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Abstract

In order to give a combinatorial descriptions of tensor product multiplicites for semisimple
groups, it is useful to find bases for representations which are compatible with the actions
of Chevalley generators of the Lie algebra. There are three known examples of such bases,
each of which flows from geometric or algebraic mountain. Remarkably, each mountain
gives the same combinatorial shadow: the crystal B.1/ and the Mirković–Vilonen poly-
topes. In order to distinguish between the three bases, we introduce measures supported on
these polytopes. We also report on the interaction of these bases with the cluster structure
on the coordinate ring of the maximal unipotent subgroup.

Mathematics Subject Classification 2020

Primary 22E46; Secondary 14M15, 16G20, 13F60, 05E10

Keywords

Canonical basis, crystals, affine Grassmannian, quiver varieties

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 4, pp. 2976–2996
DOI 10.4171/ICM2022/132

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


1. Representations and their bases

1.1. Semisimple Lie algebras and their representations
Let G be a complex semisimple group. The representation theory of G is very well

understood. The irreducible G-representations are labeled by dominant weights, and every
representation is a direct sum of these irreducible representations. For � 2 PC, the irre-
ducible representation V.�/ admits a decomposition into eigenspaces V.�/� for the action
of T . These eigenspaces are called weight spaces and their dimensions are called weight
multiplicities.

The tensor product of two irreducible representations decomposes into a direct sum
of irreducible representations with tensor product multiplicities c�

��
,

V.�/˝ V.�/ Š
M

�2PC

V.�/
˚c�

�� :

Problem 1.1. Determine combinatorial formulae for weight multiplicities and tensor prod-
uct multiplicities.

Weight and tensor product multiplicities are closely related by the following con-
struction. Let C �

��
D Hom.V .�/; V .�/˝ V.�//, a vector space whose dimension is c�

��
.

Proposition 1.2. There is an injective map C �
��
! V.�/��� with image

T
i2I ker e

˛_
i .�/C1

i .

Here we use the Chevalley presentation of g, with generators ei ; fi ; ˛_
i , for i 2 I .

1.2. Good and perfect bases
Problem 1.1 was first solved by Littelmann [34] and Berenstein–Zelevinsky [9],

following an approach first proposed by Gel’fand–Zelevinsky [21]. They suggested finding
weight bases for each V.�/ which restrict to bases of tensor product multiplicity spaces.

Let V be a G-representation. A weight basis for V is a basis consisting of weight
vectors. A weight basis B for V.�/ is called good, if for each i 2 I , it is compatible with the
filtration of V.�/ given by the kernels of powers of ei . From Proposition 1.2, it follows that
a good basis restricts to a basis of each tensor product multiplicity space.

A slight strengthening of the notion of good basis was proposed by Berenstein–
Kazhdan [8]. One might imagine that we could find a basis for a representation such that
each ei takes each basis vector to another basis vector (or 0). However, this is not always
possible (see Example 1.4). So instead we will demand that each ei permutes the basis up to
lower order terms.

To formulate this, we define a map "i W V ! N giving the nilpotence degree of ei

on a vector v 2 V ; more precisely, "i .v/ D max¹n 2 N W en
i b ¤ 0º.

A good basis B of V is called perfect, if for each i 2 I , and b 2 B , either ei b D 0

or there exists Qei .b/ 2 B such that

ei b D "i .b/ Qei .b/C v for some v 2 ker e
"i .b/�1
i :
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In other words (up to a predictable scalar) ei b equals Qei .b/ modulo a vector with
lower nilpotence degree. Note that this definition only requires V to be a representation of
the Borel subalgebra b.

Example 1.3. To understand these scalars and gain some intuition, it is instructive to con-
sider the case of gD sl2. In this case, PC DN and V.n/D CŒx; y�n, the space of homoge-
nous polynomials of degree n. The Chevalley generator e acts by y@x (on both the left and
right) and the unique perfect basis (up to a scalar) is ¹xn; xn�1y; : : : ; ynº.

Note that y@x.xkyn�k/ D kxk�1yn�kC1 and ".xkyn�k/ D k. In this case there is
no lower order term.

Example 1.4. The simplest irreducible representation where lower order terms occur is the
adjoint representation of sl3. In this representation, V D sl3 with the action given by matrix
commutator. If we assume that B contains the highest weight vector0B@0 0 1

0 0 0

0 0 0

1CA ;

then it is easy to see that the perfect basis condition forces B to contain0B@0 0 1

0 0 0

0 0 0

1CA ;

0B@0 �1 0

0 0 0

0 0 0

1CA ;

0B@0 0 0

0 0 �1

0 0 0

1CA ;

0B@0 0 0

1 0 0

0 0 0

1CA ;

0B@0 0 0

0 0 0

0 1 0

1CA ;

0B@ 0 0 0

0 0 0

�1 0 0

1CA :

The choice of basis for the diagonal matrices is more interesting. The requirement that B be
compatible with the kernels of e1; e2 forces B to contain matrices of the form0B@�a 0 0

0 �a 0

0 0 2a

1CA ;

0B@2b 0 0

0 �b 0

0 0 �b

1CA
for some nonzero a; b. We are forced to take b D 1=3 and similarly a D 1=3, since

e1

0B@0 0 0

1 0 0

0 0 0

1CA D
0B@1 0 0

0 �1 0

0 0 0

1CA D 2

0B@2=3 0 0

0 �1=3 0

0 0 �1=3

1CAC
0B@�1=3 0 0

0 �1=3 0

0 0 2=3

1CA ;

where the second term is of lower nilpotence degree (since it lies in the kernel of e1).

1.3. Perfect bases and crystals
Any perfect basis gives rise to a combinatorial structure called a crystal. Crystals

were first introduced by Kashiwara [30] as the q D 0 limit of a basis for a representation of
a quantum group. However, we prefer to view them as recording the leading order behavior
of ei acting on a perfect basis.

A crystal is a finite set B , along with a map wt W B ! P , and for each i 2 I , a
partially defined map Qei W B ! B . If B is a perfect basis, then it automatically acquires a
crystal structure. The following result of Berenstein–Kazhdan [8, Theorem 5.37] shows that
this combinatorial structure depends only on the representation.
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Theorem 1.5. Let V be a representation and let B; B 0 be two perfect bases. Then there
exists a bijection B Š B 0 which is an isomorphism of crystals.

Because of this theorem, we may speak of the crystal of a representation. In partic-
ular, the crystal of V.�/ is denoted B.�/. Many different explicit combinatorial realizations
of B.�/ are possible. In this talk, we will focus on MV polytopes Section 2.3.

1.4. Biperfect bases
Rather than looking at each irreducible representation individually, we can study

them all at once, using the following trick. The maximal unipotent subgroup N has left and
right actions of N and thus the coordinate ring CŒN � has left and right actions of n by
differential operators. For each i 2 I , we write ei W CŒN �! CŒN � for the left action and
e�

i W CŒN �! CŒN � for the right action.
For each � 2 PC, choose a highest weight vector v� 2 V.�/ and let v�

�
W V.�/! C

be a dual linear form. We define an N -equivariant map

‰� W V.�/! CŒN �; ‰�.v/.g/ D v�
�.gv/:

This linear map is injective and its image is

im ‰� D

\
i2I

ker
�
e�

i

�˛_
i .�/C1

� CŒN �: (1.1)

Thus a basis for CŒN � compatible with the kernels of all powers of e�
i gives a basis for each

V.�/. Conversely, a collection of bases for each V.�/ can sometimes glue together to give a
basis for CŒN �.

A basis B of CŒN � is called biperfect if it contains 1, and it is perfect with respect
to both the left and right actions of n. Thus, B will have two families of crystal operators,
written Qei ; Qe

�
i and two families of maps "i ; "�

i W B ! N (but only one weight map).
From Proposition 1.2 and (1.1), we immediately deduce the following corollary,

which can be regarded as a generalization (from the canonical basis to arbitrary biperfect
bases) of [9, Corollary 3.4].

Corollary 1.6. Let B be a biperfect basis of CŒN �.

(1) For any � 2 PC, the set ¹b 2 B W "�
i .b/ � ˛_

i .�/º restricts via ‰� to a perfect
basis for V.�/.

(2) For any �; �; � 2 PC, the set®
b 2 B W wt.b/ D � � � � � and 8i 2 I; "i .b/ � ˛_

i .�/; "�
i .b/ � ˛_

i .�/
¯

restricts to a basis for C �
��

.

Thus we can solve Problem 1.1 by understanding well the bicrystal structure on B .
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1.5. The bicrystal B.1/

The Berenstein–Kazhdan result (Theorem 1.5) generalizes to biperfect bases.

Theorem 1.7 ([5, Theorem 2.4]). Let B and B 0 be two biperfect bases of CŒN �. Then there
is a unique bijection B Š B 0 that respects the bicrystal structure.

The abstract combinatorial crystal underlying any biperfect basis is denoted B.1/.
On B.1/ we have the Kashiwara involution � W B.1/! B.1/ exchanging Qei and Qe�

i .

Remark 1.8. The algebra CŒN � has an involutive automorphism � (coming from the inverse
map on N ) which exchanges the left and right actions of n. A �-invariant perfect basis is a
perfect basis which is invariant under �. Every example of a biperfect basis that we know is
�-invariant. The Kashiwara involution � on B.1/ is the combinatorial manifestation of the
involution � on CŒN �.

Example 1.9. When G D SL3, B.1/ can be drawn in the following way. The action of e1

is given by right-pointing diagonal arrows and the action of e2 is given by the left-pointing
ones. Each horizontal group of dots have the same weight and the Kashiwara involution flips
each such group. We would like to thank Mark Haiman for showing us this drawing many
years ago.

�

� �

� � � �

� � � � � �

� � � � � � � � �

e1 e2

1.6. Biperfect bases in small rank
For small rank groups, it is easy to show the existence and uniqueness of biperfect

bases of CŒN � by elementary means.

Theorem 1.10. For G D SL2; SL3; SL4, CŒN � has a unique biperfect basis.

Example 1.11. Suppose G D SL2, then CŒN �DCŒx� and ‰n WCŒx;y�n!CŒx� is the map
sending y to 1. The left and right actions of e 2 n on CŒx� agree and are given by e D @x .
The unique biperfect basis of CŒx� is ¹1; x; x2; : : : º.
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Example 1.12. Suppose G D SL3, with the standard choice for B , T and N . Then
CŒN � D CŒx; y; z� where x, y and z are the three matrix entries of an upper unitrian-
gular matrix 0B@1 x z

0 1 y

0 0 1

1CA 2 N:

The unique biperfect basis of CŒN � is

B D
®
xazb.xy � z/c

W .a; b; c/ 2 N3
¯
[

®
yazb.xy � z/c

W .a; b; c/ 2 N3
¯
:

1.7. Three different biperfect bases
For general G, biperfect bases are not unique, nor is it very easy to show their exis-

tence.
The first example of a biperfect basis was Lusztig’s dual canonical basis which is

also known as Kashiwara’s upper global basis [31,37]. This is actually a basis for the corre-
sponding quantum deformation of CŒN �, but it can be specialized at q D 1 to give a biperfect
basis.

Another example, when g is simply-laced, is Lusztig’s dual semicanonical basis
[38], which is constructed by means of the representation theory of the preprojective algebra.

A third example is the Mirković–Vilonen basis [39] coming from the geometry of
the affine Grassmannian.

This trichotomy of bases will be the focus of this paper. Each of these bases comes
from a complicated algebraic or geometric source. Following Arun Ram, we can imagine
three high mountains whose springs give these three bases.

These bases are all different, combining [5, Thm. 1.7], [4, Prop. 2.7], and [18, (3)].

Theorem 1.13. For G D SL6 in the weight space 2˛1 C 4˛2 C 4˛3 C 4˛4 C 2˛5, and for
G D SO8 in the weight space 2˛1 C 4˛2 C 2˛3 C 2˛4, there is a point of B.1/ whose
corresponding dual canonical, dual semicanonical, and MV bases are all different.

Moreover, in both these examples, we have the following specific situation:

d D b C v; c D b C 2v; (1.2)

where b; c; d denote the MV, dual semicanonical, and dual canonical basis vectors, all of
which define the same point in B.1/, and v denotes a vector common to all three bases.

Question 1.14. What can we say about the set of all biperfect bases of CŒN � for a fixed G?

2. Mirković–Vilonen basis

2.1. MV cycles
Mirković–Vilonen [39] used the geometric Satake correspondence to define the MV

basis for irreducible representations of G. This basis is indexed by certain subvarieties in the
affine Grassmannian, known as MV cycles.
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Let G_ be the Langlands dual group and let Gr D G_..t//=G_JtK denote the affine
Grassmannian of this group. By definition, the coweight lattice of G_ coincides with the
weight lattice P of G. For each coweight � 2 P , we get a point of G_..t// and hence a point
L� in Gr. Let S

�
˙
WDN _

˙
..t//L� denote semiinfinite orbits in Gr, where N _

˙
denote opposite

unipotent subgroups in G_.
For � 2 PC, let Gr�

WD G_JtKL� be a spherical Schubert variety. This is a finite-
dimensional singular projective variety whose geometry is closely related to the irreducible
representation V.�/. Let P.Gr/ denote the category of perverse sheaves on Gr which are
constructible with respect to the stratification by G_JtK orbits. This is a semisimple category
whose simple objects are the intersection cohomology sheaves IC� of the spherical Schubert
varieties. There is a monoidal structure on P.Gr/ by convolution.

The following geometric Satake correspondence was established by Mirković–
Vilonen [39], following earlier work by Lusztig [35] and Ginzburg [23].

Theorem 2.1. (1) There is an equivalence of monoidal categories, P.Gr/ŠRepG.

(2) Under this equivalence, for each � 2 PC, IC� is sent to V.�/.

(3) Under this equivalence, for each � 2 P , the hyperbolic stalk functor H �

S
�
�

.�/

matches the functor of taking the �-weight space.

Combining these statements, we conclude Htop.Gr�
\S�

� / Š V.�/�. The irre-
ducible components of Gr�

\S�
� are called MV cycles. Via this theorem, they provide a

basis for each V.�/�.

2.2. Stable MV cycles
For bases of CŒN �, we will be concerned with the intersection of opposite semi-

infinite orbits. For any � 2 QC, the positive root cone, the irreducible components of
S�

C \ S0
� are called stable MV cycles.
Given an MV cycle Z � Gr�

\S�
� , we can translate by t�� to produce a stable MV

cycle t��Z. This process is the geometric analog of the map ‰� W V.�/! CŒN �.
In [5], we combined work of Ginzburg [23] and Mirković–Vilonen [39] to prove the

following result, which had been conjectured by Anderson [1].

Theorem 2.2. (1) The MV bases for each V.�/ can be collected together to form
a biperfect basis for CŒN �, which is indexed by stable MV cycles.

(2) For each i , the action of ei on an MV basis vector bZ is given by the intersection
of the stable MV cycle Z with a hyperplane section.

(3) Given two MV cycles Z1; Z2, the product bZ1bZ2 in CŒN � is given by the
Beilinson–Drinfeld degeneration of Z1 �Z2.

In particular, the structure constants for the action of ei and for the multiplication
are nonnegative integers.

2982 J. Kamnitzer



2.3. MV polytopes
For each stable MV cycle Z, we define Pol.Z/ to be its moment map image (for a

real Hamiltonian torus action). Equivalently, we have

Pol.Z/ D Conv.� W L� 2 Z/:

The polytopes produced this way are called MV polytopes. In [27], we proved the following
result.

Theorem 2.3. The map Z 7! Pol.Z/ gives a bijection between the stable MV cycles and
the MV polytopes. The MV polytopes are precisely those lattice polytopes whose dual fan is
a coarsening of the Weyl fan and whose 2-faces are MV polygons for the appropriate rank 2
groups (which can be described explicitly).

This theorem was reinterpreted by Goncharov–Shen [24] as the following statement.

Corollary 2.4. The MV polytopes are in natural bijection with .G_=B_/.Ztrop/�, the non-
negative tropical points of the flag variety.

Following the historical order, we have described MV polytopes as the moment map
images of MV cycles. However, we emphasize that Theorem 2.3 shows that they are purely
combinatorial objects. We will see in the next two sections that these same polytopes are
naturally obtained from general preprojective algebras modules and simple KLR modules.
They are the common shadows from all three mountains.

In [26], we gave an explicit description of the crystal structure on the set of MV poly-
topes. This provides a convenient combinatorial framework for describing the crystal B.1/

and is easily connected to many other combinatorial models. In particular, for each reduced
word si1 � � � sim D w0 for the longest element of the Weyl group, Lusztig [36] constructed a
bijection B.1/!Nm using the relation between PBW monomials and the canonical basis.
In [26], we showed that the Lusztig datum of b 2 B.1/ is the list of lengths along a path
following the edges of the MV polytope Pol.b/, in root directions determined by the reduced
word.

Example 2.5. Take G D SL3. In this case, an MV polytope is a hexagon with all 120ı

angles, whose “width” A is equal to the maximum of its two “heights” B; C .

A

B

C

For this polytope, the two Lusztig data are .3; 2; 1/ and .2; 1; 4/.

2983 Perfect bases in representation theory: three mountains and their springs



3. Dual semicanonical basis

3.1. Preprojective algebra
Assume for this section that g is simply-laced. Let H denote the set of oriented edges

of the Dynkin diagram of g. If hD .i; j /, write NhD .j; i/. Fix a map � WH ! ¹1;�1º such
that for each h, �.h/C �. Nh/ D 0 (such a � corresponds to an orientation of each edge of the
Dynkin diagram).

The preprojective algebra ƒ is the quotient of the path algebra of .I; H/ by the
relation

P
h2H �.h/h Nh D 0. So a ƒ-module M consists of vector spaces Mi , for i 2 I , and

linear maps Mh WMi !Mj for each h D .i; j / 2 H , such thatX
h2H

�.h/MhM Nh D 0: (3.1)

Given a ƒ-module M , we define its dimension vector by

dim
��!

M D
X
i2I

.dim Mi / ˛i :

We write Si for the simple module at vertex i , the unique module with dim
��!

Si D ˛i .
For each � D

P
i2I �i ˛i 2 QC, we consider the affine variety of ƒ-module struc-

tures on
L

i2I C�i . More precisely, we define

ƒ.�/ �
M

.i;j /2H

Hom.C�i ; C�j /

to be the subvariety defined by equation (3.1).

3.2. The dual semicanonical basis
Let M be a ƒ-module. Following Lusztig [38] and Geiss–Leclerc–Schröer [18, §5],

we define an element �M 2 CŒN � as follows. First, for each i 2 I p , we define the projective
variety of composition series of type i ,

Fi .M/ D
®
0 DM 0

�M 1
� � � � �M p

DM WM k=M k�1
Š Sik for all k

¯
and then we define �M 2 CŒN � by requiring that

hei1 � � � eip ; �M i D �
�
Fi .M/

�
for any i 2 I p , where � denotes topological Euler characteristic, and where h�; �i denotes the
pairing between U n and CŒN �.

This map M 7! �M is constructible and so for any irreducible component Y �ƒ.�/,
we can define cY 2 CŒN �� by setting cY D �M , for M a general point in Y .

The following result is due to Lusztig [38].

Theorem 3.1. (1) For each � 2 QC, ¹cY j Y 2 Irr ƒ.�/º is a basis for CŒN �� .

(2) Together they form a biperfect basis of CŒN �, called the dual semicanonical
basis.
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3.3. Polytopes from preprojective algebra modules
In the resulting bicrystal structure on the set t� Irr ƒ.�/, we have

"i .Y / D dim Homƒ.M; Si /; "�
i .Y / D dim Homƒ.Si ; M/;

where M is a general point of Y .

Remark 3.2. Fix � 2 PC. From Corollary 1.6(1), those components Y which satisfy
"�

i .Y / � ˛�
i .�/ index a basis for V.�/. These same irreducible components form the core of

the corresponding Nakajima quiver variety via the correspondence explained in [43, Section

4.6].

The bicrystal t Irr ƒ.�/ is isomorphic to B.1/ by Theorem 1.7. Thus, an MV
polytope is canonically associated to component Y . We can describe this polytope using the
module structure on a general point of Y .

Theorem 3.3 ([6, §1.3]). Let Y be a component of ƒ.�/ and M be a general point of Y . The
MV polytope of the basis vector cY is given by the Harder–Narasimhan polytope of M ,

Pol.M/ WD Conv.dim
��!

N W N �M is a submodule/:

Example 3.4. Take g D sl3, and consider � D ˛1 C ˛2.
Then ƒ.�/ D ¹.a; b/ 2 C2 W ab D 0º where .a; b/ corresponds to the ƒ-module

C
b

�
a

C:

Further, ƒ.�/ has two components in this case. If Y is the component given by b D 0, then
for general M 2 Y , we have submodules in M of dimension 0; ˛1; ˛1 C ˛2 and so Pol.M/

is the triangle with these vertices.

4. Dual canonical bases

4.1. KLR algebras
Let g be an arbitrary semisimple Lie algebra. For each � 2QC, Khovanov–Lauda–

Rouquier defined an algebra R� . It can either be defined by generators and relations using a
modification of the presentation of a Hecke algebra [42], or as an algebra of decorated string
diagrams as in [32]. This algebra can also be realized as an Ext algebra of certain perverse
sheaves constructed by Lusztig (see [45]).

In this section, we work over C, though it is possible to work over fields of positive
characteristic; this produces different bases, called the dual p-canonical bases.

The algebra R� contains indempotents ei indexed by sequences .i1; : : : ; ip/ 2 I p

such that ˛i1 C � � � C ˛ip D �. We write K.R�/C for the complexified Grothendieck group
of finite-dimensional R� modules. The following result is due independently to Rouquier
and Khovanov–Lauda.

Theorem 4.1. For each � 2 QC, there is an isomorphism K.R�/C Š CŒN �� , written
ŒL� 7! dL such that hei ; dLi D dim ei L, for any module L and i as above.
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The vector space K.R�/C has a basis given by the simple finite-dimensional R�-
modules. By [45], the resulting basis for CŒN � coincides with Lusztig’s dual canonical
basis.

4.2. Polytopes from KLR modules
The bicrystal structure on the set of simple KLR modules was carefully studied by

Lauda–Vazirani [33]. By Theorem 1.7, this bicrystal is isomorphic to B.1/, and thus an MV
polytope is canonically associated to each simple KLR module.

On the other hand, these algebras come with nonunital morphisms

R� ˝R��� ! R� :

We write e�;��� for the image of the identity under this map. Tingley–Webster [44] used
these morphisms to define a polytope associated to each KLR module.

Theorem 4.2. The MV polytope of a simple R�-module L is the character polytope

Pol.L/ WD Conv.� W e�;���L ¤ 0/:

4.3. Generalizations to affine and Kac–Moody cases
Unlike the MV basis, the dual semicanonical basis and dual canonical basis admit

straightforward generalizations to the setting where g is a symmetric (resp. symmetrizable)
Kac–Moody Lie algebra.

The polytopes Pol.M/ and Pol.L/ associated to a general ƒ-module or a simple
KLR module admit obvious generalizations in this setting. However, due to higher root
multiplicities, the polytope is not enough to characterize the point in B.1/. Thus, we
must enhance the polytope with some extra information. This was carried out in [6] (using
ƒ-modules) and in [44] (using KLR modules).

In the affine case, this extra information consists of partitions associated to vertical
edges of the polytope (vertical edges are those pointing in the imaginary root direction).
Moreover, these decorated polytopes are characterized by their 2-faces (as in the finite case,
Theorem 2.3) and the new relevant polygons were described combinatorially in [3].

Question 4.3. (1) Is it possible to give a “tropical” description of affine MV poly-
topes, similar to Corollary 2.4?

(2) Outside of the affine type, it is possible to give a combinatorial description to
the extra information carried on the MV polytope?

(3) Though more complicated, the theory of MV cycles exists for affine Kac–
Moody Lie algebras. How can we relate these MV cycles to the affine MV
polytopes? In particular, what information about the cycles is encoded in the
partitions along vertical edges?
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5. Comparing biperfect bases

5.1. Change of basis matrix
Let B; B 0 be two biperfect bases for CŒN �. By Theorem 1.7, we obtain bijections

B!B.1/ B 0 and thus a bijection between B and B 0. Thus, it makes sense to speak of the
change of basis matrix between B and B 0. In [2], Baumann proved that this matrix is upper
unitriangular with respect to a partial order on B.1/, defined combinatorially using the
crystal structure. Many elements of B.1/ are incomparable using this order. Thus, many off-
diagonal elements of the change of basis matrix must vanish. In low rank, the order becomes
trivial and gives the proof of Theorem 1.10.

5.2. Measures
We think of an MV polytope as the shadow of a biperfect basis vector. Unfortunately,

this shadow is not precise enough to distinguish between different biperfect basis vectors
which represent the same element of B.1/. For this reason, we now introduce a measure
supported on the MV polytope.

Consider the vector space Dist.t�
R/ of C-valued compactly supported distributions

on t�
R. It forms an algebra under convolution, using the addition map t�

R � t�
R

C
�! t�

R.
Let �p WD ¹.c0; : : : ; cp/ 2RpC1 W each ci � 0; c0C � � � C cp D 1º be the standard

p-simplex. For i 2 I p , we define the linear map �i W RpC1 ! t�
R by

�i .c0; : : : ; cp/ D

pX
kD0

ck.˛i1 C � � � C ˛ik /:

We define the measure Di on t�
R by Di WD .�i /�.ı�p /, the push-forward of Lebes-

gue measure on the p-simplex. The measures Di satisfy the shuffle identity.

Lemma 5.1 ([5, Lemma 8.5]). For j 2 I p; k 2 I q ,

Dj �Dk D

X
i2j�k

Di ;

where j � k is the set of all sequences obtained by shuffling j and k.

Elementary considerations involving the coproduct structure on U n show that the
shuffle identity implies that there is an algebra morphism D W CŒN �! Dist.t�

R/ defined by

D.f / D
X

i

hei ; f iDi :

5.3. Fourier transform
For each weight ˇ 2 P , we define eˇ to be the function x 7! ehˇ;xi on tC . Given a

measure D.f / as above, we can consider its Fourier transform FT.D.f // which lies in the
space of meromorphic functions on tC , spanned by these exponentials over the field C.t/ of
rational functions. In this way, we obtain the following result.

Proposition 5.2. The composition FT ıD defines an algebra morphism

CŒN �! C.t/˝CŒT �:
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This algebra morphism defines a rational map t � T ! N . This map is actually
regular on treg � T , where treg is the complement of the root hyperplanes in t.

Theorem 5.3 ([5, Theorem 8.11]). (1) For all x 2 treg, there exists a unique nx 2 N

such that Adnx .x/ D x C e.

(2) The rational map from Proposition 5.2 is given by .x; t/ 7! t�1nxtn�1
x .

We now study a simpler invariant D. For a sequence i D .i1; : : : ; ip/, we define

Di D

pY
kD1

1

˛ik C � � � C ˛ip

2 C.t/:

Proposition 5.4 ([5, Proposition 8.4 and Lemma 8.7]). (1) These rational functions
satisfy the shuffle identity from Lemma 5.1 and thus define an algebra mor-
phism D W CŒN �! C.t/ by D.f / D

P
i hei ; f iDi .

(2) For any f 2 CŒN �, D.f / is the coefficient of e0 in FT.D.f //.

(3) The algebra morphism from (1) comes from the morphism of varieties treg!N

given by x 7! nx .

5.4. Duistermaat–Heckman measure
In symplectic geometry, the Duistermaat–Heckman (DH) measure of a symplectic

manifold with a Hamiltonian torus action is defined to be the push-forward of the Liouville
measure under the moment map. Brion–Procesi [14] reformulated this notion in algebraic
geometry by considering the asymptotics of sections of equivariant line bundles.

Fix a W -invariant bilinear form on t (normalized so that short roots have length 1).
This leads to a central extension of G_..t// and thus an equivariant line bundle O.1/ on Gr.

Let Z �Gr be an MV cycle. The torus T _ acts on the space of sections �.Z;O.n//.
We consider Œ�.Z; O.n//� as a distribution on t�

R by�
�

�
Z; O.n/

��
D

X
�2P

dim �
�
Z; O.n/

�
�

ı�:

(Implicitly, we use the bilinear form to identify t and t�.)
Let �n W t

�
R ! t�

R be the automorphism given by scaling by 1
n

. The Duistermaat–
Heckman measure of Z is defined to be the limit

DH.Z/ WD lim
n!1

1

ndim Z
.�n/�

�
�

�
Z; O.n/

��
within the space of distributions on t�

R. Note that each .�n/�Œ�.Z; O.n//� is supported on
Pol.Z/, and hence so is DH.Z/.

Via the Fourier transform, DH.Z/ is closely related to the class of Z in the equivari-
ant homology of the affine Grassmannian. The following ideas are not specific to the affine
Grassmannian: they apply to any (ind-)projective variety equipped with a torus action having
isolated fixed points. First, we have the localization theorem in equivariant homology (see,
for example, [13]).
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Theorem 5.5. The inclusion GrT _

! Gr induces an isomorphism

H T _

� .GrT _

/˝CŒt� C.t/
�
�! H T _

� .Gr/˝CŒt� C.t/:

Because of this theorem and using GrT _

D ¹L� W � 2 P º, we can write

ŒZ� D
X
�2P

m�.Z/
�
¹L�º

�
for unique m�.Z/ 2 C.t/. Following Brion [13], we call m�.Z/ the equivariant multiplicity
of Z at L�. In [5], we proved the following result (again in the general context of projective
varieties with torus actions), following ideas of Brion.

Theorem 5.6. For any MV cycle Z,

FT
�
DH.Z/

�
D

X
�2P

m�.Z/e�:

5.5. DH measures and measures from CŒN�

The T _-equivariant homology of Gr was computed by Yun–Zhu [46]. They defined
a commutative convolution algebra structure on H T _

� .Gr/ and described this algebra using
the geometric Satake correspondence.

Let e D
P

ei be a regular nilpotent element. We define the universal centralizer
space to be

C WD
®
.x; b/ 2 t � B W Adb.x C e/ D x C e

¯
:

Remark 5.7. For any x 2 t, x C e is regular and has centralizer contained in B . Thus our
space C is the base change over t! t=W of the usual universal centralizer (often denoted J ),
as defined in, for example [10, §2.2].

From the definition, we have a map C ! t � T given by .x; tn/ 7! .x; t/. The dual
algebra map fits into the following diagram.

Theorem 5.8 ([46, Prop 3.3 and 5.7]). There is an isomorphism of algebras � W CŒC � !

H T _

� .Gr/ making the following diagram commute:

CŒt�˝CŒT �
� //

��

H T _

� .GrT _

/

Theorem 5.5
��

CŒC �
� // H T _

� .Gr/

Recall the map D WCŒN �!Dist.t�
R/ defined in §5.2 and the map D WCŒN �!C.t/

defined in Section 5.3. Combining Theorems 5.3, 5.6, and 5.8, we proved the following in [5].

Corollary 5.9. For any stable MV cycle Z,

D.bZ/ D DH.Z/; D.bZ/ D m0.Z/:

This corollary is very useful since the equivariant multiplicity m0.Z/ is easily com-
puted using computer algebra programs. In the appendix of [5] (written with C. Morton-
Ferguson and A. Dranowski), we used this approach to establish part of Theorem 1.13.
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5.6. Measures from preprojective algebra modules
Let M be a ƒ-module of dimension vector �. By the definition of �M and the map D,

we have that
D.�M / D

X
i

�
�
Fi .M/

�
Di :

In the previous section (Corollary 5.9), we saw that the measure D.bZ/ of an MV basis
vector equals the asymptotics of sections of line bundles on Z. In a similar fashion, we will
now explain that D.�M / can also be regarded as an asymptotic.

Consider the algebra ƒŒt� WD ƒ˝C CŒt �. We define

G�

�
MŒt�=tn

�
D

®
N �M ˝CŒt �=tn

W N is a ƒŒt�-submodule, dim
��!

N D �
¯
:

We will record the information of the Euler characteristics of these varieties as an element
of Dist.t�

R/ by �
H �

�
G

�
MŒt�=tn

���
D

X
�2QC

�
�
G�

�
MŒt�=tn

��
ı�:

Theorem 5.10 ([5, Theorem 11.4 and Lemma 12.3]). For any ƒ-module M , we have

D.�M / D lim
n!1

1

ndim M
.�n/�

�
H �

�
G

�
MŒt�=tn

���
:

5.7. A conjecture and symplectic duality
Suppose that Y 2 Irr ƒ.�/, with general point M , and Z is a stable MV cycle,

such that cY D bZ (there are many such pairs, conjecturally). Then D.cY / D D.bZ/. Via
Theorem 5.10 and Corollary 5.9, both sides are the asymptotics of T _-representations. So
it is natural to expect equality before taking the limit. If we further assume that the odd
cohomology of G�.MŒt �=tn/ vanishes, this implies that there is an isomorphism of T _-
representations,

�
�
Z; L ˝n

�
Š H �

�
G

�
MŒt�=tn

��
; for all n 2 N; (5.1)

where T _ acts on the right-hand side through the decomposition G.MŒt�=tn/ D

tG�.MŒt �=tn/.
The left-hand sides of (5.1) form the components of a graded algebra, so it is natural

to search for a similar structure on the right-hand sides. After studying this question for some
time, we are pessimistic about finding this algebra structure. On the other hand, CŒZ� WDL

n �.Z;L ˝n/ is also a module over CŒS�
C \ S0

��. We believe that such a module structure
naturally exists for the direct sums of the right-hand side of (5.1).

Conjecture 5.11. (1) For any preprojective algebra module M of dimension
vector �,

L
n2N H �.G.MŒt �=tn// carries the structure of a C ŒS�

C \ S0
��-

module.

(2) When bZ D cY and M is a general point of Y , then there is an isomorphism
(5.1) of C ŒS�

C \ S0
��-modules.
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This conjecture should be a manifestation of the symplectic duality between gen-
eralized affine Grassmannian slices and Nakajima quiver varieties. In particular, Braverman–
Finkelberg–Nakajima [12] proved that a generalized affine Grassmannian slice is the Coulomb
branch associated to the quiver gauge theory defining the corresponding Nakajima quiver
variety. In [25], with Hilburn and Weekes, we developed a Springer theory for Coulomb
branch algebras and proved a weak form of Conjecture 5.11 for those modules M which
come from a representation of the undoubled quiver.

The symplectic singularity viewpoint is also a useful framework for thinking about
our three bases. In particular, following the philosophy of Braden–Licata–Proudfoot–Webster
[11], the MV cycles and quiver variety components can be categorified using category O for
quantizations of affine Grassmannian slices and quiver varieties, respectively. Moreover,
these categories are closely related to categories of modules for KLR algebras [28]. From
this perspective, the failures of these bases to agree with the dual canonical basis in Theo-
rem 1.13 can be attributed to the nonirreducibility of the character varieties of simple objects
in these categories.

6. Cluster structures

6.1. Cluster structures on CŒN�

Cluster algebras were defined by Fomin–Zelevinsky in order to understand the
dual canonical basis of CŒN �. A cluster algebra is a commutative algebra A with a distin-
guished collection of “clusters.” Each cluster consists of an algebraically independent subset
T D ¹x1; : : : ; xnº � A, such that A � C.x1; : : : ; xn/. We pass from one cluster to another
using an “exchange procedure” which removes one of the xi and replaces it with a certain
rational function. A cluster monomial is a monomial in the variables in one cluster.

Berenstein–Fomin–Zelevinsky [7] proved that CŒN � carries a cluster algebra struc-
ture. Every reduced word si1 � � � sim D w0 for the longest element of the Weyl group gives us
a cluster T .i/ (though these are not all the clusters).

Geiss–Leclerc–Schröer [19] established the following beautiful result explaining
how the theory of preprojective algebras provides an additive categorification of the cluster
algebra structure on CŒN �.

Theorem 6.1. Assume that g is simply-laced.

(1) A maximal rigid ƒ-module T gives a cluster with cluster variables
x1 D �T1 ; : : : ; xn D �Tn , where Ti are the distinct indecomposable summands
of T .

(2) Every cluster is of this form and all cluster monomials lie in the dual semicanon-
ical basis.

(3) The exchange relations in CŒN � comes from short exact sequences in ƒ-mod.
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On the other hand, Kang–Kashiwara–Kim–Oh [29] proved that the categories of R�-
modules provide a monoidal categorification of the cluster algebra CŒN �. In particular, they
proved the following result, which was obtained at around the same time by Qin [40].

Theorem 6.2. Every cluster monomial in CŒN � lies in the dual canonical basis.

Together, Theorems 6.1 and 6.2 imply that the dual semicanonical and canonical
bases contain many common elements, since they both contain all cluster monomials.

6.2. g-vectors
Fix a cluster T D ¹x1; : : : ; xnº in a cluster algebra A. Let u 2 A be a cluster mono-

mial. Fomin–Zelevinsky [17] defined combinatorially the g-vector gT .u/ 2 Zn of u using a
mutation procedure. In [15], Derksen–Weyman–Zelevinsky proved that this g-vector encodes
the “leading monomial” appearing in u. In this case, we say u is g-pointed. As we vary the
cluster T , the data of these gT .u/ defines a tropical point in the Langlands dual cluster X

variety, as studied by Fock–Goncharov [16].
The following observation is due to Genz–Koshevoy–Schumann [22, Section 6].

Proposition 6.3. Let i be a reduced word for w0, giving a cluster T .i/. Let u be a cluster
monomial. Then gT .i/.u/ agrees with the i -Lusztig data of u, up to a simple linear change
of coordinates.

In this way, we see explicitly how the information of all these g-vectors is the same
information as the MV polytope (this is also closely related to Corollary 2.4).

In the setting of the dual semicanonical basis, this can be generalized as follows. Let
T be a maximal rigid ƒ-module and let M 2 ƒ-mod. Geiss–Leclerc–Schröer [20] defined
gT .M/ 2 Zn using homological algebra, extending the above notion of g-vector. Moreover,
they proved that �M is g-pointed in each cluster.

6.3. Theta basis
A cluster algebra that contains finitely many clusters is called finite type. The cluster

algebra CŒN � is of finite type only when G D SL2; SL3; SL4; SL5. When a cluster algebra
A is not finite type, then the cluster monomials do not span A. It was a longstanding open
problem to extend the set of cluster monomials to a basis for A. This problem was solved by
the following remarkable theorem of Gross–Hacking–Keel–Kontsevich.

Theorem 6.4. Let A be a cluster algebra, satisfying some hypotheses (which hold for CŒN �).
There is a natural basis for A, called the theta basis, extending the set of cluster monomials.
This theta basis is parametrized by the set of tropical points of the Langlands dual cluster X

variety. Moreover, each theta basis element is g-pointed in each cluster.

Combining Theorem 6.4 with Proposition 6.3 or Corollary 2.4, we get a natural
parametrization of the theta basis of CŒN � by B.1/. In Section 1.5, we saw that biperfect
bases are parametrized by B.1/, so it is natural to ask the following.
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Question 6.5. Is the theta basis for CŒN � a biperfect basis?

6.4. Cluster structure on the MV basis
From Theorems 6.1 and 6.2 the dual semicanonical and dual canonical bases for

CŒN � contain all cluster monomials. In another direction, Qin [41] studied bases which are
g-pointed in each cluster and gave a description of the set of all such bases. In particular, he
showed that all such bases contain all the cluster monomials.

This motivates the following conjecture.

Conjecture 6.6. The MV basis for CŒN � contains all cluster monomials. Moreover, its ele-
ments are g-pointed in each cluster.

Note that the conjecture would imply that the MV basis and dual semicanonical
basis agree for SL5 which is not known.

As evidence for this conjecture, let us mention that the first counterexamples (in both
SO8 and SL6) to the equality of the MV and dual semicanonical bases (see Theorem 1.13)
occur for the square of the simplest basis element which is not a cluster monomial.

Baumann–Gaussent–Littelmann proved this conjecture for certain clusters.

Theorem 6.7 ([4, Prop 7.2]). If a reduced word i for w0 satisfies a certain condition (which
holds for all reduced words in small rank), then all cluster monomials in the cluster T .i/ lie
in the MV basis.

At the moment, we are far from Conjecture 6.6, but thinking about this conjecture
motivates the following questions.

Question 6.8. (1) Is there a refinement of the notion of biperfect basis which would
imply that such a basis contains all cluster monomials?

(2) What do cluster exchange relations correspond to geometrically? Which collec-
tions of MV cycles form clusters?

Finally, we close with the following wild conjecture.

Conjecture 6.9. The MV and theta bases for CŒN � coincide.

We have three pieces of weak evidence for this conjecture. First, the way in which
the MV, dual canonical, and dual semicanonical bases differ in CŒN � for SL6 in (1.2) is
very reminiscent of the way in which the theta, dual canonical, and generic bases differ for
rank 2, affine type cluster algebras. Second, the construction of the MV and theta bases are
both related to the geometry of loop spaces. Finally, the trichotomy of bases studied here
seems to match the trichotomy of bases for cluster algebras, see [41].
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