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Abstract

Mathematical models play a fundamental role in theoretical population genetics and, in
turn, population genetics provides a wealth of mathematical challenges. Here we illus-
trate this by using mathematical caricatures of the evolution of genetic types in a spatially
distributed population to demonstrate the complex interplay between spatial structure, nat-
ural selection, and so-called random genetic drift (the randomness due to reproduction in
a finite population). In particular, we highlight the role that the shape of the domain inhab-
ited by the population can play in mediating the interplay between the different forces of
evolution acting upon it.
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1. Introduction

Theoretical population genetics is concerned with understanding genetic differences
within and between populations. It finds its origins at the beginning of the twentieth century
in the modern evolutionary synthesis, in which Darwin’s theory of evolution through natural
selection and Mendel’s laws of genetic inheritance were integrated. This work, pioneered by
Fisher, Haldane, and Wright, provided a unified mathematical framework within which to
discuss possible causes of evolution. As a result some consensus emerged about which forces
influence evolution, but questions such as their relative importance remained unresolved.

The intervening century has seen a rich interplay between population genetics and
the mathematical sciences: mathematical modeling has been employed to explore concepts
such as adaptation, speciation, and population structure, and in the process questions aris-
ing from population genetics have stimulated the development of elegant new mathematical
models and techniques, often of much wider applicability.

In population genetics, mathematical models are used both as a basis for statistical
inference and as a means to validate or dismiss concepts. The purpose of the model is then not
to provide detailed predictions of the fate of a particular biological population, but rather to
use caricatures of the forces of evolution, and the ways in which they interact, to gain some
insight into the evolutionary process. Our aim here is to illustrate this approach through
models that attempt to capture some features of the interactions between natural selection,
spatial structure, and the randomness due to reproduction in a finite population (so-called
genetic drift). Rather than giving detailed proofs, for which we refer to the original papers,
we shall provide informal arguments and draw out some of the lessons learned.

We shall try to minimize the use of biological jargon, but it is convenient to fix
some terminology. The term locus is used to refer in a general way to a location on the
genome. For our purposes, it will correspond to a region that codes for a gene, and it will
be passed on as a single unit from parent to offspring. Genes can occur in different forms,
called alleles, and we shall make the simplifying assumption that the gene in which we are
interested has just two alleles, denoted a, A. Evolution is fueled by mutation, the source of the
genetic diversity on which natural selection acts, but we shall assume that any new mutations
arising at the locus of interest are neutral, that is, do not affect fitness. Moreover, since genes
are organized onto chromosomes, different genetic loci do not evolve independently of one
another. However, our models will neglect this genetic structure and suppose that (relative)
fitness is determined entirely by the alleles at the locus of interest. Although crude, such
single locus models exhibit a surprisingly rich variety of behaviors.

There is a huge literature devoted to understanding the interaction between natural
selection and genetic drift. In particular, in the absence of spatial structure, it is well under-
stood that in larger populations, not only is a beneficial mutation more likely to establish and
sweep to fixation (that is, increase in frequency until it is carried by every individual in the
population), but it is also more likely that deleterious mutations will be expunged. Genetic
drift, which drives random fluctuations in the proportions of the different alleles, is stronger
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in a smaller population, and this increases the chance that a deleterious mutation is fixed just
by chance [27].

The interaction between natural selection and spatial structure (ignoring genetic
drift) is often investigated through reaction–diffusion equations. This was initiated by
Fisher [22], who studied traveling wave solutions to the equation

@u

@t
D m

@2u

@x2
C su.1 � u/; x 2 R; t � 0; (1.1)

as a model of the spread of a favorable allele through a one-dimensional population. Here
u.t; x/ 2 Œ0; 1� models the proportion of the alleles carried by the individuals at location x at
time t that are of the fitter type. In [28], Kolmogorov, Petrovsky, and Piscounov considered
the analogous equation in two spatial dimensions and with a general reaction term F.u/ in
place of su.1 � u/, although they focused on solutions that are independent of y (and thus
essentially one-dimensional). Motivated by the discussion of Fisher [21], they specialized to
a reaction term of the form ˛u.1 � u/2 for their application to population genetics. Equa-
tion (1.1), with @2u=@x2 replaced by �u in dimensions d � 2, is often referred to as the
Fisher–KPP equation.

A special case of a result of Skorokhod [36] expresses the distribution of a branching
Brownian motion in terms of the solution to (1.1). Conversely, in the particular case of a
Heaviside initial condition, this allows one to express the solution to (1.1) in terms of the
distribution of the rightmost particle in a binary branching Brownian motion at time t . This
is often referred to as McKean’s representation [31], and underpins the remarkable work of
Bramson [9], which provides much of our understanding of the traveling wave to which the
solution started from a Heaviside initial condition converges. More recently, these results
have been considerably extended, with a particular focus on adding a stochastic term to (1.1)
to capture the effect of random genetic drift (see, for example, [33] and the references therein),
resulting in a stochastic PDE:

du D

�
m

@2u

@x2
C su.1 � u/

�
dt C

s
1

�
u.1 � u/W.dt; dx/; (1.2)

with W a space-time white noise and � a measure of local population size. (The form of
this so-called Wright–Fisher noise term will be motivated in Section 2.1.) The vast major-
ity of this work is restricted to one spatial dimension. In the biologically natural setting of
two spatial dimensions, although equation (1.1) generalizes in a natural way, the obvious
generalization of equation (1.2) has no solution. In Section 6 we shall describe one way
to circumvent this, and provide a mathematical model through which we can explore the
interaction of natural selection and genetic drift in a population distributed across a spatial
continuum (of any dimension). Depending on the dispersal mechanism and the local popu-
lation density, an individual may be competing with its own close (and equally fit) relatives,
limiting the effect of natural selection. We shall see that if the local population density is
bounded, the dimension of the space in which the population lives is important.

Natural selection can take many forms. While equation (1.1) models the spread of
an allele which is always favorable to the individual carrying it, in much of what follows
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we shall be interested in populations in which individuals carry two copies of the gene and
those carrying different alleles are selectively disadvantaged. As we explain in Section 2.1,
this form of selection can be captured by replacing the reaction term in (1.1) to obtain

@u

@t
D m

@2u

@x2
C su.1 � u/.2u � 1/; x 2 R; t � 0: (1.3)

Inference from genetic data typically involves using differences between the DNA sequences
of a sample of individuals from the population to reconstruct information about genealogical
ancestors of those individuals. This can then be compared to the predictions of mathemati-
cal models under different hypotheses about the forces of evolution acting on the population.
The neutral mutation rate therefore dictates the scales over which we can glean meaningful
information, and, since it is very small, this leads us to consider very large spatial and tem-
poral scales. With this in mind, we apply a diffusive scaling, corresponding to modeling
proportions of different alleles over spatial regions of diameter O.1="/ at times of O.1="2/,
to obtain

@u"

@t
D �u"

C
1

"2
u".1 � u"/.2u"

� 1/; (1.4)

where we have set mD 1, s D 1. In a sense made precise in Theorem 2.4, for suitable initial
conditions, as "! 0, u" converges to the indicator function of a set whose boundary evolves
according to mean curvature flow (see Definition 2.1). We emphasize that although our main
interest is in two spatial dimensions (where mean curvature flow is simply curvature flow),
our mathematical results are valid in arbitrary spatial dimension d.

More generally (see Section 5.1), if there is a fitness difference between individuals
carrying two a alleles and those carrying two A alleles, we consider the equation

@u

@t
D m�uC su.1 � u/

�
2u � .1 � /

�
; x 2 Rd; t � 0: (1.5)

As we shall explain, in order to obtain a nontrivial limit under the diffusive scaling, we
also scale  D "�. The limit is then the indicator function of a set whose boundary evolves
according to a mixture of “constant flow” of rate �� and mean curvature flow (for as long
as this flow is defined).

Whereas mean curvature flow has no nontrivial fixed point, the spherical shell of
radius .d � 1/=� (whose interior is completely occupied by the favored type) is fixed by
this mixture of curvature and constant flow. In this scenario, the two components of the
selection acting on the population work against one another and at this critical radius are
finely balanced; for any larger radius constant flow dominates and the circle expands without
bound; for a smaller radius, mean curvature flow wins out, and the circle shrinks to a point.
This behavior is in sharp contrast to the situation in one spatial dimension, and it is natural
then to ask about other domains; for example, what is the fate of an expanding population
that must pass through an isthmus? In Section 5.2, we shall see examples of domains for
which the effect of curvature flow leads to “blocking” of the expansion of the range of the
selectively favored type (but in a way which will result in a stable nontrivial steady state).
The geometry of the domain in which the population lives is important.
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The main mathematical tool that we use is a representation of the solution to (1.4)
in terms of a ternary branching Brownian motion which we explain in Section 3. Although
reminiscent of the Skorokhod/McKean representations of the solution to the Fisher–KPP
equation, it differs in using the entire tree structure of the branching process. Our approach
can be seen as an adaptation of that of de Masi et al. in [13], and similar ideas have also been
exploited in [29]. For us, it provides an intuitive and flexible representation of the solutions
to equations like (1.3), (1.4), and (1.5), that is readily adapted to the framework of Section 6,
allowing us to incorporate the effects of genetic drift.

The rest of this article is laid out as follows. In Section 2, we motivate (1.3) from a
biological perspective and give a more precise statement about its limiting behavior as "! 0.
In Section 3, we present the probabilistic representation of the solution to (1.4) and use it to
provide some intuition for the emergence of mean curvature flow. In Section 4, we replace the
Laplacian in (1.4) by a fractional Laplacian, in order to capture the corresponding behaviour
in populations with long-range dispersal. In Section 5, we turn to the situation modeled
by (1.5) in which there is a fitness difference between type aa and type AA individuals. In
particular, we shall consider what happens when the population no longer occupies the whole
Euclidean space, and we provide conditions on the geometry of its range under which the
expansion of the region occupied by the fitter type is, or is not, blocked. Finally, in Section 6,
we extend our models to incorporate genetic drift and explore the extent to which it breaks
down the effect of natural selection. In particular, we shall see how the impact of genetic
drift depends on both the local population density and the spatial dimension.

2. Hybrid zones and curvature flow

A hybrid zone is a narrow geographic region where two genetically distinct pop-
ulations are found close together and hybridize to produce offspring of mixed ancestry.
Hybrid zones are ubiquitous in nature; see, for example, [5] and [6] for an extensive cata-
logue and discussion. They can be maintained by a variety of mechanisms. For example,
consider two populations, each of which is adapted to a different set of environmental con-
ditions. If hybrids are less well adapted to those conditions, then an abrupt change in the
environment could result in a hybrid zone. In that case the hybrid zone will not move.

The situation that we shall be trying to caricature is one in which the hybrid zone
is maintained by a balance between dispersal and selection against hybrids. For instance,
this might arise if two populations regain contact after a period of geographic isolation such
as that imposed by the last glacial maximum (c. 18,000 years ago) when many species were
forced into isolated refugia. Because they are not dependent on changes in local environmen-
tal conditions, hybrid zones maintained by this mechanism can move from place to place.
In [3], Barton presented a theoretical study of the dynamics of hybrid zones. In the interests
of space, we do not attempt to examine all of the influences on the motion of the zone con-
sidered by [3]; instead we present our mathematical approach and illustrate its application in
three contrasting settings before adapting it to include genetic drift in Section 6.
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2.1. Modeling selection against heterozygosity
As advertised in the introduction, we are going to focus on the case in which the

hybrid zone is maintained by selection acting on a single genetic locus. We suppose that
the gene at that locus has two alleles, denoted a and A, and that each individual carries two
copies of the gene. One population consists of aa individuals, the other of AA individuals.
Although it is possible to obtain equations like (1.1)–(1.5) as scaling limits of a variety of
individual based models (see, for example, [12,23,34]), it is generally highly technical and so
instead we shall motivate the models using an argument commonly found in the biological
literature.

Our first aim is to understand the form of the reaction term in (1.3), and so we begin
with the case in which the population is infinitely large, and has no spatial structure. We
assume Hardy–Weinberg equilibrium; that is, if the proportion of a-alleles across the whole
population is Nu, then the proportions of individuals of types aa, aA, and AA are given by

aa aA AA

Nu2 2 Nu.1 � Nu/ .1 � Nu/2
:

This is expected to be a reasonable approximation if selection is not too strong (which we
shall assume here). To model selection against hybrids, we assume that the three types have
relative fitnesses

aa aA AA

1 1 � s0 1
:

We define relative fitness implicitly by explaining its effect. During reproduction, each indi-
vidual produces a large (effectively infinite) number of germ cells, each of which carries a
copy of all the genetic material of the parent (for our purposes this is just two copies of the
gene in which we are interested). The germ cells then split into gametes (each containing
one copy of the gene). All the gametes are put into a pool, and each individual in the next
generation, independently, is created by fusing two gametes sampled at random from that
pool.

The relative fitnesses above are reflected in each heterozygote (aA) individual pro-
ducing .1 � s0/ times as many germ cells as a homozygote (aa or AA) individual. The
proportion of type a gametes in the pool is then

Nu�
D

. Nu2 C Nu.1 � Nu/.1 � s0//

. Nu2 C 2 Nu.1 � Nu/.1 � s0/C .1 � Nu/2/

D
Nu2 C Nu.1 � Nu/.1 � s0/

1 � 2s0 Nu.1 � Nu/

D .1 � s0/ NuC s0.3 Nu2
� 2 Nu3/CO

�
s2

0

�
D NuC s0 Nu.1 � Nu/.2 Nu � 1/CO

�
s2

0

�
:

In particular,
Nu�
� Nu D s0 Nu.1 � Nu/.2 Nu � 1/CO

�
s2

0

�
:

In an infinite population, the proportions of alleles among offspring will exactly
follow those in the pool of gametes, and if s0 D s=M (where M is large), measuring time
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in units of M generations, this suggests the approximation
d Nu

dt
D s Nu.1 � Nu/.2 Nu � 1/

for the dynamics of the proportion of a-alleles. The Laplacian term in (1.3) is then added to
capture dispersal of offspring.

In a finite population, we must account for the randomness inherent in drawing a
finite sample from the pool of gametes. We assume that the population size N is large and
fixed. The number of a-alleles among offspring is Bin.2N; Nu�/, and so the proportion of
a-alleles has mean Nu� and variance 1

2N
Nu�.1 � Nu�/. Notice in particular, that we can expect

the effects of the fluctuations to be relevant over timescales of O.N / generations. As before
we suppose that s0 D s=M , and measure time in units of M generations. If M=N D O.1/,
the dynamics of the proportion of a-alleles can then be approximated by the Wright–Fisher
diffusion

du D su.1 � u/.2u � 1/dt C

r
M

2N
u.1 � u/dBt ; (2.1)

where B is a one-dimensional Brownian motion.
Replacing the reaction term in equation (1.2) by su.1 � u/.2u � 1/, in one spatial

dimension we obtain what can be thought of as a spatial analogue of (2.1) in which offspring
sample gametes from a pool generated by adult individuals at the location at which they
were born. The Wright–Fisher noise is supposed to capture the randomness inherent in the
sampling.

2.2. (Mean) curvature flow
We are primarily interested in two spatial dimensions, when mean curvature flow

reduces to curvature flow, but our results are valid for all d � 2. Recall that a function is said
to be a smooth embedding if it is a diffeomorphism onto its image (which we shall implicitly
assume is a subset of Rd).

Definition 2.1 ((Mean) curvature flow). Let S1 denote the unit circle in R2. Let � D

.� t .�//t be a family of smooth embeddings, indexed by t 2 Œ0; T /, where, for each t ,
� t W S

1 ! R2. Let n D nt .u/ denote the unit (inward) normal vector to � t at u and let
�t .u/ denote the curvature of � t at u. We say that � is a curvature flow if

@� t .u/

@t
D �t .u/nt .u/ (2.2)

for all t; u.
In higher dimensions, we replace S1 by Sd�1, R2 by Rd, and �t by the mean cur-

vature of � t to obtain mean curvature flow.

Remark 2.2. Perhaps the easiest way to visualize the curvature at a point P on a differen-
tiable curve in R2 is as the reciprocal of the radius of the osculating circle at P which (if it
exists) is the circle that best approximates the curve at the point P .

The curvature tells us how quickly the tangent to the curve changes as we traverse
the curve. To make this concrete, first parametrize the curve in terms of its arc length: �.s/D

4278 A.M. Etheridge



.x.s/;y.s// with x0.s/2C y0.s/2D 1. The tangent vector to the curve at .x.s/;y.s//, T .s/D

.x0.s/; y0.s//, has norm one, and the unit normal is n.s/ D .�y0.s/; x0.s//. If the curve
is twice differentiable, then T 0.s/ D �.s/n.s/, where �.s/ is the (signed) curvature at the
point. For example, for a circle of radius R, .x.s/; y.s// D .R cos.s=R/; R sin.s=R//, and
�.s/ � 1=R.

The circle is, of course, a rare example for which arc length is easy to calculate, but
by an application of the chain rule, this allows one to calculation � in terms of an arbitrary
parametrization

� D
det.� 0; � 00/

k� 0k3
:

In the biologically relevant case of two dimensions, curvature flow is sometimes
called the curve-shortening flow and its behavior is well understood. The flow has a finite
lifetime T . For example, if �0 is a circle of radius R0, then � t will be a circle with radius
Rt satisfying dR=dt D �1=R, so the curve shrinks to a point in time R2

0=2. In fact, this
behavior is generic in d D 2: in [24], it was shown that if �0 is convex then so is � t for
all t < T , and that as t " T the asymptotic “shape” of � t is a circle; [26] showed that any
smoothly embedded closed curve becomes convex at a time � < T .

2.3. The motion of hybrid zones
To state a result about the behavior of the solution to (1.4) as "! 0, we shall need

some regularity assumptions on the initial condition.

Assumptions 2.3 (Assumptions on u".0; x/). Let u".0; x/ D p.x/ where p takes values in
Œ0; 1� and set

� D

²
x 2 Rd

W p.x/ D
1

2

³
:

We suppose that � is a smooth hypersurface which is the boundary of an open set which
is topologically equivalent to a sphere. (When d D 2, this just says � is a smooth curve,
topologically equivalent to a circle.) We further assume:

(C 1) � is C ˛ for some ˛ > 3;

(C 2) for x outside � , p.x/ < 1
2
; for x inside � , p.x/ > 1

2
;

(C 3) there exists r;�>0 such that, for all x2R2, jp.x/� 1
2
j ��.dist.x;�/^ r/.

Condition (C 1) guarantees that mean curvature flow .� t .�//t started from � exists
up to some time T > 0. The second condition is just a convention; the third is to ensure that
the slope of p near � is not too small, and that p is bounded away from 1=2 for points that
are not close to � .

We write d.x; t/ for the signed distance from x to � t , chosen to be positive inside
� t and negative outside. As sets, � t D ¹x 2 Rd W d.x; t/ D 0º.
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Theorem 2.4 (Special case of Chen [11, Theorem 3]). Let u".t; x/ solve (1.4) with u".0; x/D

p.x/ satisfying Assumptions 2.3. Fix T � 2 .0;T / and let k 2N. There exists "d.k/ > 0, and
ad.k/; cd.k/ 2 .0;1/ such that for all " 2 .0; "d/ and t satisfying ad"2j log "j � t � T �,

(1) for x such that d.x; t/ � cd"j log "j, we have u".t; x/ � 1 � "k;

(2) for x such that d.x; t/ � �cd"j log "j, we have u".t; x/ � "k .

3. A probabilistic representation of solutions to (1.4)

In [14] an analogue of Theorem 2.4 for a model which incorporates (weak) genetic
drift is proved. A large part of that paper is devoted to providing a new proof of Theorem 2.4,
for which we now explain the key ideas. It is based on a probabilistic representation of the
solution to (1.4), and is readily adapted to a host of other situations, some of which we
describe in Sections 4, 5, and 6.

For compatibility with the literature on partial differential equations, we shall sup-
pose that all Brownian motions run at rate 2 (and so have infinitesimal generator � rather
than 1

2
�). The representation is in terms of a ternary branching Brownian motion in which:

(1) each individual has an independent exponentially distributed lifetime with mean
"2 at the end of which it is replaced, at the location where it died, by three
offspring; and

(2) during its lifetime, each individual follows an independent Brownian motion.

We shall only ever be interested in this process started from a single individual at time 0.
Whereas Skorokhod’s representation of the solution to the Fisher–KPP equation

in [36] is just in terms of the locations of the individuals in a (binary) branching Brownian
motion at time t , our representation of the solution to (1.4) will also require the structure
of the tree relating the individuals in the ternary branching Brownian motion. The simplest
way to encode that information is to use Ulam–Harris notation. Each individual is labeled
by an element of U D

S1

mD0¹1; 2; 3ºm. The original ancestor is labeled ;. The offspring of
an individual with label � D .i1; : : : ; im/ receive the labels .�; 1/, .�; 2/, and .�; 3/. Thus, for
example, .1; 3/ is the label of the third child of the first child of the original ancestor.

We shall use W .t/D to denote historical ternary branching Brownian motion, that
is, the tree of Brownian paths traced out by ternary branching Brownian motion up until time
t , and T .W .t// for the corresponding ternary tree, obtained by ignoring the spatial positions
of individuals.

Definition 3.1 (Majority voting in (historical) branching Brownian motion). For a fixed
function p WRd! Œ0;1�, define a voting procedure on W .t/ as follows. We write ¹Wi .t/º

Nt

iD1

for the spatial locations of the random number N.t/ of individuals alive at time t . We call
these individuals the leaves.
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(1) Each leaf, independently, votes a with probability p.Wi .t//; otherwise it
votes A.

(2) At each branch point in T .W .t//, the vote of the parent particle � is the majority
vote of the votes of its three children .�; 1/, .�; 2/, and .�; 3/.

This defines an iterative voting procedure, which runs inwards from the leaves of W .t/ to
the root. We define Vp.W .t// to be the vote associated to the root.

This majority voting procedure is illustrated in Figure 1.

Figure 1

Majority voting on a ternary tree. Starting at the leaves, we move back to the root. At each branch point, the parent
adopts the majority view of its children. In this example, the vote at the root is a.

Lemma 3.2 (Majority voting and the Allen–Cahn equation). Let W .t/ D be a historical
ternary branching Brownian motion with branching rate 1="2, and let p W Rd! Œ0; 1�. The
function

u".t; x/ D P "
x

�
Vp

�
W .t/

�
D a

�
(3.1)

solves equation (1.4) with u".0; x/ D p.x/.

The subscript x on the right hand side of equation (3.1) indicates that W starts from
a single individual at x at time zero. The proof of Lemma 3.2 proceeds in a standard way by
partitioning over whether or not the ancestor in the branching Brownian motion dies in the
first ıt of time, and thus calculating

lim
ıt!0

.u".t C ıt; x/ � u".t; x//

ıt
: (3.2)

To understand why majority voting gives rise to the desired nonlinearity, consider what hap-
pens if the ancestor does die in the first ıt of time, which happens with probability ıt="2.
Each offspring, independently, votes a with the same probability, u say. The probability that
the majority of their 3 votes is a is u3 C 3u2.1 � u/ D u.1 � u/.2u � 1/C u. Assuming
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some continuity so that we can take u � u".t; x/ as ıt ! 0, we see that the contribution
to (3.2) from the event ¹the ancestor died before time ıtº is u".1 � u"/.2u" � 1/="2 as
required. With probability 1 � ıt="2 the ancestor did not die before ıt , and it followed a
Brownian motion which is at position Wıt at time ıt . Using the Markov property at time ıt ,
the Laplacian term arises from this event as limıt!0.Ex Œu".t; Wıt /� � u.t; x//=ıt .

With the representation (3.1), the conclusion of Theorem 2.4 can be written:

(1) for x with d.x; t/ � cd"j log "j, P "
x ŒVp.W .t// D a� � 1 � "k ;

(2) for x with d.x; t/ � �cd"j log "j, P "
x ŒVp.W .t// D a� � "k .

The intuition behind the proof of these statements is very simple. First observe that majority
voting increases bias: if p < 1

2
, p3C 3p2.1�p/ < p; if p > 1

2
, p3C 3p2.1�p/ > p. Since

the branching rate is 1="2, our branching Brownian motion sees many rounds of majority
voting in a very short space of time, and so a small bias in votes at the leaves of the tree
translates into a large bias at the root. As a result, a narrow interface will be generated across
which there is a rapid transition from P "

x ŒVp.W .t// D a� being close to zero, to it being
close to one. Suppose that in fact this transition is sharp, and the solution to equation (1.4)
is the indicator function of a region bounded by a surface � . Taking this solution as the new
initial condition, after a small time h, we once again expect that the solution is close to a
sharp interface whose position, �h, marks the transition from a voting bias in favor of type
a, to one in favor of type A. That is, �h � ¹x 2 Rd W Th1�.x/ D 1=2º where T denotes
the heat semigroup. If we replace the solution at time h by 1�h

and repeat this process, we
are actually performing the Merriman–Bence–Osher (MBO) algorithm for simulating mean
curvature flow [32]. To gain some intuition for the role of mean curvature flow, consider the
special case in which � is a sphere of radius R in Rd. Then we are approximating �h by
¹x 2 Rd W Px ŒkWhk > R� D 1=2º, where W is d-dimensional Brownian motion. Since the
radial part of a d-dimensional Brownian motion is a d-dimensional Bessel process, while it
is close to � , kW k will be distributed as a one-dimensional Brownian motion B with drift
close to .d� 1/=R (remembering that our Brownian motions all run at rate two), and so we
are approximating �h by the set of points for which PkxkŒBh C h.d� 1/=R > R�D 1=2; in
other words, by symmetry of B , by ¹x W kxk D R � h.d� 1/=Rº. The mean curvature of �

is .d� 1/=R, and so for small h, �h is close to the surface obtained by evolving � according
to mean curvature flow for time h.

This intuitive picture is close to the structure of the rigorous proof which has two
main ingredients: an analysis of the one-dimensional solution, started from a Heaviside ini-
tial condition; and coupling (close to the interface) of d.Ws; t � s/ with a one-dimensional
Brownian motion.

4. Long-range dispersal

The Laplacian in equation (1.4) reflects an assumption that offspring remain close
to their parents. However, for many organisms this may fail; see, for example, [10] for a
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discussion of long range seed dispersal in plants. To incorporate this into equation (1.5), we
replace the Laplacian by a fractional Laplacian,

@v

@t
D .��/

˛
2 v C sv.1 � v/.2v � 1/; (4.1)

where (for smooth functions f which decay sufficiently fast)

.��/
˛
2 f .x/ WD C˛ lim

ı!0

Z
RdnBı .x/

f .y/ � f .x/

ky � xkdC˛
dy: (4.2)

Here C˛ WD 2˛�. ˛
2
C

d
2

/=.�d=2j�.�˛
2

/j/, where � is the Gamma function, and Bı.x/ is
the ball of radius ı about x.

The operator (4.2) is the generator of a symmetric ˛-stable process, and the prob-
abilistic representation of solutions to (4.1) follows by substituting a branching ˛-stable
process for the branching Brownian motion in Section 3. If we are to recover an analogue
of Theorem 2.4, we expect to need to consider scales over which the spatial motion along
each branch is close to a Brownian motion. We appeal to a decomposition often used in
the numerical simulation of symmetric stable processes, see, for example, [2]. If we run an
˛-stable process at rate I."/˛�2 (where I."/! 0 as "! 0), then the process obtained by
censoring jumps of size greater than I."/ can be approximated by Brownian motion. To show
that the uncensored process along a branch of our ternary tree is close to a Brownian motion,
we need to control the number of jumps of size at least I."/ before an exponential time with
mean "2. Since we have time-changed the stable process by I."/˛�2, the rate of such jumps
is O.I."/�2/, and so in order that branches on which we see jumps of size more than I."/

be rare, we take I."/="!1.
With this in mind, set �2D 2C˛=.2�˛/ and rescale time and space by t 7! "2t;x 7!

"2=˛I."/1�2=˛x. When ˛ D 2, we recover the diffusive scaling. Equation (4.1) becomes

@v"

@t
D

��2

I."/2�˛
.��/

˛
2 v"
C

1

"2
v".1 � v"/.2v"

� 1/; v".0; x/ D p.x/: (4.3)

In [7], an analogue of Theorem 2.4 is proved for functions I W RC ! RC satisfying:

(A 1) lim"!0 I."/j log."/jk D 0 8k 2 N.

(A 2) lim"!0
"2j log."/j

I."/2 D 0.

(A 3) lim"!0 H."/ WD I."/2j log."/j"
2d
˛ �d�1 C

I."/2˛

"2 j log."/j˛ D 0.

Note that Assumptions (A 2) and (A 3) are incompatible as soon as ˛ � 1.

Theorem 4.1 ([7, Theorem 1.5]). Let ˛ 2 .1; 2/ and suppose that I."/ satisfies Assump-
tions (A 1)–(A 3) above. Suppose v" solves equation (4.3) with initial condition p satisfying
Assumptions 2.3. Let T and d.x; t/ be as in Section 2.3, and fix T � 2 .0; T /. Then there
exists "d.˛; I /, ad.˛; I /, cd.˛; I /, M.˛; I / > 0 such that, for " 2 .0; "d/ and ad"2j log "j �

t � T �,

(1) for x with d.x; t/ � cdI."/j log "j, we have v".t; x/ � 1 � "2

I."/2 �M.H."/C

I."/˛�1/;
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(2) for x with d.x; t/ � �cdI."/j log "j, we have v".t; x/ � "2

I."/2 CM.H."/ C

I."/˛�1/.

For example, I."/ D "j log."/j fulfills Assumptions (A 1)–(A 3), and the “error”
"2=I."/2CM.H."/C I."/˛�1/ is of order 1=.log "/2. There are two competing effects: we
want to take I."/ as small as possible if the approximation of the small jumps of the stable
process by a Brownian motion is to be good; on the other hand, we need I."/ to be large if
branches along which we see a jump of size more than I."/ are to be rare. In contrast to the
Brownian case, these cannot be balanced to obtain an error of order "k for arbitrary k.

5. Asymmetry and blocking

So far we have worked exclusively on the whole of Euclidean space. In this section
we see that, in some scenarios, the geometry of the domain can be important.

5.1. An asymmetric reaction: homozygotes of different fitnesses
In our justification of equation (1.3) in Section 2, we assumed that both homozygotes

were equally fit. It is natural to ask what happens if that is not the case? Suppose, for example,
that we take relative fitnesses

aa aA AA

1C 1s1 1 � s1 1
;

where 1 is assumed small. Mimicking our previous approach, and setting .2C 1/s1=2 D

s=M , 2=.2C 1/ D 1 �  , we recover equation (1.5). The one-dimensional equation

@u

@t
D m

@2u

@x2
C su.1 � u/

�
2u � .1 � /

�
has a traveling wave solution of the form

u.x; t/ D

�
1C exp

�
�

r
s

m
.x C 

p
mst /

���1

; (5.1)

connecting 0 at �1 to 1 at 1, and with wave speed 
p

ms. In particular, if we scale m

and/or s, then we may also have to scale  in order to obtain a finite wavespeed. With this in
mind, [25] considers the equation

@u"

@t
D "1�`�u"

C
1

"1C`
u".1 � u"/

�
2w"
� .1 � "/

�
; x 2 Rd; t > 0; (5.2)

where " D �"
Q̀ for some nonnegative � and Q̀, with the additional condition that � < 1 when

Q̀ D 0, and ` D min. Q̀; 1/.
Notice that with these parameters, the one-dimensional wave has speed of O.1/ if

Q̀ � 1 and tending to zero as "
Q̀�1 if Q̀ > 1. We define

�" D

8̂̂<̂
:̂

� if Q̀ � 1;

"=" if Q̀ 2 .1; 2�;

0 if Q̀ > 2:

(5.3)
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Set u".x; 0/D p.x/, take � D ¹x 2Rd W p.x/D .1C "/=2º, and modify Assumptions 2.3
in the obvious way (by replacing 1=2 by .1C "/=2).

Theorem 5.1 (Restatement of [25, Theorem 2.4]). Let u" solve equation (5.2) with initial
condition p satisfying Assumptions 2.3 (modified as described above), and let

@e�.s/

@t
D

�
��" C �t .s/

�
nt .s/; (5.4)

until the time T at which e� develops a singularity. Write Qd for the signed distance to e�
(chosen to be positive inside e� ). Fix T � 2 .0; T / and k 2 N. There exists "d.k/ > 0, and
ad.k/; cd.k/ 2 .0;1/ such that for all " 2 .0; "d/ and t satisfying ad"1C`j log "j � t � T �,

(1) for x such that Qd.x; t/ � cd"j log "j, we have u".t; x/ � 1 � "k;

(2) for x such that Qd.x; t/ � �cd"j log "j, we have u".t; x/ � "k .

Remark 5.2. When Ql D 1, Theorem 5.1 is a special case of Theorem 1.3 of [1] in which
more general “slightly unbalanced” bistable nonlinearities are considered.

For Q̀ � 2, �" in (5.3) and (5.4) corresponds to the one-dimensional wavespeed
derived above. For Q̀ > 2, the wavespeed converges to zero sufficiently quickly as " ! 0

that it is not necessary to include the corresponding small contribution from the constant
flow in (5.4).

We shall focus on equation (5.2) with Q̀ D 1,
@u"

@t
D �u"

C
1

"2
u".1 � u"/

�
2u"
� .1 � "�/

�
x 2 Rd; t > 0: (5.5)

The approach of [25] is to extend the probabilistic representation to the asymmetric case.

Lemma 5.3. Let fW .t/ be a historical ternary branching Brownian motion with branching
rate .1C "�/="2, and let p W Rd ! Œ0; 1�. Define a voting procedure on fW .t/ as follows:

(1) Each leaf, independently votes a with probability p. eW i .t//, otherwise it
votes A;

(2) at a branch point, the parental vote is the majority vote of the children unless pre-
cisely one offspring vote is a, in which case the parent votes a with probability
2"�=.3C 3"�/.

Write eVp.fW .t// for the vote associated with the root. Then

u".t; x/ D P "
x

�eVp

�fW .t/
�
D a

�
solves equation (5.5) with u".0; x/ D p.x/.

The proof of Theorem 5.1 closely follows the probabilistic proof of Theorem 2.4
in [14], except that the signed distance Qd.Ws; e� t�s/ is coupled to a one-dimensional Brow-
nian motion with drift �.
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Remark 5.4 (Other voting schemes). The probabilistic representation above is far from
unique. For example, it might seem more natural to write the reaction term in (5.5) as
1
"2 .u".1 � u"/.2u" � 1/ C "�u".1 � u"//, and express the solution in terms of a branch-
ing Brownian motion with a mixture of binary branching at rate �=", with the rule that the
parent votes a unless both offspring vote A, and ternary branching at rate 1="2 with the
majority voting rule. However, it turns out to be much more convenient to base the proof on
a ternary tree. To obtain the voting mechanism above, we rewrite the quadratic term u.1� u/

as the sum of two cubic terms using that 1 D uC .1 � u/.
Voting schemes are very general. In [35], O’Dowd showed that if P.u/ is any poly-

nomial with P.0/ � 0 and P.1/ � 0 (or vice versa), then the solution to
@u

@t
D �uC P.u/

can be represented in terms of a historical n-ary branching Brownian motion (where n is the
degree of P ) and a rule for assigning votes to a parent according to the votes of its offspring.

5.2. Geometry matters: blocking
We now turn our attention to solutions to (5.5) on domains � � Rd with reflecting

boundary conditions. We focus on the fate of the favored allele as it tries to expand through
a semiinfinite domain. We shall consider “cylindrical” domains of the form

� D
®
.x1; x0/ W x1 2 R; x0

2 �.x1/ � Rd�1
¯
: (5.6)

We shall always take the initial condition u".0; x/ D 1x1�0.

Theorem 5.5 ([8], Theorems 1.4, 1.5, 1.6, 1.7, paraphrased). Let u be the solution to equa-
tion (1.5) on � with normal reflection on the boundary and initial condition u.x;0/D 1x1�0.
Depending on the geometry of the domain � we have one of three possible asymptotic behav-
iors of the solution of equation (5.5):

(1) there can be complete invasion, that is, u.x; t/! 1 as t !1 for every x 2�;

(2) there can be blocking of the solution, meaning that u.x; t/! u1.x/ as t!1,
with u1.x/! 0 as x1 ! �1;

(3) there can be axial partial propagation, meaning that u.x; t/! u1.x/ as t !

1, with infx2R�BR
u1.x/ > c > 0 for some R > 0, where BR is the ball of

radius R centered at 0 in Rd�1.

Which behavior is observed depends on the geometry of the domain �. For example, there
will be complete invasion if � is decreasing as x1 decreases; axial partial propagation if it
contains a straight cylinder of sufficiently large cross-section; and there can be blocking if
there is an abrupt change in the geometry.

The results of [18] concerning the behavior of solutions to (5.5) complement those
of [8]. (The addition of the parameter ", which is not present in the work of [8], prevents direct
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Figure 2

Left to right: (a) the domain � of Theorems 5.6 and 5.7; (b) the opening O and the hemispherical shell Nr used
in the proof of Theorem 5.6; (c) an illustration of “chaining” used in the proof of Theorem 5.7. Image taken
from [18].

comparison.) As in the previous sections, they are based on the probabilistic representation
of solutions. Following [8], we begin with the very special form of � depicted in Figure 2.

Theorem 5.6 ([18, Theorem 1.6]). Let u" denote the solution to equation (5.5) on the domain
� in Figure 2, with reflecting boundary condition and u".0; x/ D 1x1�0. Suppose r0 <
d�1

�
^ R0. Define Nr D ¹x 2 � W kxk D r; x1 < 0º, where d�1

�
^ R0 > r > r0, and let

Od.x/ be the signed (Euclidean) distance of any point x 2 � to Nr (chosen to be negative as
x1 ! �1). Let k 2 N. Then there is O".k/ > 0 and M.k/ > 0 such that for all " 2 .0; O"/,
and all t � 0,

for x D .x1; : : : ; xd/ 2 � such that Od.x/ � �M.k/"
ˇ̌
log."/

ˇ̌
; we have u".x; t/ � "k :

In other words, if the aperture r0 is too small, then, for sufficiently small ", blocking
occurs. With the machinery of Section 5.1 in place, the proof is straightforward. First we
check that the solution to (5.5) on � is monotone in the initial condition, which allows us
to compare with the solution started from an initial condition p which dominates 1x1�0, is
radially symmetric in the left half plane, satisfies p.x/ D .1 � "/=2 on the hemispherical
shell Nr, and fulfills the analogue of conditions (C 2) and (C 3) from Assumptions 2.3 (with
� replaced by Nr and 1=2 by .1 � "/=2). For this initial condition, it is straightforward to
adapt the proof for the whole Euclidean space from [25], and indeed things are simplified
considerably by the radial symmetry.

The converse of Theorem 5.6 is also true in the following sense.

Theorem 5.7 ([18, Theorem 1.7]). Let u" be as in Theorem 5.6. Suppose r0 > d�1
�

, then for
all x 2 � and ı > 0 there is Ot WD Ot .x1; ı; R0; r0/ > 0 and O" such that, for all " 2 .0; O"/ and
t � Ot , we have u".t; x/ � 1 � ı.

Again the proof exploits monotonicity in the initial condition. The solution domi-
nates one started from .1 � "/ times the indicator of a ball of radius r > .d � 1/=�, with
center sitting on the x1-axis and contained in �\ ¹x W x1 � 0º. This time, adapting the argu-
ments for the solution on Rd tells us that at a later time that solution dominates .1� "/ times
the indicator of a ball with larger radius r 0, but the same center, strictly contained within �.
We now start the process again, taking as initial condition 1� " times the indicator of a ball
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of radius r , and with center shifted a distance r 0 � r . Continuing in this way, we can find a
chain of balls connecting any point x 2 � to the original ball. This process of “chaining” is
illustrated in Figure 2. It mirrors the use of the “sliding ball” assumption to prove complete
propagation in [8].

Together, Theorems 5.6 and 5.7 say that there is a sharp transition at the critical
radius .d � 1/=�. As described in Section 1, this is the radius of the shell at which the
constant and curvature flow exactly balance on the whole of Rd. However, in that case a
small perturbation results in complete invasion or extinction of the favored type, here a stable
interface will be maintained.

The domain � of Theorem 5.6 is very special. However, the crucial step was to be
able to cover the opening O illustrated in Figure 2 by a hemispherical shell of less than the
critical radius .d� 1/=�, and orthogonal to the boundary of the domain where they intersect.
The same result will follow (from essentially the same argument) for any domain which can
be “blocked” by a portion of such a shell in this way. As a first step, consider the domain e�,
which opens out as a truncated cone, and the shell of radius r shown in Figure 3. We can
choose r < .d � 1/=� precisely when r0 < .d � 1/ sin ˛=�.

Figure 3

(Left) The domain e�. (See text below Theorem 5.7.) (Right) An example of a domain from Theorem 5.8.
Condition (5.7) that guarantees that we can insert a portion of a spherical shell as shown with radius less than
.d � 1/=� can be read off from that for e� on setting r0 D H C h.z/ and sin ˛ D h0.z/=

p
1C h0.z/2. Image

taken from [18].

The intuition behind blocking is that if the domain opens out too rapidly, then off-
spring of favored individuals are “spread too thin” and selection against hybrids will rapidly
eliminate their descendants. Our approach has been to seek a shell of sufficiently small radius
that intercepts the boundary of the domain orthogonally, but if the domain is opening even
faster, in the sense that expanding the shell radially one stays within the domain, at least for
a short time, this effect will be further amplified. This is the meaning of the condition (5.7)
in the following theorem.

Theorem 5.8 ([18, Theorem 1.9]). Suppose that u" solves (5.5) where � � Rd is defined as
in (5.6) with

�.x1/ D
®x0

 � H C h.�x1/
¯
;
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and h a nonnegative C 1 function. Suppose that

inf
z>0

²
H C h.z/ �

�
d � 1

�

�
h0.z/p

1C h0.z/2

³
< 0: (5.7)

Fix k 2N. There exist x0 < 0, O".k/ > 0 and M.k/ > 0 such that for all " 2 .0; O"/ and t � 0,

for x D .x1; : : : ; xd/ 2 � such that x1 � x0 �M.k/"
ˇ̌
log."/

ˇ̌
we have u".x; t/ � "k :

Condition (5.7) can be understood from the condition r0 < .d� 1/ sin ˛=� on e� on
setting r0 D H C h.z/ and sin ˛ D h0.z/=

p
1C h0.z/2.

Conversely, if the domain does not open up sufficiently fast, we have invasion.

Theorem 5.9 ([18, Theorem 1.10]). Suppose that u" solves (5.5) where � � Rd is defined as
in (5.6) with

�.x1/ D
®x0

 � H C h.�x1/
¯
;

and h a nonnegative C 1 function. Suppose that

inf
z>0

²
H C h.z/ �

�
d � 1

�

�
h0.z/p

1C h0.z/2

³
> 0:

Then for all x 2� and ı > 0 there is Ot WD Ot .x1; ı/ > 0 and O" such that, for all " 2 .0; O"/ and
t � Ot , we have u".t; x/ � 1 � ı.

These results (valid for any d � 2) are somewhat analogous to those of [30], which
consider a plane curve evolving according to equation (5.4) in a two-dimensional cylin-
der with a periodic saw-toothed boundary. The authors say that such a curve is a periodic
traveling wave with effective speed ı=Tı if e� tCTı

.s/ D e� t .s/ C ı for some ı > 0. Set-
ting hı.x/ D ıh1.x=ı/ and letting ı ! 0 leads to the homogenization limit of the wave,
with speed c0 D limı!0 cı . They show that c0 > 0 for �H > sin ˛ with ˛ determined by
tan ˛ D maxx h0.x/, but that the wave is blocked for small enough ı if �H < sin ˛.

6. Adding noise

In Section 2, we motivated the noise appearing in equation (1.2) as a means of
taking account of the randomness due to resampling inherent in reproduction in a finite
population. Although indD 1, where the equations are well-posed, quite a lot is known about
the solutions to stochastic reaction–diffusion equations like (1.2), in d � 2 such equations
have no solution. On the other hand, we have seen in Section 5.2 that populations may behave
quite differently in d D 1 and d D 2 and so it may be misleading to only consider the one-
dimensional equation.

The Spatial ƒ-Fleming–Viot process was introduced in [4,17] as an alternative way
to capture the effect of genetic drift in models for proportions of different allelic types in
populations evolving in a spatial continuum. Although originally introduced for selectively
neutral populations, it can be thought of as providing a framework for modeling, which can
readily be adapted to incorporate a wealth of biologically relevant features, including natural
selection.
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First, we define a very special version of the Spatial ƒ-Fleming–Viot process for
a neutral population evolving in Rd. As usual, we are most interested in d D 2. At each
time t , the random function ¹wt .x/ W x 2 Rdº will model the proportion of a-alleles at
spatial position x at time t . Strictly speaking, the process is only defined up to a Lebesgue-
null set. The identificationZ

Rd

®
wt .x/f .x; a/C

�
1 � wt .x/

�
f .x; A/

¯
dx D

Z
Rd�¹a;Aº

f .x; �/M.dx; d�/

provides a one-to-one correspondence between its state space and the space M� of measures
on Rd � ¹a; Aº with “spatial marginal” Lebesgue measure, which we endow with the topol-
ogy of vague convergence. We abuse notation and also denote the state space of the process
.wt /t2RC

by M�.

Definition 6.1 (A neutral Spatial ƒ-Fleming–Viot process (SLFV)). Fix u2 .0;1� and r > 0.
Let … be a Poisson Point Process on RC �Rd with intensity measure dt ˝ dx. The Spatial
ƒ-Fleming–Viot process driven by …, with event radius r and impact parameter u, is the
M�-valued process .wt /t�0 with dynamics given as follows.

If .t; x/ 2…, a reproduction event occurs at time t within the closed ball B.x; r/ of
radius r centered on x:

(1) Choose a parental location z uniformly at random in B.x; r/, and a parental
type, ˛0, according to wt�.z/; that is ˛0 D a with probability wt�.z/ and ˛0 D

A with probability 1 � wt�.z/.

(2) For every y 2 B.x; r/, set wt .y/ D .1 � u/wt�.y/C u1¹˛0Daº.

Remark 6.2. Suppose that a reproduction event affects the ball B.x; r/ in which the pro-
portion of a-alleles immediately before the event is w, and write w� for the proportion of
a-alleles immediately after the event. Then

E
�
w�
� w

�
D 0; and var.w�

� w/ D u2w.1 � w/:

This can be compared to the (Wright–Fisher) sampling noise in Section 2.1.
This is a very special case of the SLFV, even for a neutral population. More gener-

ally, one can take both r and u to be random. See [19] for a construction of the process under
very much more general conditions.

Instead of sampling a parental location, and then a parental type, we could equally
have just sampled types independently and uniformly at random according to the proportions
in the region affected by the event. The two-step description is convenient as we wish to trace
the ancestry of a sample from the population. Things are made particularly simple as the
Poisson process … that dictates reproduction events is reversible (with the same distribution).
We write

 �
… for the time-reversed process.

Definition 6.3 (SLFV dual). The process .Pt /t�0 is the
S

l�1.Rd/l -valued Markov process
with dynamics defined as follows.
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The process starts from a finite collection of points �1.0/; : : : ; �N.0/ 2Rd. We write
Pt D .�1.t/; : : : ; �N.t/.t//, where the random number N.t/ 2N is the number of individuals
alive at time t , and ¹�i .t/º

N.t/
iD1 are their locations. For each .t; x/ 2

 �
…:

(1) for each �i .t�/ 2 B.x; r/, independently mark the corresponding individual
with probability u;

(2) if at least one individual is marked, all marked individuals coalesce into a single
individual, whose location is chosen uniformly in B.x; r/.

If no individual is marked, then nothing happens.

One can write down a formal duality between this “backwards in time” ancestral
process and the SLFV. It requires a little care because the SLFV is only defined up to a
Lebesgue null set. However, informally, suppose that we know ¹w0.x/ W x 2 Rd º and that
we would like to find the type of an individual sampled from the point z at time t . Starting
the dual from a single individual with �1.0/ D z, �1.t/ is the location of the ancestor of the
sampled individual at time 0, and its type is determined by sampling according to w0.�1.t//.

Each ancestral lineage evolves in a series of jumps. By translation invariance, its
distribution is determined by the rate at which an ancestral lineage jumps from 0 to x 2 Rd.
For such a jump to occur, three things must happen: first, an event has to fall that covers both
0 and x; second, the lineage has to be among the offspring of the event; third, x has to be
chosen as the location of the parent. Writing Lr .x/ D jBr .0/ \ Br .x/j for the volume of
the region in Rd of possible centers for balls of radius r that cover both 0 and x, and V1 for
the volume of a unit ball in Rd, we see that a single ancestral lineage evolves in a series of
jumps with intensity

dt ˝ Lr .x/ u
1

V1rd
dx: (6.1)

In particular, under our assumptions, the motion of a lineage is a spatially and temporally
homogeneous continuous time random walk in Rd, with uniformly bounded jumps taking
place at a rate proportional to u.

Note that ancestral lineages evolve independently (only) if they are far enough apart
that they cannot be covered by the same event.

6.1. Adding (genic) selection to the SLFV
There are many ways in which to add selection to the SLFV. Perhaps the simplest

is to weight the choice of parental type during a reproduction event. For example, we might
weight A alleles by a factor 1 � s for some small parameter s. Mimicking our approach in
Section 2, if the proportion of a-alleles in B.x; r/ immediately before a reproduction event
is w, then the chance of choosing a type a parent is

w�
D

w

1 � s.1 � w/
D w C sw.1 � w/CO.s2/:
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We rewrite this as

w�
D .1 � s/w C s

�
1 � .1 � w/2

�
CO.s2/; (6.2)

and incorporate (weak) selection into the SLFV as follows:

Definition 6.4 (A Spatial ƒ-Fleming–Viot process with genic selection (SLFVGS)). Fix u,
r , and … as in Definition 6.1 and s 2 .0; 1/. The Spatial ƒ-Fleming–Viot process with genic
selection (SLFVGS) driven by …, with event radius r , impact parameter u, and selection
coefficient s, is the M�-valued process .wt /t�0 with dynamics given as follows.

If .t;x/2…, with probability 1� s, a neutral reproduction event occurs as described
in Definition 6.1. With the complementary probability s the event is selective, in which case:

(1) Choose two “potential” parental locations z1; z2 2 Rd independently and
uniformly at random from B.x; r/. Sample types ˛1, ˛2, according to wt�.z1/;

wt�.z2/, respectively.

(2) For every y 2 B.x; r/, set wt .y/ D .1 � u/wt�.y/C u.1 � 1¹˛1DAD˛2º/.

Once again we define a dual process.

Definition 6.5 (Dual to SLFVGS). The process .Pt /t�0 is the
S

l�1.Rd/l -valued Markov
process with dynamics defined as follows.

For each .t; x/ 2
 �
…, the corresponding event is neutral with probability 1 � s, in

which case proceed as in Definition 6.3. With the complementary probability s, the event is
selective, in which case:

(1) for each �i .t�/ 2 B.x; r/, independently mark the corresponding individual
with probability u;

(2) if at least one individual is marked, all of the marked individuals are replaced
by two offspring, whose locations are drawn independently and uniformly in
B.x; r/.

In both cases, if no individual is marked, then nothing happens.

Remark 6.6. From the perspective of the SLFVGS, it would be more natural to call the
individuals created during a selective event in the dual process “parents” (or “potential par-
ents”), as they are situated at the locations from which the parental alleles are sampled. We
choose to call them offspring in order to emphasize that the dual process plays the role for
the SLFVGS that branching Brownian motion plays for equation (1.1).

This time, to determine the type of an individual sampled from the population at time
t , construct the dual as in Definition 6.5 and assign a type to each of the individuals alive at
time t by sampling (independently) according to w0.�i .t//. The individual that we sampled
is of the unfavored type A if and only if all of the individuals in Pt are assigned type A.
If there were no coalescence, this would parallel the McKean/Skorokhod representation for
the Fisher–KPP equation (with Brownian motion replaced by the random walk of ancestral
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lineages); genetic drift appears as coalescence. It is natural to ask what happens if we scale
the SLFVGS in such a way that the random walk followed by an ancestral lineage converges
to Brownian motion.

Theorem 6.7 (Informal restatement of [20, Theorem 1.11]). Consider the process of Defini-
tion 6.1. Take ˇ,  , ı > 0, and let the impact and selection coefficients be un D u=n ,
and sn D s=nı (for some positive constants u, s). Define the scaled process w.n/.t; x/ D

w.nt; nˇ x/. Suppose that

1 �  D 2ˇ; and 1 � ı �  D 0:

Then:

(1) If d � 2 and ˇ �  , or d D 1 and ˇ <  , w.n/ converges weakly to a (weak)
solution of the Fisher–KPP equation.

(2) If ˇ D  D 1=3, ı D 2=3, and dD 1, as n!1, w.n/ converges weakly to the
solution of the stochastic Fisher–KPP equation (1.2).

This result is most easily understood through the dual process of branching and
coalescing lineages. Recalling (6.1), in the scaled process that is dual to w.n/, a lineage
jumps a distance of O.1=nˇ / at rate proportional to nun D n1� . To obtain a nontrivial
limit, we choose 1 �  D 2ˇ, corresponding to the diffusive scaling.

Now suppose that a selective event covers a lineage. With probability 1=n the
lineage is an offspring of the event, in which case two lineages are created at separation
O.1=nˇ /. They may almost immediately coalesce, but with positive probability they will
move apart to a distance at which they cannot be covered by the same event. In the limit as
n!1, we will only “see” the branching event, if the lineages move apart to distance O.1/

before coalescing. By comparison with simple random walk, we expect that the number of
times that they will come back to a separation less than 2r=nˇ (and so have a chance to
coalesce) before reaching a separation of O.1/ is O.nˇ / in d D 1, O.log n/ in d D 2, and
O.1/ in d � 3. Now consider how many times they come back together before they coa-
lesce. When they are overlapped by the same event, given that one of them is an offspring,
the chance that the second lineage is also an offspring, and so they coalesce, is O.1=n /,
from which we deduce that they must come back together O.n / times before coalescence.

Combining the above, in d � 2, as n!1, the chance that they escape to a sep-
aration of O.1/ before coalescing is O.1/. Since selective events happen at rate nsnun D

O.n1�ı� /, we take 1 � ı �  D 0 in order that branching of ancestral lineages has rate of
O.1/. In d D 1, if ˇ <  the chance of coalescing before separating is also asymptotically
negligible. In all these cases, as n!1 the dual process converges to a branching Brown-
ian motion, corresponding to the forwards-in-time process converging to a weak solution to
the Fisher–KPP equation. If d D 1 and ˇ D  , which combined with our other conditions
requires ˇ D  D 1=3 and ı D 2=3, there is a positive chance of lineages separating to O.1/,
but they also coalesce in finite time, reflected by the Wright–Fisher noise in (1.2).
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In the argument above we took un! 0, corresponding to the local population den-
sity tending to infinity. In [15,16] scaling limits of the SLFVGS are considered in which the
impact u is fixed. The diffusive scaling then requires us to set w.n/.t; x/ D w.nt;

p
nx/.

This time, when lineages are covered by the same event, they have a strictly positive chance
of coalescing. Reproducing the argument above, since lineages will coalesce after coming
together only a finite number of times, most branches will rapidly be lost to coalescence. In
order to see any lineages separate to O.1/ requires sn D O.1=

p
n/ in d D 1, O.log n=n/

in d D 2, and O.1=n/ in d � 3. In contrast to the setting of [20], the local population den-
sity remains bounded as we pass to the limit and in low dimensions we see the effect of
individuals competing with their own close relatives. Recall that one motivation for taking
a scaling limit is that we use neutral mutations to infer information about genetic ancestry.
This result says that if local population density is bounded, if selection is to be detected, the
selection coefficient must be much larger in one spatial dimension than in two, and in turn
larger in two dimensions than in a population without spatial structure. In particular, when
local population density is bounded, spatial dimension is important in limiting the effect of
selection.

6.2. The effect of genetic drift on blocking
In order to investigate the effect of genetic drift on the blocking that we saw in

Section 5.2, we adapt the SLFV to incorporate the selection mechanism of Section 5.1. There
is not yet any accepted way in which to incorporate boundary conditions into the SLFV. An
obvious approach that can be applied to simple domains (including for example the domain
� of Figure 2) based on “reflected sampling” (essentially mimicking Lord Kelvin’s method
of images for the heat equation) is used in [18]. The important consequence of that choice is
that scaled ancestral lineages will converge to reflected Brownian motions. For brevity we
shall only describe the adaptation of the SLFV on the whole Euclidean space.

Definition 6.8 (A Spatial ƒ-Fleming process with (asymmetric) selection against heterozy-
gotes (SLFVSH)). Fix r , u and … as in Definition 6.1. Fix  2 .0; 1� and s 2 .0; 1=.1C //.
In the Spatial ƒ-Fleming–Viot process with selection against heterozygosity (SLFVSH), if
.t; x/ 2…, with probability 1� .1C /s a neutral reproduction event occurs as described in
Definition 6.1. With the complementary probability .1C /s the event is selective, in which
case:

(1) Choose three “potential” parental locations z1; z2; z3 2 Rd independently
and uniformly at random from B.x; r/. Sample types ˛1, ˛2, ˛3, according
to wt�.z1/; wt�.z2/; wt�.z3/, respectively. Let Ǫ denote the most common
allelic type in ˛1; ˛2; ˛3, except that if precisely one of ˛1, ˛2, ˛3, is a, with
probability 2

3C3
set Ǫ D a.

(2) For every y 2 B.x; r/, set wt .y/ D .1 � u/wt�.y/C u1¹ ǪDaº.

The dual process mirrors the process .Pt /t�0 of Definition 6.5, except that this
time, in a selective event, if at least one individual is marked then all marked individuals are
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replaced by three offspring. Just as for the deterministic setting of Lemma 5.3, the duality
relation that we exploit is between the SLFVSH and the historical process of branching and
coalescing lineages, „.t/ WD .Ps/0�s�t , and rests on a voting scheme:

(1) Each leaf of „.t/ independently votes a with probability p.�i .t//, and A oth-
erwise;

(2) at each neutral event in
 �
…, all marked individuals adopt the vote of the offspring;

(3) at each selective event in
 �
…, all marked individuals adopt the majority vote of

the three offspring, unless precisely one vote is a, in which case they all vote a

with probability 2
3C3

, otherwise they vote A.

This defines an iterative voting procedure, which runs inwards from the “leaves” of „.t/

to the ancestral individual ; situated at the point x. The special case of majority voting,
corresponding to  D 0, is illustrated in Figure 4.

Figure 4

Example of majority voting on the dual to the SLFV with selection against heterozygosity. This corresponds to the
duality when both homozygotes are equally fit.

Lemma 6.9. With the voting procedure described above, define eVp.„.t// to be the vote
associated to the root ;. Write Px for the law of „ when P0 is the single point x, and Ex for
the corresponding expectation. Then

Ep

�
wt .x/

�
D Px

�eVp

�
„.t/

�
D a

�
:

To understand the influence of the genetic drift on blocking we consider two different
scalings of the SLFVSH. In both cases we shall be taking a sequence "n ! 0 as n!1.
Our results require that ancestral lineages converge to Brownian motion sufficiently quickly,
compared to the rate at which "n ! 0, which is the purpose of the following assumption.

Assumption 6.10. The sequence ¹"nºn2N is such that "n ! 0 and .log n/1=2"n !1 as
n!1.
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Weak noise/selection ratio
Our first scaling is what we shall call the weak noise/selection ratio regime. In this

regime, selection overwhelms genetic drift. It mirrors that explored in [14] and is also con-
sidered in [25]. For each n 2 N, and some ˇ 2 .0; 1=4/, set w.n/.t; x/ D w.nt; nˇ x/. Let
� > 0. We denote by un the impact parameter, and by sn and n the selection parameters at
the nth stage of the scaling. They will be given by

un D
u

n1�2ˇ
; sn D

1

"2
nn2ˇ

; n D �"n: (6.3)

Adapting the proof of Theorem 1.11 in [20], and arguments in Section 3 of [14], one can show
that under this scaling, for large n, the SLFVSH will be close to the solution of equation (5.5).

Strong noise/selection ratio
We shall refer to our second scaling as the strong noise/selection ratio regime. In

this regime, genetic drift overcomes selection. We take a sequence of impact parameters
.un/n2N � .0; 1/. Consider ˇ 2 .0; 1=2/ and let Oun WD unn1�2ˇ . This time, we scale time
by n= Oun and space by nˇ : w.n/.t; x/Dw.nt= Oun; nˇ x/. We consider a sequence of selection
coefficients, .sn/n2N � .0; 1/, satisfying one of the following conditions:8̂<̂

:
snn2ˇ ! 0; lim infn!1 un log n <1 or d � 3;

snn2ˇ

un log n
! 0; lim inf un log n D1 and d D 2:

(6.4)

The first case includes some choices of impact that were allowed in the first (weak noise/selec-
tion ratio) regime; it is the strength of drift relative to selection that matters. In this regime,
we can take the parameters .n/n2N that dictate the asymmetry in our selection to be any
sequence in .0; 1/.

Remark 6.11. The rationale behind these scalings is that (at least if u D 1 in (6.3)) we can
choose parameters in such a way that the scaled models only differ in the strength of the
genetic drift (which can be thought of as the reciprocal of the impact). To see this, consider
a single ancestral lineage: in the first regime, the rate at which it jumps is proportional to
nunD n2ˇ ; in the second regime, it is proportional to nun= OunD n2ˇ (with the same constant
of proportionality). In both cases we take the same spatial scaling, so the motion of ancestral
lineages is the same. The rate at which a lineage “branches” as a result of being covered by a
selective event in the first regime is proportional to nunsnD n2ˇ sn. In the second regime, it is
the same, nunsn= Oun D n2ˇ sn, so if we choose the same coefficients sn, the “branching rate”
is the same in both regimes. From the perspective of the dual process, the only difference
between the two scalings will then be in the probability of coalescence (determined by un).

Theorem 6.12 ([18, special case of Theorem 1.19]). Let ��D .d� 1/=� and suppose r0 < ��.
Let .w.n/.t; �//t�0 be the scaled SLFVSH defined above on the domain � of Figure 2, with
initial condition w.n/.0; x/ D 1x1�0.
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(1) Under the weak noise/selection ratio regime, for any k 2N, there exist n�.k/ <

1, and a�.k/; d�.k/ 2 .0;1/ such that for all n � n� and all t > 0,

for almost every x such that x1 � �d�"nj log "nj; E
�
w.n/.t; x/

�
� "k

n:

(2) Under the strong noise/selection ratio regime, a sharp interface does not
develop as n goes to infinity. Instead, there is �2 > 0 such that for every " > 0

and t � 0, there are a reflected Brownian motion .Wt /t�0, and n� such that for
all n � n�, ˇ̌

Ew0

�
w.n/.t; x/

�
� Px

�
W.�2t / � 0

�ˇ̌
� ":

More generally, one can show that in the strong noise/selection ratio regime for
x ¤ y, w.n/.t; x/ and w.n/.t; y/ decorrelate as n!1.

The first statement says that in the weak noise/selection ratio regime the SLFVSH
behaves approximately as the deterministic equation (5.5). The key step in the proof is to
couple the dual process to a system of branching random walks in which there is no coales-
cence. The proof then follows the same pattern as the deterministic result with the extra twist
that one must control the error arising from approximating the random walks by Brownian
motions.

In the strong noise/selection ratio regime, as one can convince oneself using the
argument outlined in the case of bounded neighborhood size in Section 6.1, the genetic drift
is strong enough to counter the effects of selection and it breaks down the interface. We
see coexistence of the populations throughout the domain. Perhaps counterintuitively, the
favored type expands its range further when the population density is lower.

7. Conclusion

There is a vast body of literature that seeks to understand the interactions between
natural selection, spatial structure, and genetic drift. Mathematics has provided a powerful
tool; a great deal has been learned from apparently crude caricatures of the ways in which
these forces interact with one another. However, as with any mathematical models, one must
be cognisant of the assumptions and simplifications that are being made. In the examples
presented here, we have aimed to draw out the importance of not neglecting the dimension
and geometry of the domain in which a population is evolving, and of taking account of the
randomness inherent in reproduction in a finite population.
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