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An introduction to the mathematics of deep learning

Gitta Kutyniok

Abstract. Despite the outstanding success of deep neural networks in real-world applications,
ranging from science to public life, most of the related research is empirically driven and a
comprehensive mathematical foundation is still missing. At the same time, these methods have
already shown their impressive potential in mathematical research areas such as imaging sci-
ences, inverse problems, or numerical analysis of partial differential equations, sometimes by
far outperforming classical mathematical approaches for particular problem classes.

The goal of this paper, which is based on a plenary lecture at the 8th European Congress
of Mathematics in 2021, is to first provide an introduction into this new vibrant research area.
We will then showcase some recent advances in two directions, namely the development of a
mathematical foundation of deep learning and the introduction of novel deep learning-based
approaches to solve inverse problems and partial differential equations.

1. Introduction

During the last years, deep neural networks have been key to spectacular successes in
diverse applications such as autonomous driving, medical diagnosis, speech recogni-
tion, and telecommunication. It is by now evident that deep learning and, in general,
artificial intelligence, will change in the future both public life and science in an
unprecedented way; and this future has already begun. As an example in the sciences,
Google’s DeepMind’s AlphaFold 2 has recently led to a breakthrough in highly accu-
rate prediction of protein structures [20].

A strongly increasing impact on mathematics itself can also be witnessed. The
field of inverse problems, predominantly in imaging science, was one of the first
areas in mathematics, which embraced these novel methodologies. This area, which
focusses on problems such as denoising, inpainting, super-resolution or computed
tomography, is particularly accessible to learning methods, since there does not exist
a precise model for what an image is. Almost all novel contributions, which improved
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the state of the art, employ such techniques. This, by now, already led to a change in
paradigm in this field. We will discuss further details in Section 4.1.

Besides inverse problems, another large area of mathematical problem settings
are partial differential equations. One can, in general, imagine using learning meth-
ods in solvers. It is, however, not immediately evident what the advantage of such an
approach would be. The ability of deep neural networks to beat the curse of dimen-
sionality then led to a change of paradigm in this area as well, and research at the
intersection of numerical analysis of partial differential equations and deep learning
accelerated since about 2017. Several milestones could already be celebrated as will
be presented in Section 4.2.

As bright as the deep learning future appears to be, one has to also be aware
of various major obstacles still waiting to be overcome. This was very prominently
stated during the plenary talk at the main conference in artificial intelligence and
machine learning, namely NIPS (today called NeurIPS) in 2017 on behalf of the Test-
of-Time Award, in which Ali Rahimi from Google claimed that “Machine learning
has become a form of alchemy”. And, indeed, as we will discuss later, a fundamen-
tal understanding of deep learning algorithms is still missing, posing a great—and
exciting—challenge to, in particular, mathematics.

This problem becomes even more severe when observing that in addition to a
lack of theoretical foundation, causing, for instance, a very time-consuming and deli-
cate training process, deep learning approaches also sometimes fail dramatically. One
example of such failures are so-called adversarial examples, when small changes in
the data lead to a radically different decision; a well-known problem in this regime
is the sensitivity of self-driving cars to minor adaptions of traffic signs such as the
placement of stickers. Another example is fairness, when biased training data causes
deep learning approaches to, for instance, reach racist decisions.

Summarizing, there is a tremendous need for mathematics in the area of deep
learning. One can identify two different research directions:

� Mathematics for deep learning. This direction aims for deriving a deep mathe-
matical understanding of deep learning and asks questions such as “How can we
make deep learning more robust?”

� Deep learning for mathematics. This direction focusses on mathematical problem
settings such as inverse problems and numerical analysis of partial differential
equations with the goal to employ deep learning techniques for superior solvers.

In this article, we will touch upon both research directions, showcasing some
novel results and pointing out key future challenges for mathematics. In Section 2,
we will first provide an introduction into deep learning from a mathematics view-
point. We will then delve deeper into the first direction, namely mathematics for deep
learning, and discuss the subarea of expressivity in more detail (Section 3). This will
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be followed in Section 4 by highlighting examples of the second direction, namely
deep learning for mathematics. Finally, Section 5 is devoted to future perspectives for
mathematics.

2. Deep neural networks

In 1943, McCulloch and Pitts had the vision to introduce artificial intelligence to the
world [28]. At that time, their idea was to develop an algorithmic approach to learn-
ing by mimicking the functionality of the human brain. Due to the structure of the
brain being composed of neurons with numerous interconnections, they introduced
so-called artificial neurons as building blocks. The structure of a neuron in the human
brain, in its most simple form, consists of dendrites through which signals are trans-
mitted to its soma, while being scaled/amplified due to the structural properties of the
respective dendrites. In the soma of the neuron, those incoming signals are accumu-
lated, and a decision is reached whether to fire to other neurons or not, and also with
which strength.

A mathematical definition of an artificial neuron is consequently defined as fol-
lows. In the sequel, we will build a neural network from such components with the
weights and biases being the free parameters, which need to be trained.

Definition 2.1. An artificial neuron with weights w1; : : : ; wn 2 R, bias b 2 R, and
activation function � W R ! R is defined as the function f W Rn ! R given by

f .x1; : : : ; xn/ D �

� nX
iD1

xiwi C b

�
D �

�
hx;wi C b

�
;

where w D .w1; : : : ; wn/ and x D .x1; : : : ; xn/.

Let us now take a look at some examples of activation functions.

Example 2.2. (1) Heaviside function

�.x/ D

´
1; x > 0;

0; x � 0:

(2) Sigmoid function �.x/ D 1
1Ce�x .

(3) Rectifiable Linear Unit (ReLU) �.x/ D max¹0; xº.

The most basic activation function is certainly the Heaviside function, leading to
a yes/no decision. The sigmoid function is a smooth alternative. But the by far most
extensively used activation function in basically all applications is the ReLU due to
its simple piecewise linear structure, which is advantageous in the training process,
and still allows superior performance.
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2.1. The mathematical definition

An (artificial feed-forward) neural network is then built by concatenating artificial
neurons to compositions of affine linear maps and activation functions. This leads to
the following definition.

Definition 2.3. Let d 2 N be the dimension of the input layer, let L be the number
of layers, let N0 WD d , N`, ` D 1; : : : ; L, be the dimensions of the hidden and last
layer, let � W R ! R be a (non-linear) activation function, and, for ` D 1; : : : ; L, let
T` be the affine-linear functions

T` W RN`�1 ! RN` ; T`x D W .`/x C b.`/;

with W .`/ 2 RN`�N`�1 being the weight matrices and b.`/ 2 RN` the bias vectors of
the `th layer. Then ˆ W Rd ! RNL given by

ˆ.x/ D TL�
�
TL�1�

�
: : : �

�
T1.x/

�
: : :

��
; x 2 Rd ;

is called (deep) neural network.

We would like to stress that in many papers a distinction is made between a neural
network and its realization, namely the function it realizes. The reason for this is that
different architectures can lead to the same function. For this article, we will, however,
avoid such technical delicacies.

2.2. Key research directions

Aiming to identify the key mathematical research directions in deep learning, let us
take a high-level view of the typical application of a deep neural network; exemplar-
ily we choose classification. One proceeds in the four—very coarsely explained—
following steps.

(1) We assume that we are given samples .xi ; f .xi //miD1 of a function such as
f W M ! ¹1; 2; : : : ; Kº, where M might be a lower-dimensional manifold
of Rd . This is a customarily assumed setting in image classification. We then
split this set into a training data set .xi ; f .xi // QmiD1, say, and a test data set
.xi ; f .xi //

m
iD QmC1

, say. The training data set is—as the name indicates—used
for training, and the test data set for testing the performance of the trained
network. Notice that the test data set stays hidden during the training process.

(2) Then an architecture of a deep neural network needs to be selected, i.e., a
choice of L, .N`/L`D1, and �. Sometimes selected entries of the weight matri-
ces .W .`//L

`D1
are already set to zero at this point if one does not intend to

train a fully connected neural network.
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(3) Next, the affine-linear functions .T`/L`D1 D .W .`/ � Cb.`//L
`D1

are learnt by
solving the optimization problem given by

min
.W .`/;b.`//`

QmX
iD1

L
�
ˆ.W .`/;b.`//`

.xi /; f .xi /
�
C �R

�
.W .`/; b.`//`

�
;

where L is a loss function to determine a measure of closeness between the
network evaluated in the training samples and the (known) function values
f .xi / and R is a regularization term to impose additional constraints on
the weight matrices and bias vectors. The optimization problem is typically
solved by stochastic gradient descent, yielding a network

ˆ.W .`/;b.`//`
W Rd ! RNL ;

where
ˆ.W .`/;b.`//`

.x/ D TL�
�
TL�1�

�
: : : �

�
T1.x/

�
: : :

��
:

(4) Finally, one employs the test data set to analyze whether

ˆ.W .`/;b.`//`
� f;

i.e., whether and to which extent the training process was successful.

It is in fact very surprising that this procedure works this well these days, which
has two main reasons: first, the drastic improvement of computing power allows the
training of networks with hundreds of layers in the sense of deep neural networks.
And, second, we are living in the age of data, hence vast amounts of training data is
available. This being the empirical explanation, a profound mathematical explanation
why, for instance, deep networks are superior to shallow ones or why the complex
training data does not lead to the phenomenon of overfitting is to a large extent still
missing.

2.2.1. Mathematics for deep learning. Based on these considerations, we can now
formulate the four key mathematical research directions, first for mathematics for
deep learning. We will each time also mention the main mathematical fields involved,
thereby showing that almost each area of mathematics is touched and required.

� Expressivity. This direction aims to understand whether and to which extent as-
pects of a neural network architecture affect the performance of deep learning.
Typically methods from applied harmonic analysis and approximation theory are
used.

� Learning. The goal here is to analyze the training procedure with a key question
being why the typically applied algorithm of stochastic gradient descent does
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Figure 1. Illustration of an explanation for the classification as a “black swan” using RDE.

converge to suitable local minima even though the problem itself is highly non-
convex. This direction relies on techniques from areas such as algebraic/differen-
tial geometry, optimal control, and optimization.

� Generalization. This research direction is the least explored and maybe also the
most difficult, sometimes called the “holy grail” of deep learning. It targets the
out-of-sample error and asks questions such as “Why is depth beneficial” or “Why
does high overparametrization not lead to overfitting?”. Required methods belong
in particular to the following areas: learning theory, probability theory, and statis-
tics.

Notice that these three research directions are precisely related to the three com-
ponents of the error of a statistical learning problem (cf. [4, (1.4) and Figure 1.2]),
namely the approximation error from the hypothesis class, the optimization error from
the algorithm itself, and the out-of-sample error.

Besides these more classical problem complexes, new directions have evolved.
One of the most exciting directions might be the following, which until now lacks
almost entirely a mathematical foundation.

� Explainability. Given a trained neural network, this area aims to analyze why
certain decisions were reached, and which components of the input data were
crucial for those. The range of required approaches is quite broad, including areas
such as information theory or uncertainty quantification.

In practice, this direction is invaluable, since one often encounters the situation
that a neural network is given and decisions have to be explained, for instance, to a
customer. In the imaging situation, typical explanations are relevance maps assigning
each pixel a relevance score for the decision such as layerwise-relevance propaga-
tion (LRP) [3] or rate-distortion explanation (RDE) [15]. For an example of such an
explanation, we refer to Figure 1.

However, from a mathematical standpoint, one truly aims for a mathematical def-
inition of the term “relevance” and an according theory of optimal relevance maps.
Ideally, one would also like to have explanations beyond the pixel-based setting and
for more challenging modalities. For a survey of some recent work in this direction,
we refer to [21].
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2.2.2. Deep learning for mathematics. As said before, the second main research
thread is deep learning for mathematics in the sense of deep learning for mathematical
problem settings. The two key research subfields are as follows.

� Inverse problems. The main goal is to improve classical model-based approaches
by deep learning techniques. Since it is often highly beneficial to not entirely
neglect domain knowledge such as the physics of the problem, one crucial ques-
tion is how to optimally combine deep learning with model-based approaches.
This direction relies on tools from imaging science, inverse problems, and mi-
crolocal analysis, to name a few.

� Partial differential equations. Research in this area targets foremost the ques-
tion of how and to which extent deep neural networks are able to beat the curse
of dimensionality. This direction obviously requires methods from areas such as
numerical mathematics and partial differential equations.

3. Mathematics for deep learning

Deep learning-based methodologies for inverse problems and partial differential
equations exploit deep neural networks as approximators. Thus, the first question
to ask is whether deep neural networks are at least as good as all previous mathemat-
ical methods. This question belongs in the realm of the previously introduced area
of expressivity, which will be the focus of this section, aiming to provide a (partial)
answer.

3.1. Revisiting classical approximation theory

We start by revisiting classical approximation theory, and, in the sequel, analyze
whether deep neural networks have at least similar approximation properties as clas-
sical methods.

In a nutshell, function approximation has the following goal. Given a class C �

L2.Rd / of interest—for later use it is sufficient for us to consider L2.Rd /—and
a representation system .'i /i2I � L2.Rd /, which can be an orthonormal basis or,
more generally, a frame, one aims to measure the suitability of .'i /i2I for uniformly
approximating functions from C . For a budget N , the approximating function has
then typically the form of a linear combination of N terms of the representation sys-
tem. This leads to the following definition.

Definition 3.1. The error of best N -term approximation of some f 2 C is given by

�N .f / WD inf
IN �I; #IN DN; .ci /i2IN

f �

X
i2IN

ci'i


2
:
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Figure 2. Illustration of a cartoon-like function.

The largest  > 0 such that

sup
f 2C

�N .f / D O.N� /; as N ! 1;

determines the optimal (sparse) approximation rate of C by .'i /i2I .

A closer look reveals that this viewpoint relates approximation accuracy to the
complexity of the approximating system in terms of sparsity.

Also for later use, we will now introduce one example of a class C and a repre-
sentation system .'i /i2I along with an analysis of its optimal (sparse) approximation
rate. The model class we will consider, called cartoon-like functions (see Figure 2),
was first introduced in imaging science [10], since the predominant features of images
are edge structures. Such anisotropic features also occur in other settings such as the
solution of transport dominated equations, leading to a model class with much larger
applicability.

Definition 3.2. The set of cartoon-like functions E2.R2/ is defined by

E2.R2/ WD
®
f 2 L2.R2/ W f D f0 C f1 � �B

¯
;

where ; ¤ B � Œ0; 1�2 is simply connected with a C 2-curve with bounded curvature
as its boundary, and fi 2 C 2.R2/ with supp fi � Œ0; 1�2 and kfikC2 � 1, i D 0; 1.

A lower bound for any optimal (sparse) approximation rate was derived in the
same article (i.e., [10]). We would like to remark that the purpose of the techni-
cal requirement of “polynomial depth search” in the following theorem is to avoid
degenerate cases of representation systems.

Theorem 3.3. Allowing only polynomial depth search, we have the following optimal
behavior for f 2 E2.R2/:

�N .f / � N�1; as N ! 1:

The well-known wavelet systems [9] do only provide a suboptimal rate of N� 1
2

due to the fact that they are isotropic multiscale systems in the sense of scaling in
both directions at a similar rate (cf. Figure 3).
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Figure 3. Schematic illustration of wavelet and shearlet approximation.

Various systems were suggested to provide optimal (sparse) approximations for
cartoon-like functions. The first successful systems were curvelets [7], which, how-
ever, did not allow faithful implementations. This could be achieved by so-called
shearlets, which were introduced in [26], see also the survey article [23]. For an illus-
tration of the benefit of anisotropic scaling, we refer to Figure 3.

Shearlet systems are associated with three parameters: scale j , position m, and
orientation k. For the precise definition, let A2j and zA2j , j 2 Z, denote the parabolic
scaling matrices given by

A2j WD

�
2j 0

0 2j=2

�
and zA2j WD diag.2j=2; 2j /, and let Sk , k 2 Z, be the shearing matrix given by

Sk WD

�
1 k

0 1

�
:

(Cone-adapted) discrete shearlet systems can then be defined as follows (cf. [24]).

Definition 3.4. The (cone-adapted) discrete shearlet system �H .�; ; z / generated
by � 2 L2.R2/ and  ; z 2 L2.R2/ is the union of®

�.� �m/ W m 2 Z2
¯
;®

23j=4 .SkA2j � �m/ W j � 0; jkj � d2j=2e; m 2 Z2
¯
;®

23j=4 z .STk
zA2j � �m/ W j � 0; jkj � d2j=2e; m 2 Z2

¯
:

We denote the associated shearlet transform by

SH.f / WD
�
hf; gi

�
g2�H.�; ; z /

; f 2 L2.R2/:

This system indeed satisfies the optimal (sparse) approximation rate for cartoon-
like functions up to a log-factor, which is often regarded as negligible. The following
statement is taken from [24], where also the precise hypotheses can be found.

Theorem 3.5. Let �;  ; z 2 L2.R2/ be compactly supported, and let y , yz satisfy
certain decay condition. Then �H .�; ; z / provides an optimally sparse approxima-
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tion of f 2 E2.R2/, i.e.,

�N .f / . N�1.logN/
3
2 ; as N ! 1:

Concluding our example for Definition 3.1, shearlet systems provide an (almost)
optimal (sparse) approximation rate of N�1 for the class C of cartoon-like functions.
For the interested reader, a faithful implementation of the shearlet transform as a
2D&3D (parallelized) fast shearlet transform can be found in www.ShearLab.org.

3.2. Universality of deep neural networks

Analyzing approximation problems for deep neural networks immediately bears the
question of how to replace the notion of complexity of the approximating term, which
was before measured in terms of sparsity. A typical approach for networks is a com-
plexity measure in terms of memory requirements. Recall that the k � k0-“norm”
counts the number of non-zero entries.

Definition 3.6. Retaining the same notation for deep neural networks as in Defini-
tion 2.3, the complexity C.ˆ/ of a deep neural network ˆ is defined by

C.ˆ/ WD

LX
`D1

�
kW .`/

k0 C kb.`/k0
�
:

We will also in the sequel use the notion N NL;C;d;� for the class of deep neural
networks with no more than L layers, complexity of at most C , input dimension d ,
and activation function �. If no bound is given, we indicate this by writing 1.

Thus, the key challenge is now to relate approximation accuracy to the complex-
ity of the approximating network in terms of memory efficiency. A very classical
result—and maybe the first main expressivity result from the time of the “first wave”
of neural networks—is the universal approximation theorem [8,17], which states that
each continuous function on a compact domain can be approximated up to an arbi-
trary accuracy by a shallow neural network.

Theorem 3.7. Let d 2 N, K � Rd compact, f W K ! R continuous, � W R ! R
continuous and not a polynomial. Then, for each " > 0, there existN 2N, ak; bk 2R,
and wk 2 Rd , 1 � k � N , such thatf �

NX
kD1

ak�
�
hwk; �i � bk

�
1

� ":

While this is certainly an interesting result, it is not satisfactory in terms of com-
plexity, since this can be arbitrary large.

www.ShearLab.org
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Aiming to derive an optimality result, we require a lower bound as a benchmark.
One example of such a statement was proven in [5] in terms of a so-called optimal
exponent �.C/ from information theory to measure the complexity of C � L2.Rd /.
We should stress that only the essence of this result is stated without all details.

Theorem 3.8. Let d 2 N, � W R ! R, and C � L2.Rd /. Further, let

Learn W .0; 1/ � C ! N N 1;1;d;�

satisfy that, for each f 2 C and 0 < " < 1,

sup
f 2C

f � Learn."; f /

2
� ":

Then, for all  < �.C/,

" sup
f 2C

C
�

Learn."; f /
�
! 1; as "! 0:

This now provides a conceptual lower bound independent of the learning algo-
rithm. It in fact allows not only to construct deep neural networks, which are memory-
optimal, but also to answer the question with which we started, namely whether deep
neural networks are at least as good as all previous mathematical methods. We will
affirm this for approximations by affine systems such as wavelets and shearlets.

One can now proceed as follows. Assume that we are given a specific function
class such as cartoon-like images, and an associated representation system with an
optimal approximation rate such as shearlets. Mimicking classical approximation
theory—more specifically best N -term approximations—by neural networks leads
to such memory-optimal neural networks, which at the same time perform at least as
good as the associated representation system from an approximation standpoint.

One example of a resulting theorem is taken from [5]. Notice that this is in fact the
optimal approximation rate (up to some "), implying that the bound in Theorem 3.8
is sharp.

Theorem 3.9. Let � be a suitably chosen activation function, and let " > 0. Then, for
all f 2 E2.R2/ and N 2 N, there exists ˆ 2 N N 3;O.N/;2;� with

kf �ˆk2 . N�1C"
! 0; as N ! 1:

Thus, one can conclude that deep neural networks achieve optimal approximation
properties of all affine systems combined. Intriguingly, training the network architec-
ture of the proof, the neural network does even learn approximations of classical
affine systems such as shearlets; for more details see [5].
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4. Deep learning for mathematics

Having established that deep neural networks are at least as good as various classical
approximation methods, we will continue our journey in the deep learning world and
next ask whether deep learning methods are even better than classical approaches. For
this, we will now enter the area of deep learning for mathematics and turn towards
the setting of inverse problems.

4.1. Inverse problems meet deep learning

We start by recalling a general classical approach to solve inverse problems. We will
later discuss how to best combine it with deep learning in specific problem settings
in the sense of taking the best out of the model- and data-world.

Assume that we are given an (ill-posed) inverse problem

Kf D g; where K W X ! Y;

where X and Y are Hilbert spaces, say. In its most classical form in imaging science,
K could be an operator which adds noise to an image, leading to a denoising prob-
lem. Sparse regularization is a conceptually general approach for recovering f from
knowledge of g and K, see also [18]. It computes an approximate solution f ˛ 2 X ,
˛ > 0, by solving

f ˛ WD argmin
f

h
kKf � gk2„ ƒ‚ …
data fidelity term

C˛ �
�hf; 'i i�i2I1„ ƒ‚ …

penalty term

i
;

where .'i /i2I is a suitably selected—in the sense of providing sparse approximations
of f —orthonormal basis or frame for X .

One class of approaches for combining deep learning with solvers such as sparse
regularization are supervised approaches, which in their most direct form first apply
the solver followed by the neural network [19]. A bit more sophisticated are ap-
proaches which replace certain procedures in the solver—such as a denoising part—
by a deep neural network in the sense of plug-and-play [31] or using a specifically
trained network [1]. Semi-supervised approaches aim to encode the regularization as
a neural network (see, e.g., [27]), whereas deep image prior [32] are one example of
what one might coin unsupervised approaches.

We will now focus on one specific inverse problem from imaging science and
discuss one exemplary approach in more detail. This approach follows the philosophy
to apply the model-based solver as far as it is reliable and only complement it by a
deep neural network where necessary. The problem we aim to study is the inverse
problem of (limited angle-) computed tomography.
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A CT scanner samples the Radon transform, which is defined by

Rf .s; �/ D

Z 1

�1

f
�
s!.�/C t!.�/?

�
dt; for .s; �/ 2 R � .0; �/:

Here !.�/ WD .cos �; sin �/ is the unitary vector with orientation described by the
angle � with respect to the x1-axis and !.�/? WD .� sin �; cos �/.

The problem of inverting the Radon transform becomes even harder if Rf .s; �/ is
only sampled on a proper subset Œ��; �� of .0; �/, which is the case in, for instance,
electron tomography. In the sequel, we will refer to the respective Radon transform
by R� . Classical solvers fail in this case due to the fact that a large connected region
of the measurements is missing, while also being too complex for accurate modeling.

The key problem can in fact be regarded as recovering parts of the wavefront
set of the original image, where—coarsely speaking—a wavefront set is the set of
singularities of a distribution together with their directions; for a precise definition we
refer to [16]. Since shearlets resolve the wavefront set [22], the following approach
was suggested in [6], following the previously described philosophy:

� Step 1: Reconstruct the visible.
Compute

f �
WD argmin

f�0

kR�f � gk22 C
SH.f /


1;w
:

We then split the set of parameters .j;m;k/ of shearlets into a visible set 	vis and
an invisible set 	inv related to whether they are associated with shearlets within
a range of acquired data or not, leading to the following cases:

˘ for .j;m; k/ 2 	inv, SH.f �/.j;m;k/ � 0;

˘ for .j;m; k/ 2 	vis, SH.f �/.j;m;k/ is reliable and near perfect.

� Step 2: Learn the invisible.
Train a neural network (U-net) ˆ to compute

ˆ W SH.f �/	vis 7! F;

where F is an approximation of SH.fgt/	inv and fgt the ground truth image.

� Step 3: Combine.
Finally, compute

fLtI D SHT
�

SH.f �/	vis C F
�
:

The numerical experiments in Figure 4 indicate the superiority of deep learning
approaches in general and even more a careful combination of classical solvers with
deep neural networks to pure model-based approaches.

This answers the question whether deep neural networks can perform even better
than classical methods to the affirmative. We include with Figure 5 one additional
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Original

Filtered backprojection Sparse regularization with shearlets

Neural network [13] Learn the invisible (LtI)

Figure 4. Illustration of the superiority of combined model-deep learning approaches.

Original SEAL [33]

CoShREM [30] DeNSE [2]

Figure 5. Illustration of another combined model-deep learning approach [2] in relation to pure
model-based methods [30, 33].
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example, which follows the same philosophy for the edge detection problem [2].
Without going into the details, this approach first uses shearlets as a coarse edge
detector, followed by a deep neural network applied in shearlet domain.

4.2. Deep learning-based solvers for partial differential equations

Finally, we will provide a glimpse into the effectiveness of deep neural networks for
solving partial differential equations, and provide an answer to the question of why
one should use deep learning for solving partial differential equations at all.

Given a partial differential equation L.u/ D f , a common approach to solve this
equation using a neural networkˆ is to approximate the solution u byˆ, i.e., to train
ˆ such that

L.ˆ/ � f:

This requires to incorporate the partial differential equation into the loss function.
Some of the key approaches in this realm are the Deep Ritz Method [11], the so-
called physics-informed neural networks [29], or using a backwards stochastic partial
differential equation reformulation [14].

We will now focus on a more general setting, namely parametric partial differen-
tial equations, which in fact arise in basically any branch of science and engineering
such as in complex design problems or uncertainty quantification tasks. Let us now
assume that we are given a parametric partial differential equation, L.uy ; y/ D fy
with y being a parameter from a parameter space Y � Rp and uy the associated
solution in a Hilbert space H . Since in applications one typically faces a multi-query
situation, the so-called parametric map, given by

Y3y 7!uy 2H such that L.uy ; y/Dfy ;

needs to be solved several times. If p is very large, the curse of dimensionality could
lead to an exponential computational cost.

It seems natural to ask whether deep neural networks can be of benefit in this
situation in the sense of whether a network can approximate the parametric map lead-
ing to a flexible, universal approach which is hopefully not affected by the curse of
dimensionality. For this, we first need to bring the problem into a finite-dimensional
domain, which is done by a high-fidelity discretization, leading to the problem

Rp � Y 3 y 7! uh
y 2 RD such that by.u

h
y ; v/ D fy.v/ for all v

with by.uhy ; v/ D fy.v/ being the associated variational form and uh
y being the coef-

ficient vector of uhy with respect to a suitable basis. We can now ask the following
questions.
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� Given " > 0, does there exist a neural network ˆ such thatˆ.y/ � uh
y

 � "; for all y 2 Y;

and how does the complexity of ˆ depend on p and D?

� How do neural networks perform numerically on this task?

The first question falls in the category of expressivity and would need to be comple-
mented by an analysis of the learning procedure as well as the generalization error, as
discussed in Section 2.2.1. Mathematical answers to those two questions are however
at this point still out of reach, leaving only numerical experiments as an alternative.

The first question was indeed solved by explicitly constructing an associated deep
neural network, while carefully monitoring its complexity. We state the result from
[25] in a high level form.

Theorem 4.1. There exists a neural network ˆ which approximates the parametric
map, i.e., ˆ.y/ � uh

y

 � "; for all y 2 Y;

and the dependence of C.ˆ/ on p and D can be (polynomially) controlled.

With an extensive set-up of numerical experiments such as fixing a specific neural
network architecture and the training procedure, it could then be shown in [12] that
the numerical performance of deep neural networks for this task does also not suffer
from the curse of dimensionality.

5. Conclusions

Deep learning shows impressive performance in real-world applications. However, a
theoretical foundation is largely missing. Developing such a foundation requires var-
ious areas of mathematics as well as the development of new mathematics. The two
main research areas are mathematics for deep learning with its subfields expressivity,
learning, generalization, and explainability, and deep learning for mathematics aim-
ing to apply deep learning to solve inverse problems and partial differential equations.

Let us conclude with seven mathematical key problems of deep learning as they
were stated in [4]:

(1) What is the role of depth?

(2) Which aspects of a neural network architecture affect the performance of deep
learning?

(3) Why does stochastic gradient descent converge to good local minima despite
the non-convexity of the problem?

(4) Why do large neural networks not overfit?
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(5) Why do neural networks perform well in very high-dimensional environ-
ments?

(6) Which features of data are learned by deep architectures?

(7) Are neural networks capable of replacing highly specialized numerical algo-
rithms in natural sciences?

It is thus fair to say that there are exciting future perspectives for mathematics.
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