules we have a splitting property.

Lemma 8.6. Let
E W 0! F ! F 0 !M ! 0

be a short exact sequence of R� -modules over an EI-category � , such that both F
and F 0 are isotypic free modules of the same type x 2 Ob.� /. IfM.x/ is R-torsion
free, then E splits andM is stably free.

Proof. It is enough to prove the result in case F D ExRŒx�, where x 2 Ob� . The
general case follows from this by an easy induction. Consider the extension

E W 0! ExRŒx�
j�! F !M ! 0:

By the adjointness property

HomR� .ExRŒx�; N / Š HomRŒx�.RŒx�; N.x//

for any R� -module N . We apply this to the given injection j W ExRŒx� ! F 0 D
.ExRŒx�/

m. Since

E.x/ W 0! RŒx�
j�! RŒx�m !M.x/! 0

has R-torsion free cokernel M.x/, this sequence splits over RŒx�. By the naturality
of the adjointness property, we get a splitting of j over R� . �

Recall that hdim C.H/ denotes the homological dimension of the chain complex
C.H/.

Proposition 8.7. Let C be a finite free chain complex of R�G-modules, and let
H 2 F have the property that hdim C.H/ < d WD dim C.H/. Suppose that
dim C.K/ 6 .d � 2/ for all .H/ � .K/, .H/ ¤ .K/. Then C ' D, where D is
a finite free complex with dim D.H/ D d � 1, and dim D.K/ D dim C.K/ for all
.K/ ¤ .H/.
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Proof. Consider the subcomplex C0 of C formed by free summands of C isomorphic
to ZŒG=K ? �, with .G=K/H ¤ 0 or equivalently .H/ � .K/. The boundary maps
of C0 are the restrictions of the usual boundary maps to these submodules. Since
dim C.K/ 6 .d � 2/ for all .H/ � .K/ such that .H/ ¤ .K/, the free modules C 0

d

and C 0
d�1

are isotypic of type G=H . We have

C0 W 0! C 0
d ! C 0

d�1 ! � � � ! C 0
1 ! C 0

0 ! 0

where d D dim C.H/. Note that C.H/ D C0.H/, so the map @d W C 0
d
! C 0

d�1

is injective by the condition that hdim C.H/ < dim C.H/. Now we can apply
Lemma 8.6 to the extension

0! C 0
d

@d��! C 0
d�1 ! coker @d ! 0

and conclude that coker.@d / is a stably free R�G-module. By adding elementary

chain complexes to C of the form ZŒG=H ? �
id�! ZŒG=H ? � in the adjacent dimensions

.d � 1/ and .d � 2/, we can assume that coker.@d / is free. Consider the diagram

� � � �� 0 ��

��

C 0
d

id ��

id
��

C 0
d

��

@d

��

0 ��

��

� � � �� 0 ��

��

0

C0 W � � � �� 0 ��

��

C 0
d

��

��

C 0
d�1

��

��

C 0
d�2

�� � � � �� C 0
0

�� 0

D0 W � � � �� 0 �� 0 �� coker @d
�� C 0

d�2
�� : : : �� C 0

0
�� 0 .

The chain complex D0 is a chain complex of free modules and it is chain homotopy
equivalent to C0. Now define D as the push-out in the following diagram:

ker

��

ker

��
C0 ��

��

C ��

��

C=C0

D0 �� D �� C=C0

Since, C0 and D0 are chain homotopy equivalent, then C and D are chain homotopy
equivalent. Also, note that dim D.H/ D dim D0.H/ D .d � 1/, and dim D.K/ D
dim C.K/ for all .K/ ¤ .H/. �

This immediately gives the following.
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Corollary 8.8. Let C be a finite free chain complex of R�G-modules. Suppose that
C is a homology n-sphere, with n strictly monotone. Then C is chain homotopy
equivalent to a complex D with Dim D D n.

Proof. Since C is a homology n-sphere, n.K/ D hdim C.K/, for all K 2 F . We
apply the previous result to a subgroup H , which is maximal with respect to the
property that hdim C.H/ < d WD dim C.H/. Then n.K/ D dim C.K/ for all
K 2 F larger than H . Since n is strictly monotone, dim C.K/ 6 .d � 2/ for all
.H/ � .K/, .H/ ¤ .K/. This process can be repeated until Dim D D n. �

When the dimension function of C is not strictly monotone, we get a weaker
result. Following Section 2, we define l.H;K/ as the maximum length of a chain of
conjugacy classes of subgroups

.H/ D .H0/ ˆ .H1/ ˆ : : : ˆ .Hl/ D .K/

where all Hi 2 F , 0 6 i 6 l .

Corollary 8.9. Let C be a finite free chain complex ofR�G-modules, and let n W F !
Z be a monotone function such that hdim C.H/ 6 n.H/ for all H 2 F . Assume
that l.H;K/ 6 k whenever n.H/ D n.K/. Then, C is chain homotopy equivalent
to a complex D which satisfiesDi .H/ D 0 for all i > n.H/C k.

Proof. Let
.H/ D .H0/ ˆ .H1/ ˆ : : : ˆ .Hl/ D .K/

be a maximal length chain of subgroups in F with n.H/ D n.K/. Since n is
monotone, n.Hi / D n.H/ for 0 6 i 6 l . By repeated application of Proposition 8.7,
working down from the maximal elementK, we can obtain dim C.Hl�i / D n.H/Ci ,
for 0 6 i 6 l . Since l D l.H;K/ 6 k, we have dim C.H/ 6 n.H/Ck as required.

�

The main purpose of this section is to prove the following theorem:

Theorem 8.10 (Pamuk [27]). Let C be a finite free chain complex of Z�G-modules.
Suppose C is an n-Moore complex such that n.H/ > 3 for all H 2 F . Suppose
further that Ci .H/ D 0 for all i > n.H/C 1, and allH 2 F . Then there is a finite
G-CW complex X , such that C.X?IZ/ is chain homotopy equivalent to C, as chain
complexes of Z�G-modules.

Note that the resulting complexX will have isotropy in F . We first prove a lemma
(compare Theorem 13.19 of [20]).
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Lemma 8.11. Let X be a finite G-CW complex. Suppose that we are given a free
Z�G-module F , and a Z�G-module homomorphism ' W F ! Hn.X

?IZ/, for some
n > 2. Assume further that XH is .n � 1/-connected for every H 2 F such that
ZŒG=H ? � is a summand of F . Then, by attaching .nC 1/-cells to X , we can obtain
a G-CW complex Y such that

Hi .X
?IZ/ Š Hi .Y

?IZ/ for i ¤ n; nC 1;

and

0! HnC1.X
?IZ/! HnC1.Y

?IZ/! F
'�! Hn.X

?IZ/! Hn.Y
?IZ/! 0

is exact.

Proof. LetZ be a wedge ofn-spheres with aG action on them such that zHn.Z
?IZ/ Š

F as Z�G-modules. We want to construct a map f W Z ! X realizing '. But
Hn.X

H IZ/ Š 
n.X
H /, for every H 2 F such that ZŒG=H ? � is a summand of

F , since XH is assumed to be .n � 1/-connected. Therefore, we can represent
the images of an ZŒNG.H/=H�-basis under ' for the isotypic summand in F of
type G=H by maps fi W Sn ! XH . We extend these maps equivariantly to maps
Nfi W Sn � G=H ! X . By repeating this construction for each type G=H in F , we

obtain an equivariant map f W Z ! X realizing '. Take Y to be the mapping cone
of f . Then, it is easy to see that Y satisfies the desired conditions. �

We also need the following lemma:

Lemma 8.12. Let C be a finite free chain complex of Z�G-modules. Suppose that
C is connected, andHi .C/ D 0, for i D 1; 2. Then, C is chain homotopy equivalent
to a complex of the form

� � � ! Cn ! Cn�1 ! � � � ! C3 ! C2.X/! C1.X/! C0.X/! 0

where C2.X/ ! C1.X/ ! C0.X/ ! 0 is the initial part of the chain complex
C.X?IZ/, for someG-CW complexX with isotropy in F , andXH simply-connected
for allH 2 F .

Proof. There is a G-CW complex EFG satisfying the following properties:

(i) All isotropy subgroups of EFG are in F .

(ii) For everyH 2 F , the fixed point set .EFG/
H is contractible [22], Theorem 1.9.

The chain complex D WD C..EFG/
?IZ/ of this space gives a free resolution of

Z as a Z�G-module. Since Hi .C/ D 0, for i D 1; 2, the following sequences are
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both exact

0 �� A �� C2

@C
2 �� C1

@C
1 �� C0

�� Z �� 0

0 �� B �� D2

@D
2 �� D1

@D
1 �� D0

�� Z �� 0

(8.13)

where A D ker @C
2 and B D ker @D

2 .
By an elementary operation on a sequence A ! C2 ! C1 ! C0 we mean

adding or removing trivial free summands F
id�! F in adjacent dimensions. It is clear

that elementary operations do not change the chain homotopy type of the upper and
lower sequences in diagram (8.13).

Then, by Schanuel’s Lemma [32], 1.1, there exist free modulesF andF 0 such that
A˚F Š B˚F 0. In fact, the argument in Schanuel’s lemma can be extended to say
that the induced isomorphism � W A˚F Š B˚F 0 comes from a chain isomorphism
after a sequence of elementary operations (compare [20], p. 279).

In other words, there exists a chain isomorphism

0 �� A˚ F ��

Š�

��

C2 ˚ F2
��

f2Š
��

C1 ˚ F1
��

f1Š
��

C0 ˚ F0
��

f0Š
��

Z �� 0

0 �� B ˚ F 0 �� D2 ˚ F 0
2

�� D1 ˚ F 0
1

�� D0 ˚ F 0
0

�� Z �� 0
(8.14)

for some suitable choices of free modules, where the upper and lower sequences in
diagram (8.14) are obtained from those in diagram (8.13) by elementary operations
(see Proposition 3.3.3 in [27]).

In the first step, we stabilize .A ! C2/ 7! .A˚ F ! C2 ˚ F /, by adding the
identity on F , and similarly .B ! D2/ 7! .B ˚ F 0 ! D2 ˚ F 0/. We therefore
have a chain map

0 �� A˚ F ��

Š�

��

C2 ˚ F ��

��

C1
��

��

C0
��

��

Z �� 0

0 �� B ˚ F 0 �� D2 ˚ F 0 �� D1
�� D0

�� Z �� 0

which is a chain homotopy equivalence (by composition with the chain map in (8.14)).
After an elementary operation on C, we can use the isomorphism � W A˚F Š B˚F 0
to splice the bottom sequence to C, and obtain a chain homotopy equivalence

� � � �� C4
�� C3 ˚ F ��

��

C2 ˚ F ��

��

C1
��

��

C0
��

��

Z �� 0

� � � �� C4
�� C3 ˚ F �� D2 ˚ F 0 �� D1

�� D0
�� Z �� 0 .
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The top sequence is chain homotopy equivalent to C, so to complete the proof we
need to show that the sequence D2 ˚ F 0 ! D1 ! D0 ! 0 can be realized as
the first three terms of a chain complex of a G-CW complex X , with isotropy in F ,
such that XH is simply connected for all H 2 F : since EFG is contractible, using
Lemma 8.11, we can attach free 2-cells to its two skeleton EFG

.2/. The resulting
complex X will have the desired properties. �

Now, we are ready to prove Theorem 8.10.

Proof of Theorem 8.10. We can assume that the complex C is of the form given in
Lemma 8.12. We obtain a map ' W C3 ! C2.X

.2// which induces an isomorphism
Z2.C/! Z2.X

.2// between 2-cycles of these chain complexes. This is the starting
point for an inductive argument based on applying Lemma 8.11 at each step.

Fixn > 2, and assume by induction that there is ann-dimensionalG-CW complex
X .n/, and a chain map

� � � �� CnC2
��

��

CnC1
��

��

Cn
��

��

: : : �� C0
��

��

0

� � � �� 0 �� Zn.X
.n// �� Cn.X

.n// �� : : : �� C0.X
.n// �� 0

which induces an homology isomorphism for dimensions less than or equal to .n�1/,
and at dimension n the induced map Zn.C/! Zn.X

.n// is an isomorphism.
Note that dim C.H/ 6 n.H/C 1 by assumption. If ZŒG=H ? � is a summand of

CnC1, then .n C 1/ 6 dim C.H/ 6 n.H/ C 1 implies n.H/ > n, and hence the
H -fixed set ofX .n/ is .n� 1/-connected. We can now apply Lemma 8.11 to the map
' W CnC1 ! Hn.X

.n/IZ/ defined by the composition

� W CnC1 ! Zn.C/ Š Zn.X
.n//! Hn.X

.n/IZ/:
Let us call the resulting complex X .nC1/. Note that there is a chain map C !
C.X .nC1// which induces an isomorphism on homology for dimensions 6 n, and
at dimension nC 1 we have an isomorphism ZnC1.C/! ZnC1.X

.nC1//. Since C
is finite dimensional, after finitely many steps, we will obtain a finite dimensional
G-CW complex X and a chain map f W C! C.X/ which induces isomorphism on
homology for all dimensions. Since both C and C.X/ are free Z�G-chain complexes,
f is a chain homotopy equivalence as desired. �

9. The proof of Theorem A

Let G D S5, the symmetric group of order 120 permuting f1; 2; 3; 4; 5g, and let
S4 � G denote the permutations fixing f5g. We work relative to the family F of
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rank 1 subgroups of 2-power order. Let �G D OrF G. Our family F consists of the
subgroups of G which are conjugate to one the subgroups in the set

f1; CA
2 ; C

B
2 ; C4g

where CA
2 D h.12/.34/i, CB

2 D h.12/i, and C4 D h.1234/i. In addition we will
consider the Sylow subgroups C3 D h.123/i and C5 D h.12345/i. It is convenient
to note that for H D S4 � G, we have

NH .C4/ D D8 D NH .C
A
2 / D NG.C4/;

while NH .C
B
2 / D E D h.12/; .34/i, and NH .C3/ D Sf123g. On the other hand,

NG.C
B
2 / D h.12/; Sf345gi and NG.C3/ D Sf123g � h.45/i.

Our strategy will be to construct finite projective complexes C.p/ with isotropy in
F over Z.p/�G , for each prime p dividing the order of jGj, which are R-homology
n-spheres with respect to the the same homology dimension function n. The glu-
ing theory of Section 6, Theorem 6.7, will be used to construct a finite projective
Z-homology n-sphere over Z�G from this data. Then the join construction from
Section 7 will allow us to find a finite free complex, to which the realization theorem
of Section 8 will apply.

We introduce the notation R0 for the R�G-module defined by R0.K/ D 0, for
K ¤ 1, and R0.1/ D R with trivial G-action. In other words, R0 D I1.R/ as
defined in Section 2.

9A. The case p D 2. Let H D S4 � G, R D Z.2/ and consider the standard
H -action on the 2-sphere given by the rotational symmetries of the octahedron. Let
X denote the H -CW complex associated to the first barycentric subdivision of the
octahedron. Then X has isotropy in the family consisting of the cyclic subgroups of
H of orders � 4.

Let �H D OrF H denote the orbit category for H with respect to the family
FH D F \H . Consider the chain complex C.X?IR/ as a chain complex of R�H -
modules, by restricting this functor to the full subcategory �H of the orbit category
Or.H/. This gives an exact sequence of the form

0! R0 ! 2RŒH=1 ? �! 3RŒH=1 ? �

! RŒH=C4
? �˚RŒH=CB

2
? �˚RŒH=C3

? �! H0 ! 0;

where all the modules in the extension (excluding the ends) except RŒH=C3
? � are

free R�H -modules, and H0 D H0.C.X?IR//.
Since RŒH=C3� is a projective RH -module (it is induced up from R, which is

projective over RŒC3�), we see that RŒH=C3
? � D I1RŒH=C3� as R�H -modules.

Therefore C.X?IR/ is a finite projective chain complex over R�H .
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It is useful to represent an R�H -module M by a labelled tree diagram:

M D

M.C4/

M.CA
2 / M.CB

2 /

���������

M.1/

with one vertex for each isomorphism class of objects, and edges given by the par-
tial ordering of the subgroups in F up to conjugacy. The labels are given by the
RŒNH .K/=K�-modules M.K/, for K 2 F .

For the homology module H0.X
?IR/ over the orbit category �H we have the

diagram

H0 D

RŒD8=C4�

RŒD8=C4� RŒE=CB
2 �

������������

R .

The .kC 1/-fold join of C.X?IR/ with itself (see Section 7) is a finite projective
complex of the form

C W 0! R0 ! Cn ! � � � ! Ck ! � � � ! C0 ! R! 0

over R�H with .nC 1/ D 3.k C 1/. In case X D S.V /, where V Š R3 is a real
orthogonalH -representation, then the join construction on spheres just produces the
unit sphere S.V ˚� � �˚V / in the direct sum of .kC 1/ copies of V . This sphere has
real dimension n D 3.kC 1/� 1. The purpose of the join construction is to produce
a complex with dimension gaps between the non-zero homology groups, as required
by Theorem 6.7 for gluing the different primes together.

We have H0.C/ D R and Hn D R0. If .k C 1/ is even, then Hk.C.Q// D R,
with trivial NH .Q/=Q-action, and zHi .C.Q// D 0, for i ¤ k, for each non-trivial
Q 2 F . By Proposition 6.4, we obtain a chain complex C.2/ of projective R�G-
modules, having homology isomorphic to R, with trivial NG.Q/=Q-action. By
construction, the homology dimension function n for C.2/ is the same as for C.
Notice that n is monotone, but not strictly monotone.

9B. The case p D 3. Let R D Z.3/ andK D CB
2 . The 3-period of G D S5 is four

(see [7], Chapter XII, Example 11), so by Swan [32] there exists a periodic projective
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resolution P with

0! R! Pn ! � � � ! P1 ! P0 ! R! 0

over the group ring RG, for any n such that 4 j .n C 1/. We will assume that
12 j .nC 1/, and let k be defined by the equation .nC 1/ D 3.k C 1/. Similarly,
since NG.K/=K Š S3 also has 3-period 4, we have a chain complex D yielding a
periodic projective resolution

0! R! Dk ! � � � ! D0 ! R! 0

overRS3. In the rest of this section we letWK D NG.K/=K to simplify the notation.
We want a finite projective chain complex C overR�G which fits into an extension

of chain complexes
0! E1P! C! IKD! 0

where the induced exact sequence on the 0-th homology

0! R0 ! H0.C/! IKR! 0

is the non-trivial extension of tree diagrams (with vertices at f1;Kg)

0 �!
0

R

�!
R

_id

R

�!
R

0

�! 0:

For a projectiveRŒWK �-moduleD, the module IKD has a finite projective resolution
of the form

0 �� E1 Res1EKD �� EKD �� IKD �� 0 :

By definition of the functors Ex and Ix (see Section 2), the canonical map

ExM ! IxM ! 0

is always surjective for any RŒx�-module M . We have EKRŒWK � D RŒG=K ? � and
hence EKD is projective. Also Res1EKD is projective, because it is a summand of
RŒG=K� which is projective as a Z.3/G-module. This shows that, once constructed,
C will be homotopy equivalent to a finite projective chain complex by Proposition 6.2.

Associated to everyRG-chain map f W Res1EKD! P, there is a chain complex
C which fits into the push-out diagram

0 �� E1 Res1EKD

E1f

��

�� EKD

��

�� IKD �� 0

0 �� E1P �� C �� IKD �� 0 .
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We want to choose f so that C satisfies the condition on homology. Note that

H0.Res1EKD/ D Res1EKR D RŒG=NG.K/�:

Since the modules Res1EKDi D .EKDi /.1/ are projective for all i and P is exact,
there exists a chain map f W Res1EKD! P

� � � �� .EKD1/.1/

f1

��

�� .EKD0/.1/

f0

��

�� RŒG=NG.K/�

"

��

�� 0

� � � �� P1
�� P0

�� R �� 0

lifting the augmentation map RŒG=NG.K/�
"�! R. To see that the resulting push-

out complex C has the desired properties, consider the homology at zero for the
diagram of chain complexes given above. Since IK is an exact functor, H1.IKD/ D
IKH1.D/ D 0, and we get

0 �� H0.E1 Res1EKD/

H0.E1f /

��

�� H0.EKD/

��

�� H0.IKD/ �� 0

0 �� H0.E1P/ �� H0.C/ �� H0.IKD/ �� 0

where H0.E1P/ D E1R. Note that

H0.E1 Res1EKD/ D E1 Res1H0.EKD/ D E1 Res1EKR D E1RŒG=NG.K/�:

This gives a diagram of the form

E1 ker "

��

E1 ker "

��
0 �� E1RŒG=NG.K/�

E1."/

��

�� EKR

��

�� IKR �� 0

0 �� E1R �� H0.C/ �� IKR �� 0

where the middle vertical sequence of R�G-modules is given by

0 �!
0

ker "

�!
R

RŒG=NG.K/�

�!
R

_id

R

�! 0 .

This shows that H0.C/ has the desired form.
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Now, to obtain the same homology dimension function as for the complex C.2/,
more homology must be added to the complex C. We need to extend Hk and H0 via
the non-split extensions

0! H0 ! yH0 ! N ! 0 and 0! Hk ! yHk ! N ! 0

where

N D

R

id

R 0

��
��

��
��

0 .

The module N has a finite projective resolution of the form

0! E1RŒG=D8�! EC4
R! N ! 0:

Note that Res1EC4
R D RŒG=NG.C4/� D RŒG=D8�, and for Q D CA

2 we have

ResQ EC4
R D R˝RŒD8=C4�RŒ.G=C4/

Q� D R˝RŒD8=C4�RŒNG.Q/=NC4
.Q/� D R

where the equality in the middle comes from Lemma 3.6. Since R is projective as
an RŒD8=C4�-module, EC4

R is projective. It is easy to see that E1RŒG=D8� is also
projective. So, by Proposition 6.8, we can replace C with a finite projective chain
complex C.3/ over R�G which has the desired homology.

9C. The case p D 5. For p D 5, the situation is easier than the case p D 3. Let
R D Z.5/. The 5-period of S5 equals 8, so by Swan [32] there exists a periodic
projective resolution P over the group ring RG, giving an exact sequence

0! R! Pn ! � � � ! P1 ! P0 ! R! 0

for any positive integer n such that n C 1 D 3.k C 1/ for some integer k, with
8 j .k C 1/. We start with the R�G-complex C D E1P obtained by the extension
functor from P. Since C has no homology at the non-trivial 2-subgroups in F , we
need to change the homology at H0 and at Hk to match the homology we have for
p D 2 andp D 3. Note that we need to extend Hk and H0 via the non-split extensions

0! H0 ! yH0 !M ! 0 and 0! Hk ! yHk !M ! 0
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where

M D

R

id

R R

		
		

		
		

0 .

Let K D CB
2 . The module M is the direct sum of L (which has the same form as

N ) and IKR. We claim that each of these modules have finite projective resolutions
over R�G . For IKR we have a resolution of the form

0! E1RŒG=.K � S3/�! EKR! IKR! 0:

Note that
Res1EKR D RŒG=NG.K/� D RŒG=.K � S3/�

where S3 denotes the subgroup of S5 generated by symmetries of f3; 4; 5g. Since
R is projective as an RŒNG.K/=K�-module, EKR is projective. It is clear that
E1RŒG=.K�S3/� is also projective. So, the above resolution is a projective resolution
of IKR. We can also write a finite projective resolution forL (similar to the resolution
given for N ). So, by Proposition 6.8, we can replace C with a finite projective chain
complex C.5/ which has the desired homology.

The proof of Theorem A. We will first construct a projective chain complex C over
Z�G with isotropy in F , by applying Theorem 6.7 to glue the p-local complexes
C.p/, for p D 2; 3; 5. Note that in the constructions of C.p/ above, we may choose
any integer k such that k odd, n C 1 D 3.k C 1/, 12 j .n C 1/ and 8 j .k C 1/.
To satisfy the first condition in Theorem 6.7, that the distance between non-zero
homology groups of the C.p/ is larger than l.�G/ D 2, we will also need k � 3 and
n � k � 3.

Remark 9.1. The minimum value for k satisfying the requirements used above is
k D 7, which gives n D dim C D 23.

The Z�G-module H needed to satisfy the second condition in Theorem 6.7 is
given by Hi .K/ D Z, for i D 0; n.K/ with K 2 F , and zero otherwise. By
Proposition 6.2, C is chain homotopy equivalent to a finite projective complex.
To obtain a finite free complex, we can apply Theorem 7.6, which (possibly after
some joins) produces a finite free Z�G-chain complex C with the Z-homology of an
n-sphere, and n.K/ > 3 for all K 2 F .

Note that our homology dimension function n is not strictly monotone, since
n.CA

2 / D n.C4/, but by Corollary 8.9 we can modify our complex to satisfy the
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conditions for geometric realization in Theorem 8.10, since l.CA
2 ; C4/ D 1. Applying

Theorem 8.10, we conclude that G D S5 acts on a finite G-CW complex X with
isotropy in F . �

Remark 9.2. For this particular example we needed to apply Theorem 7.6 with one
join tensor operation, because zK0.Z�G/ D Z=2. This follows from Theorem 7.8,
Lemma 7.5 and well-known calculations showing that zK0.ZŒNG.Q/=Q�/ D 0, for
1 ¤ Q 2 F , but zK0.ZŒG�/ D Z=2. Note that, by Dress induction, it is enough to
consider the projective class groups of p-hyperelementary subgroups of G (see §50
in [9], [28]). We therefore obtain a finite G-CW complex X ' S47 with isotropy
in F .
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